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ABSTRACT Most existing imaging technologies are prone to noise artifact resulting from movement of
subjects, movement of the camera, facial expressions, talking, skin tone, and lighting variations. In addition,
these technologies have been limited to detecting physiological signs from a single subject at a time. Still,
another challenge facing these technologies is that they have only been demonstrated over a limited range to
a subject. This paper proposes an efficient remote imaging system with a new, low-complexity method for
noise artifact removal to extract the cardiopulmonary signal from a number of subjects (up to six people) and
at long-distances (up to 60 m). The experimental results of the proposed system showed a strong agreement,
high correlation, and low noise level with the reference measurements and outperformed the conventional
measurement methods such as independent component analysis and principle component analysis in both
the stationary and non-stationary scenarios.

INDEX TERMS Imaging photoplethysmography (iPPG), cardiopulmonary signal, video magnification,
signal decomposition technique, blind source separation (BSS), canonical correlation analysis (CCA).

I. INTRODUCTION
Camera imaging technologies have been extensively used
as remote physiological signs monitoring systems in last
decade. These technologies can be divided into two main
categories: color-based methods, sometime called imaging
photoplethysmography (iPPG), which rely on optical fea-
tures passing through or reflecting from the epidermis due to
cardiorespiratory activity; and motion-based methods, which
rely on the mechanical activity of the cardiovascular and
respiratory systems at certain regions of the human body.
Each method, however, has its merits and dismerits under
different assumptions, leading to several challenges for the
research community, including noise artifacts, multiple detec-
tion and long-distance. This paper is focusing on the lack
of systems for extracting the cardiopulmonary signal when
the challenges of noise artifact, multiple detection and long-
distance are main considerations. The major studies that used
camera imaging-based technologies and the main challenges
are reviewed and summarised in Table 1.

Based on the studies listed in Table 1, the cardiopul-
monary signal could be remotely acquired from different

types of camera sensors (e.g. video camera, Webcam, time
of flight camera, Kinect and drone), using different methods
for noise artifact removal with varying degrees of the noise
immunity; however, extraction of the cardiopulmonary signal
was mostly affected by noise artifacts caused by a range
of effects, including subject movement (e.g. head rotation,
walking, facial expressions, talking and blinking), skin tone
and lighting variations. In addition, these studies were limited
to extracting the cardiopulmonary signal of one subject at
a time. Furthermore, all studies listed in these tables were
limited to detecting the cardiopulmonary signal at short dis-
tances. Therefore, the aim of this paper is to propose an
efficient remote imaging system based on both color and
motion methods to extract the cardiopulmonary signal under
different scenarios (stationary and non-stationary scenarios)
with proposing a newmethod for noise artifact removal based
on a combination of a signal decomposition technique and
blind source separation (BSS). Meanwhile, the proposed sys-
tem in this paper was able to detect the cardiopulmonary
signal from multiple subjects (up to six people) and at long
distances (up to 60m) under different assumptions. Thus,
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TABLE 1. Main challenges of the camera imaging-based technologies.

the proposed system with the noise artifact removal method
may be of value for upcoming remote monitoring systems in
biomedical and clinical applications.

This paper is divided into five main sections. Section I
provides an introduction to the proposed system and describes
the related work in a table. Section II is about the methods and
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procedures of the proposed system, including the subjects,
validation methods and the details of the system framework.
Section III contains the experimental results of the proposed
system in different scenarios under three assumptions: pres-
ence of noise artifacts, multiple detection and long-distance
detection. Finally, discussion and conclusion are made in
section IV and V respectively.

II. METHODS AND PROCEDURES
A. ETHICS CONSIDERATION
The research procedure described in this paper adhered to the
ethical tenets of the Declaration of Helsinki (Finland 1964)
and all procedures involving human subjects were granted
by the University of South Australia Human Research Ethics
Committee (Adelaide, South Australia, Protocol number:
0000034901). A written informed consent had been obtained
from all subjects after a full explanation of the research
procedure before commencing the experiment.

B. SUBJECTS
The paper was conducted using three groups of subjects.
The first group (G1) included 15 subjects (10 males and
5 females) aged between 2 and 40 years and with different
skin tones. The video data was collected using a hovering
unmanned aerial vehicle (UAV) (3DR solo, 10MP, 5.4 mm
GoPro Lens). The experiment was performed at various times
of the day under different lighting conditions in outdoor and
indoor environments at a viewing distance of 3 m between
the subject and UAV camera. The subjects were instructed
to breathe normally and to partake in two scenarios during
videoing, including a stationary scenario and a non-stationary
scenario (e.g. face rotation, facial expression, talking and
blinking). The second group (G2) included 20 subjects
(12 males and 8 females) between the ages of 6 and 50 years
with different skin tone. The video data was captured with
a digital camera (Nikon D5300) with a lens (18-55mm) and
located at a distance of 3 m away from the subjects in
both outdoor and indoor environments at 60Hz and 30Hz
frame rates with different resolutions. The subjects were also
instructed to breathe normally when doing the two scenarios
during videoing (stationary and non-stationary scenarios).
The third group (G3) included 10 subjects (8 males and
2 females) within the ages of 18–40 years with different
skin tones. The video data was recorded by a digital cam-
era (Nikon D5300 with a lens (200–500 mm) with 60 fps
and a pixel resolution of 1080 × 720. The video data
were captured over different days at various distances
(approximately between 50 m and 60 m) and different light-
ing conditions in two different scenarios (stationary scenario
and non-stationary scenarios). All video data was saved in
AVI format on a computer for processing and analysis.

C. VALIDATION METHODS
The proposed system was validated by comparing its exper-
imental results with the results obtained from the reference

FIGURE 1. Block diagram of the proposed system including the noise
artifact removal method.

methods. The reference measurement methods, including
pulse oximeter (Rossmax SA210) and respiratory belt trans-
ducer (Piezo MLT1132), were applied to the subject body for
validation purposes.

D. SYSTEM FRAMEWORK
The overall proposed system is composed of several process-
ing techniques: video magnification systems, face detection,
signal decomposition, blind source separation, signal recon-
struction, spectral analysis & filtering and peak detection as
shown in Fig. 1.

1) VIDEO MAGNIFICATION TECHNIQUES
a: SKIN COLOR MAGNIFICATION
Skin color variations in the subject’s face caused by the car-
diac activity are not visible to recognise; therefore, develop-
ing video magnification technique was used to amplify these
variations before data analysis. Some modifications have
been done on the standard videomagnification technique [46]
to suit the proposed system, including wavelet pyramid
decomposition and an elliptic band-pass filter. In this magni-
fication system, wavelet pyramid decomposition, an elliptic
band-pass filter (0.15 Hz- 3 Hz) and the Lanczos resam-
pling method [47] were used to remove motion artifact,
avoid motion magnification during the magnification pro-
cess, and to reduce the processing time. The G component
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was only selected and magnified 15x since this component
has been reported to contain the strongest cardiac information
signal [5]–[7], [48].

b: MOTION MAGNIFICATION
Head motion generated by blood circulation between the
heart to the head via the carotid arteries is very small (about
<0.5mm), and hard or impossible to visually detect; there-
fore, the magnification system proposed in [49] was used to
amplify it before data analysis. In this magnification system,
the image sequences of the video data were converted from
RGB color space to YCbCr color space (instead of YIQ) to
separate the color data from the intensity data. Only the inten-
sity component (Y) was used and downsized to reduce the
processing time. TheY component was then decomposed into
different spatial frequency bands using a wavelet pyramid,
followed by a Chebyshev Type I band-pass filter with a band
of 0.15 Hz- 3 Hz to extract frequency bands of interest. The
filtered signal was then magnified by 15x. The magnified
signal was then reconstructed and added back to the original
signal.

2) ROI DETECTION AND SIGNAL ACQUISITION
Based on the video obtained from the color magnification
system, an efficient face detection method, proposed by
Liao et al. [50], was applied to increase system accuracy
and performance because this method is robust to challenges
associated with unconstrained faces (e.g. faces in a crowd,
face rotation, inclined or angled faces). A number of ROIs
were then detected according to the number of subjects in
the input video. Also, the regions of the eyes and mouth
for each ROI were eliminated to reduce the noise artifact
resulting from blinking and talking during the measurements.
For each ROI, the time-series signal, ic(t), was calculated by
averaging of all the image pixel intensities in the selected
region as follows:

ic (t) =

∑
x,y∈ROI I (x, y, t)

|ROI1|
(1)

where I (x, y, t) is the pixel intensity at a location (x, y) and
time (t), and |ROI1| is the size of the ROI for the first subject.
The acquired signals from six subjects are denoted by ic1(t),
ic2(t), . . . ic6(t) respectively.
Based on the magnified video obtained from [49], Liao’s

method [50] was also applied for detecting faces and only a
small region on the forehead (rectangle region) was selected
as the interested region. A single point in the centre of the
rectangle was then chosen as a feature point which has two
components in both the vertical and horizontal axis. The
Lucas-Kanade tracker was used only to track its vertical
component over time which corresponds to head motion and
thus obtains a time-series signal, im(t), as follows:

im (t) = {V1(t),V2(t), .....,VN (t)} (2)

where V (t) represents the raw signals obtained from
y-axis (vertical trajectories), and N , the number of frames.

The acquired signals from six people are denoted by im1(t),
im2(t), . . . im6(t) respectively.

3) IMPROVED SIGNAL DECOMPOSITION TECHNIQUE
Signal decomposition techniques are widely used for biomed-
ical signal processing tasks to decompose a temporal signal
into a set of amplitude and frequency components, while
the most interesting components need to be selected to rep-
resent the original signal. The empirical mode decomposi-
tion (EMD) is one of the most common signal decomposition
techniques that is used to remove the noise artifacts from
biomedical signals [51]–[53]. The EMD is a time-frequency
analysis technique for adaptively decomposing a given non-
linear and/or non-stationary signal into a set of IMFs. Later,
a noise-assisted version, called EEMD, was proposed by
Wu and Huang [54] to remove the mode mixing problem
associated with the EMD. However, EEMD still has some
limitations related to residual noise, reconstruction error and
modes for different realizations of signal plus noise [55].
Another improved version of the EEMD, the CEEMD tech-
nique was proposed in [56] to solve the problems associated
with the EEMD. In this paper, a recent improved version,
namely the CEEMD technique with adaptive noise, was used
to efficiently decompose the signal of interest into a set
of IMFs with less noise and more physical meaning than
other techniques. In addition, this improved technique out-
performed other signal decomposition techniques in terms of
reduction of the amount of the residual noise from the modes
and spurious modes overlapping.

The flowchart diagram of the signal decomposition based
on the improved CEEMD technique with adaptive noise is
shown in Fig. 2.
where x(i) is a combination of the acquired signal x(t) and
the added white Gaussian noise ω(i) [i = 1, 2, . . .L (no. of
realizations)], the coefficient β allows the selection of SNR
at each stage, the operator E [ ] produces the mth modes
obtained by EMD to generate number of residues r and
modes IMF and the operatorM{ } produces the local means
of each realization of the signal. The signal of interests can
be recovered by the following expression: [55]

x (t) =
N∑
m=1

IMFm + rN (3)

where IMFm is the mth mode of the signal of interest, rN is
the final residue obtained from (rN (t)− rN+1(t)) and N is the
total number of modes.

An example of the generation of eight IMFs of the signal
of interest based on improved CEEMD technique with adap-
tive noise with 100 realizations and 100 iterations is given
in Fig. 3.

4) BLIND SOURCE SEPARATION BSS
BSS is an increasingly popular data analysis technique with
a broad range of applications, which is used to extract
a set of source signals from their mixtures without prior
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FIGURE 2. Flowchart diagram of the improved signal decomposition technique.

FIGURE 3. An example of eight IMF components of the improved CEEMD
technique with adaptive noise.

knowledge of the characteristics of the source signals or mix-
ing process. The canonical correlation analysis (CCA.) tech-
nique [57], [58] was used in this study as a BSS to separate
a number of mixed signals since this technique can achieve
better performance for BSS than the independent component

analysis (ICA) technique with less computational complex-
ity [52], [59], [60]. Also, CCA technique is an effective
signal processing technique that can be used to remove noise
artifacts from the biomedical signals [61]–[64].

To demonstrate how CCA technique operates as the BSS,
let j and k be two multi-dimensional random signals with
N mixtures. Consider the linear combinations of these sig-
nals, known as the canonical variates as follows [65]:

j = Wj1 j1 +Wj2 j2 + . . . ,WjN jN = W T
j j, (4)

k = Wk1k1 +Wk2k2 + . . . ,WkN kN = W T
k k (5)

whereWj= [Wj1 ,Wj2 , . . . .WjN ]
T andWk= [Wk1 ,Wk2 ,WkN ]

T

are weighting vectors of j and k that maximize the correla-
tion between j and k by solving the following maximization
problem:

ρ = cor (j, k) = maxWj,Wk cor(j, k) =
E[jk]√

E
[
j2
]
E[k2]

=

E[
(
W T
j j
) (
W T
k k
)
]

E

√
E
[
(W T

j j)
2
]
E[(W T

k k)
2
]

=
W T
j CjkWk√

(W T
j CjjWj)(W T

k CkkWk )
(6)

where Cjj and Ckk are the non-singular within-set covariance
matrices of j and k , respectively, and Cjk is the between-sets
covariance matrix. The maximization problem with respect
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FIGURE 4. The frequency spectra of decomposed IMF components.

to Wj and Wk can be solved by the following equation:[
Cjj 0
0 Ckk

]−1 [ 0 Cjk
Ckj 0

](
Ŵj

Ŵk

)
= ρ

(
Ŵj

Ŵk

)
(7)

After manipulating Eq. (7), a complete description of the
canonical correlations can be expressed as follows:{

C−1jj CjkŴk = ρŴj,

C−1kk CkjŴj = ρŴk .
(8)

TheK estimates of the sources signals, zi (t), i = 1, 2..K , can
be obtained by

zi (t) = Ŵ T
ji j (t) ≈ si (t) (9)

To select the best IMFs that should be used for estimating
cardiopulmonary signal, the frequency spectral analysis of
each component has been done using FFT as shown in Fig. 4.

Fig. 4 shows the frequency spectra of the decomposed
IMF components using the improved CEEMD technique with
adaptive noise. Clearly, the frequency bands of the compo-
nents (IMF5, IMF6 and IMF7) have the best cardiorespira-
tory frequency bands that fall within a frequency range of
0.15-3 Hz, with the maximum frequency spectra of 2.7 Hz,
1.34 Hz and 1.2 Hz corresponding to 162 beats, 80 beats
and 72 beats respectively, while other spectra fall outside this
range; Therefore, these components were chosen as inputs to
the CCA technique for extracting the cardiopulmonary signal
as shown in Fig. 5.

5) SIGNAL RECONSTRUCTION
The acquired signal (a) was decomposed into a multichan-
nel signal (A) using the improved CEEMD technique. The
IMF components falling outside frequency bands of interest
were removed, while the IMF components within frequency
bands of interest were selected as inputs with the un-mixing
matrix W of the CCA technique. The original multichan-
nel signal Ã was then reconstructed without undesirable
IMF components (artifact components) using the inverse of
the un-mixing matrixW−1. After that, the processed signal ã
without the noise artifacts generating from the effects of
subjects’ movement, camera motion, skin tone and lighting
variations could be found by adding the wanted IMF compo-
nents in the Ã matrix.

6) SPECTRAL ANALYSIS & FILTERING
Spectral analysis method based on the FFT was used
to extract the cardiopulmonary frequencies, followed by
two temporal filters of 5th order Butterworth band-pass
at 0.5-3Hz corresponding to the heart pulse range
(30-180 beats/min), and 0.15-0.5Hz corresponding to the
breathing range (9-30 breaths/min). The inverse FFTwas then
applied to the filtered signals to get the time-series cardiac
and respiratory signals respectively.

7) PEAK DETECTION
The peak detection method based on the MATLAB built-in
function ‘findpeaks’ was used to determine the periodic-
ity of peaks, peaks locations and number of peaks of the
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FIGURE 5. The CCA technique (a) The selected IMF components (S) (b) Transformation [x = W .S], where W is an un-mixing matrix and (c) CCA outputs
[y = CCA(x)].

FIGURE 6. The GUI operator panel of the proposed system.

acquired signals. The measured value (Mv) of the heart and
respiratory rates per minute can be calculated using the fol-
lowing equation:

Mv =
60p
t

(10)

where p is the number of peaks of the acquired signal, t is the
length of the video signal recording in seconds. In addition,
once the peaks and their locations (locs) were determined,
the total cycle length (Tc) between the two consecutive peaks
could be determined using, Tc = mean (diff (locs)), which
represents heart rate variability and the respiratory cycle.

E. GRAPHICAL USER INTERFACE
A graphical user interface (GUI) is a pictorial platform to a
software system that enables a user to perform interactive
tasks with graphical objects. In this paper, the GUI model
was implemented in the MATLAB environment to provide
an easy tool that allows a user to load video data, select
the magnification type, and execute the proposed system
and configurations. The GUI operator panel of the proposed
system is shown in Fig. 6.

It can be seen from Fig. 6 that the proposed GUI allows
for the user to see video information, the number of sub-
jects in each input video, select the magnification type and
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FIGURE 7. The experimental setup and data acquisition of the proposed
system.

recognize the subjects’ faces to enable the user to distinguish
the HR and RR readings for each subject.

III. EXPERIMENTAL RESULTS
This section presents the experimental results of the proposed
system under three assumptions: noise artifact, multiple
detection, and long-distance detection and compares the mea-
surements obtained from the proposed system based on both
color and motion analysis against the measurements obtained
from the conventional measurement methods such as
ICA-based method [6], [7] and PCA-based method [8] in
the stationary and non-stationary scenarios. The quantitative
experimental results of the proposed system were evalu-
ated and validated against the measurements obtained from
the reference methods. The Bland-Altman method [66],
Pearson’s correlation coefficient (PCC), Spearman’s cor-
relation coefficient (SCC), Kendall’s correlation coeffi-
cient (KCC), root mean square error (RMSE) and mean
absolute error (MAE) were performed on the data collected
to determine the limits of agreement, level of correlation, and
error rate. The experimental setup and data acquisition based
on three assumptions are shown in Fig. 7.

A. NOISE ARTIFACTS
In this section, the immunity of the proposed system to noise
artifact has been investigated when different noise conditions
mix with the cardiopulmonary signal. Some examples of the
cardiopulmonary signal obtained from different conditions
are shown in Fig. 8.

The video data obtained from the UAV in G1 were used in
the experimental results, where each subject was instructed
to carry out a stationary and non-stationary scenario with
normal breathing during videoing.

1) MEASUREMENTS OF CARDIAC ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, all subjects were instructed to stay
as still as possible in front of the UAV, not to talk and to
not make any facial expressions while breathing normally.

FIGURE 8. The cardiopulmonary signals for subject’s face in different
conditions (a) stationary subject (b) different facial expressions,
(c) talking, and (d) different lighting conditions.

The Bland-Altman method and correlation coefficients of
the stationary scenario under noise artifacts assumption for
HR results obtained by the reference measurement method
and HR predicted by the color-based method, motion-based
method, ICA-based method, and PCA-based method are
shown in Fig. 9.

Using the data obtained from the proposed system based
on skin color analysis as shown in Fig. 9 (a), the mean
bias, lower and upper limit of agreement (agreement range)
between the predicted HR and the measured HR were 0.069,
−0.52 to +0.66 beats/min with correlation coefficients of
0.9995, 0.999 and 0.9869 for the PCC, SCC and KCC
respectively. For the data with the head motion analysis as
shown in Fig. 9 (b), the mean bias and agreement range
were 0.089, −1.2 to +1.4 beats/min with PCC of 0.9978,
SCC of 0.9963 and KCC of 0.9657.When ICAwas evaluated
[Fig. 9 (c)], the mean bias and agreement range were 0.3
and −2.3 to +2.9 beats/min with correlation coefficients of
0.9902, 0.9883 and 0.9302, whereas, the statistical values
were 0.34 beats/min of a mean bias, −3.2 to +3.8 beats/min
of agreement range, 0.9825 of PCC, 0.981 of SCC and
0.9023 of KCC [Fig. 9 (d)] when PCA-based method was
used instead.

b: NON-STATIONARY SCENARIO
In this scenario, all subjects were instructed to move and
rotate their faces, talk, blink and make some facial expres-
sions. The limits of agreement of all remote measuring sys-
tems are shown in Fig. 10.

As shown in Fig. 10 (a), the Bland-Altman statistics
based on skin color analysis were 0.14 beats/min of a mean
bias and −1.3 to +1.6 beats/min of agreement range with
PCC of 0.9971, SCC of 0.9952 and KCC of 0.9581. The
Bland-Altman plot for the HR measurements from the head
motion as shown Fig. 10 (b) showed that the mean bias and
agreement range were 0.2 and −1.9 to +2.3 beats/min with
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FIGURE 9. Bland-Altman plots for HR measurements in the stationary scenario under the noise artifact assumption
using (a) color-based method, (b) motion-based method, (c) ICA-based method, and (d) PCA-based method.

PCC of 0.9939, SCC of 0.9915 and KCC of 0.9422. Using
ICA [see Fig. 10 (c)], the mean bias and agreement range
were 0.41 and −4 to +4.9 beats/min respectively with PCC
of 0.9717, SCC of 0.9701 and KCC of 0.8705, whereas when
PCA-based method was used instead, the Bland-Altman
statistics were 0.41 beats/min, −4.6 to +5.4 beats/min
with PCC of 0.9637, SCC of 0.9593 and KCC of 0.8429
[see Fig. 10 (d)].

The error rates of the HR measurements were evaluated
using RMSE and MAE for both proposed scenarios as shown
in Fig. 11.

2) MEASUREMENTS OF RESPIRATORY ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, the statistical values based on
Bland-Altman method for all remote measuring systems
against the reference method are shown in Fig. 12.

Fig. 12 shows the statistical values of the Bland-
Altman plots for the RR measurements in the stationary sce-
nario. The Bland-Altman plot shown in Fig. 12 (a) revealed

a strong agreement when skin color analysis was used. The
mean bias and agreement range were 0.068 and −0.29 to
+0.42 breaths/min with PCC of 0.999, SCC of 0.9963 and
KCC of 0.9675. The Bland-Altman plot based on head
motion analysis shown in Fig. 12 (b) showed statistical values
of 0.15 breaths/min, −0.83 to +1.1 breaths/min, 0.9925,
0.9916 and 0.9438 for the mean bias, agreement range,
PCC, SCC and KCC respectively. Based on ICA as shown
in Fig. 12 (c), the mean bias and agreement range were 0.45,
−1.9 to +2.8 breaths/min, while the PCC, SCC and KCC
were 0.9578, 0.9642 and 0.8637 respectively. Based on PCA
as shown in Fig. 12 (d), the mean bias and agreement range
were 0.58, −2.6 to +3.8 breaths/min, while the PCC, SCC
and KCC were 0.9248, 0.937 and 0.8041 respectively.

b: NON-STATIONARY SCENARIO
In this scenario, the statistical values of the RRmeasurements
for all remote measuring systems are shown in Fig. 13.

Fig. 13 (a) indicated 0.13 breaths/min of a mean bias,
−0.67 to +0.93 breaths/min of agreement range with
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FIGURE 10. Bland-Altman plots for HR measurements in the non-stationary scenario under the noise artifact
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method, and
(d) PCA-based method.

FIGURE 11. Error rates of various HR measuring methods under noise artifact assumption using (a) RMSE, (b) MAE.

0.9949 of PCC, 0.9942 of SCC and 0.9557 of KCC, whereas,
Fig. 13 (b) showed 0.18 breaths/min of a mean bias,−0.92 to
+1.3 breaths/min of agreement range with 0.995 of PCC,
0.9876 of SCC and 0.9243 of KCC. Based on ICA as shown

in Fig. 13 (c), the statistical values were 0.71 breaths/min
of a mean bias, −2.8 to +4.2 breaths/min of agreement
range, 0.9093 of PCC, 0.921 of SCC and 0.7748 of KCC,
whereas, when PCA was used, the statistical values were
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FIGURE 12. Bland-Altman plots for RR measurements in the stationary scenario under the noise artifact assumption
using (a) color-based method, (b) motion-based method, (c) ICA-based method, and (d) PCA-based method.

1 breaths/min,−2.9 to+4.9 breaths/min of agreement range,
0.8951 of PCC, 0.9065 of SCC and 0.7447 of KCC as shown
in Fig. 13 (d).

The error rates of the RR measurements were also evalu-
ated using RMSE and MAE as shown in Fig. 14.

B. MULTIPLE DETECTION
In this section, the performance of the proposed system to
detect the cardiopulmonary signal from multiple subjects
(up to six people) is investigated. The video data from
G2 were used in the experimental results, where all subjects
in the video session were instructed to perform two scenarios.
The first scenario was stationary, where all subjects were
instructed to stay as still as possible in front of the camera,
not to talk and not to make any facial expressions while
breathing normally. The second scenario was non-stationary,
where all subjects were instructed to move and rotate their
faces, talk, blink and make some facial expressions while
breathing normally.

1) MEASUREMENTS OF CARDIAC ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, the statistical values based on the
Bland-Altmanmethod of theHRmeasurements for all remote
measuring systems against the reference method is shown
in Fig. 15.

The statistical values of the color-based method shown
in Fig. 15 (a) revealed a mean bias of 0.082 beats/min, agree-
ment range of −0.51 to +0.68 beats/min, PCC of 0.9994,
SCC of 0.9986 and KCC of 0.9864, whereas, the statistical
values of the motion-based method shown in Fig. 15 (b)
revealed a mean bias of 0.11 beats/min, agreement range of
−1.3 to +1.5 beats/min, PCC of 0.9967, SCC of 0.9958 and
KCC of 0.9632. Using ICA-based method as shown in
Fig. 15 (c), the statistical values were 0.62 beats/min of
a mean bias, −4.6 to +5.8 beats/min of agreement range,
0.949 of PCC, 0.9657 of SCC and 0.8655 of KCC, whereas,
when PCA-basedmethodwas used, the statistical values were
0.77 beats/min, −6 to +7.5 beats/min of agreement range,
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FIGURE 13. Bland-Altman plots for RR measurements in the non-stationary scenario under the noise artifact
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method,
and (d) PCA-based method.

FIGURE 14. Error rates of various RR measuring methods under noise artifact assumption using (a) RMSE, (b) MAE.

0.913 of PCC, 0.9355 of SCC and 0.7971 of KCC as shown
in Fig. 15 (d).

b: NON-STATIONARY SCENARIO
In this scenario, the agreement of the HR measurements is
shown in Fig. 16.

The Bland-Altman plot [(Fig. 16 (a)] showed the statistical
values were 0.29 beats/min, −1.9 to +2.5 beats/min, 0.9913,
0.99 and 0.9334 for the mean bias, agreement range, PCC,
SCC and KCC respectively when the color-based method
was used, whereas, Fig. 16 (b) showed that the statistical
values of the motion-based method were 0.52 beats/min,
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FIGURE 15. Bland-Altman plots for HR measurements in the stationary scenario under the multiple
detection assumption using (a) color-based method, (b) motion-based method, (c) ICA-based
method, and (d) PCA-based method.

−2.8 to +3.8 beats/min, 0.98, 0.9809 and 0.9039 respec-
tively. The statistical values based on ICAwere 1.8 beats/min,
−6.4 to+9.9 beats/min, 0.8729, 0.8905 and 0.7116 as shown
in Fig. 16 (c), whereas they were 1.9 beats/min, −7.7 to
+11 beats/min, 0.825, 0.8484 and 0.6557 based on PCA as
shown in Fig. 16 (d).

A performance comparison of the HRmeasurements using
the error rates (RMSE and MAE) is shown in Fig. 17.

2) MEASUREMENTS OF RESPIRATORY ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, the statistical values based on the
Bland-Altman method of the RR measurements are shown
in Fig. 18.

The statistical values of the color-based method shown
in Fig. 18 (a) revealed a mean bias of 0.087 breaths/min,
agreement range of −0.52 to +0.69 breaths/min, PCC
of 0.9942, SCC of 0.9918 and KCC of 0.9501, whereas,
the statistical values of the motion-based method shown
in Fig. 18 (b) revealed a mean bias of 0.18 breaths/min, agree-
ment range of −1.1 to +1.4 breaths/min, PCC of 0.9775,
SCC of 0.9566 and KCC of 0.8604. Using ICA-based
method as shown in Fig. 18 (c), the statistical values were

0.23 breaths/min of a mean bias, −3 to +3.5 breaths/min
of agreement range, 0.8724 of PCC, 0.8236 of SCC and
0.6782 of KCC, whereas, when PCA-based method was
used, the statistical values were 0.39 breaths/min, −4.4 to
5.2 breaths/min, 0.7696, 0.6769 and 0.5325 for themean bias,
agreement range, PCC, SCC and KCC respectively, as shown
in Fig. 18 (d).

b: NON-STATIONARY SCENARIO
In this scenario, the statistical values based on the Bland-
Altman method of the RR measurements are shown
in Fig. 19.

Fig. 19 (a) showed a mean bias of 0.18 breaths/min, agree-
ment range of −2.1 to +2.4 breaths/min, PCC of 0.9383,
SCC of 0.9062 and KCC of 0.7768, whereas, Fig. 19 (b)
showed a mean bias of 0.21 breaths/min, agreement range of
−2.6 to +3 breaths/min, PCC of 0.9072, SCC of 0.8651 and
KCC of 0.7204. Based on ICA and PCA, the statistical values
were 0.58 breaths/min, −4.5 to +5.6 breaths/min, 0.6908,
0.6768 and 0.5291 for the ICA-based method as shown
in Fig. 19 (c) and 0.7 breaths/min,−5.8 to+7.1 breaths/min,
0.5882, 0.5434 and 0.4121 for the PCA-based method as
shown in Fig. 19 (d).
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FIGURE 16. Bland-Altman plots for HR measurements in the non-stationary scenario under the multiple
detection assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method,
and (d) PCA-based method.

FIGURE 17. Error rates of various HR measuring methods under multiple detection assumption using (a) RMSE, (b) MAE.

The error rates of the RR measurements for the multiple
detection were also investigated using RMSE and MAE as
shown in Fig. 20.

C. LONG-DISTANCE DETECTION
In this section, the performance of the proposed system to
detect the cardiopulmonary signal at long-distances of up
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FIGURE 18. Bland-Altman plots for RR measurements in the stationary scenario under the multiple detection
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method, and (d) PCA-based
method.

to 60 m is investigated. The video data from G3 were used in
the experimental results and divided into two scenarios: the
stationary scenario where all subjects were instructed to stay
still, not to talk and not to make any facial expressions, and
the non-stationary scenario where all subjects were instructed
to move naturally toward the camera for approximately 10 m
at a walking pace and instructed to rotate their faces while
walking.

1) MEASUREMENTS OF CARDIAC ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, the statistical values of the
HR measurements from the remote measuring systems and
the reference methods are shown in Fig. 21.

As shown in Fig. 21 (a), the proposed system based
on skin color method for the stationary scenario had a
mean bias of 0.56 beats/min, agreement range of −0.81 to
+1.9 beats/min and correlation coefficients of 0.9973,
0.9964 and 0.9706 for the PCC, SCC and KCC respec-
tively, whereas, when the motion-based method was used, the

proposed system had a mean bias of 0.65 beats/min, agree-
ment range of −1.2 and +2.5 beats/min and correlation
coefficients of 0.9953, 0.9924 and 0.9478 for the PCC, SCC
and KCC respectively as shown in Fig. 21 (b). When the
ICA-based method was alternatively used on the acquired
data, the statistical values were 0.85 beats/min (mean bias),
−4 to +5.7 beats/min (agreement range) and coefficients of
0.964, 0.9669 and 0.8664 as shown in Fig. 21 (c), whereas the
statistical values were 0.97 beats/min (mean bias), −4.9 to
+6.8 beats/min (agreement range) and coefficients of 0.948,
0.9516 and 0.8252when PCA-basedmethodwas used instead
as shown in Fig. 21 (d).

b: NON-STATIONARY SCENARIO
In this scenario, the statistical values of the HRmeasurements
are shown in Fig. 22.

As shown in Fig. 22 (a), the proposed system based on
the skin color method had a mean bias of 0.81 beats/min,
agreement range of −1.4 to +3 beats/min, yielding cor-
relation coefficients of 0.9929, 0.9893 and 0.9374 for
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FIGURE 19. Bland-Altman plots for RR measurements in the non-stationary scenario under the multiple detection
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method, and (d) PCA-based
method.

FIGURE 20. Error rates of various RR measuring methods under multiple detection assumption using (a) RMSE, (b) MAE.

the PCC, SCC and KCC respectively, whereas, when
the motion-based method was used, the proposed system
had a mean bias of 1.1 beats/min, agreement range of

−1.8 to +3.9 beats/min, yielding correlation coefficients
of 0.9889, 0.985 and 0.9212 as shown in Fig. 22 (b). When
the ICA-based method was alternatively used on the acquired
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FIGURE 21. Bland-Altman plots for HR measurements in the stationary scenario under the long-distance
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method, and
(d) PCA-based method.

data, the statistical values were 1.6 beats/min (mean bias),
−6.7 to +10 beats/min (agreement range) and coefficients
of 0.8873, 0.8966 and 0.7398 as shown in Fig. 22 (c),
whereas, the statistical values were 1.9 beats/min (mean
bias), −7.7 to +11 beats/min (agreement range), and coeffi-
cients of 0.8531, 0.8709 and 0.6903when PCA-basedmethod
was used instead, as shown in Fig. 22 (d).

The error rates of the HR measurements obtained from
long-distances in both scenarios were performed and evalu-
ated using RMSE and MAE as shown in Fig. 23.

2) MEASUREMENTS OF RESPIRATORY ACTIVITY
a: STATIONARY SCENARIO
In the stationary scenario, the statistical values of the RR
measurements from the remote measuring methods and the
reference method are shown in Fig. 24.

As shown in Fig. 24 (a), the mean bias and agree-
ment range between the color-based method and the ref-
erence method were 0.25 and −0.97 to 1.5 breaths/min
with PCC of 0.9827, SCC of 0.9851 and KCC of 0.9238,
whereas, Fig. 24 (b) had a mean bias and agreement range
of 0.43, −1.3 to 2.2 breaths/min respectively with PCC

of 0.9652, SCC of 0.9601 and KCC of 0.8649 when the
motion-based method was used. Using ICA-based method,
a mean bias and agreement range were 0.82 and −2.6 to
+4.3 breaths/min with PCC of 0.8809, SCC of 0.8616 and
KCC of 0.7264 as shown in Fig. 24 (c), whereas, with the
PCA-based method, the statistical values were 1 breaths/min
of mean bias, −3.5 to +5.6 breaths/min of agreement range,
0.8126 of PCC, 0.7826 of SCC and 0.6358 of KCC as shown
in Fig. 24 (d).

b: NON-STATIONARY SCENARIO
In this scenario, the statistical values of the RRmeasurements
are shown in Fig. 25.

As shown in Fig. 25 (a), themean bias and agreement range
between the color-based method and the reference method
were 0.42 and−1.7 to+2.6 breaths/min with PCC of 0.9494,
SCC of 0.9423 and KCC of 0.8271, whereas Fig. 25 (b)
had a mean bias and agreement range of 0.7 and −1.9 to
+3.3 breaths/min respectively with PCC of 0.9268, SCC
of 0.9094 and KCC of 0.7745 when the motion-based method
was used. Using ICA-based method, a mean bias and agree-
ment range were 0.78, and −4.7 to +6.3 breaths/min with
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FIGURE 22. Bland-Altman plots for HR measurements in the non-stationary scenario under the
long-distance assumption using (a) color-based method, (b) motion-based method,
(c) ICA-based method, and (d) PCA-based method.

FIGURE 23. Error rates of various HR measuring methods under long-distance assumption using (a) RMSE, (b) MAE.

PCC of 0.7052, SCC of 0.7057 and KCC of 0.5567 as shown
in Fig. 25 (c), whereas, with the PCA-based method, the sta-
tistical values were 0.98 breaths/min (mean bias), −5.6 to
+7.5 breaths/min (agreement range), 0.6171, 0.571 and

0.4561 for PCC, SCC and KCC respectively as shown
in Fig. 25 (d).

The error rates of the RR measurements obtained
from long-distances in both scenarios were performed

11590 VOLUME 6, 2018



A. Al-Naji, J. Chahl: Remote Optical Cardiopulmonary Signal Extraction

FIGURE 24. Bland-Altman plots for RR measurements in the stationary scenario under the long-distance
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method,
and (d) PCA-based method.

and evaluated using RMSE and MAE as shown
in Fig. 26.

IV. DISCUSSION
The challenges of removing noise artifacts from the car-
diopulmonary signal, detecting the cardiopulmonary signal
from multiple subjects and detecting the cardiopulmonary
signal from long-distance have been addressed in this study.
The proposed system in this paper also relied on the methods
based on color and motion analysis to extract cardiopul-
monary signal when noise and motion artifacts sensitivity
cannot be solved by a single method. The proposed sys-
tem is feasible and has high tolerance of noise artifacts for
both methods (color and motion) when the subjects were
in stationary and non-stationary scenarios. The estimated
HR and RR results obtained from the proposed system based
on color analysis under three assumptions: noise artifact, mul-
tiple detection and long-distance detection had slightly better
statistics outcomes (PCC, SCC, KCC, RMSE and MAE)
than when the motion-based method was used instead in

comparison with those obtained from conventional reference
methods in both stationary and non-stationary scenarios. The
proposed system based on both analysis methods also out-
performed the traditional measurement methods (ICA and
PCA) in terms of agreement, correlation, noise level and
computational time.

For the noise artifacts assumption, the proposed sys-
tem with skin color analysis under the stationary scenario
showed an excellent agreement with the reference methods
with the statistical values (PCC = 0.9995, SCC = 0.999,
KCC = 0.9869, RMSE = 0.31 beats/min and MAE =
0.29 beats/min for HR measurements and PCC = 0.999,
SCC = 0.9963, KCC = 0.9675, RMSE = 0.19 breaths/min
and MAE = 0.18 breaths/min for RR measurements). The
proposed system with motion analysis could also extract
the cardiopulmonary signal with a very good agreement
(PCC = 0.9978, SCC = 0.9963, KCC = 0.9657, RMSE =
0.65 beats/min and MAE = 0.62 beats/min for HR measure-
ments and PCC = 0.9925, SCC = 0.9916, KCC = 0.9438,
RMSE = 0.52 breaths/min and MAE = 0.49 breaths/min for
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FIGURE 25. Bland-Altman plots for RR measurements in the non-stationary scenario under the long-distance
assumption using (a) color-based method, (b) motion-based method, (c) ICA-based method, and (d) PCA-based
method.

RR measurements), which were better statistical outcomes
than when ICA-based method and PCA-based method were
used instead. ICA under the stationary scenario had statis-
tical outcomes (PCC = 0.9902, SCC = 0.9883, KCC =
0.9302, RMSE= 0.37 beats/min and MAE= 1.31 beats/min
for HR measurements and PCC = 0.9578, SCC =
0.9642, KCC = 0.8637, RMSE = 1.27 breaths/min and
MAE = 1.23 breaths/min for RR measurements), whereas,
PCA-based method had statistical outcomes (PCC= 0.9825,
SCC = 0.981, KCC = 0.9023, RMSE = 1.8 beats/min
and MAE = 1.71 beats/min for HR measurements and
PCC = 0.9248, SCC = 0.937, KCC = 0.8041, RMSE =
1.71 breaths/min and MAE = 1.64 breaths/min for
RR measurements). The estimated results under the non-
stationary scenario also exhibited very good statistical values
(PCC = 0.9971, SCC = 0.9952, KCC = 0.9581, RMSE =
0.74 beats/min and MAE = 0.72 beats/min for HR measure-
ments and PCC = 0.9949, SCC = 0.9942, KCC = 0.9557,
RMSE = 0.42 breaths/min and MAE = 0.4 breaths/min for
RR measurements) with respect to skin color analysis and

statistical outcomes (PCC= 0.9939, SCC= 0.9915, KCC=
0.9422, RMSE= 1.07 beats/min and MAE= 1.03 beats/min
for HR measurements and PCC = 0.9905, SCC = 0.9876,
KCC = 0.9243, RMSE = 0.58 breaths/min and MAE =
0.56 breaths/min for RR measurements) with respect to head
motion analysis, whereas, ICA-basedmethod and PCA-based
method under non-stationary scenario might fail in extracting
HR and RR under the noise artifacts assumption with lower
correlation levels and higher RMSE and MAE.

For the multiple detection assumption, the proposed sys-
tem with skin color analysis under the stationary scenario
also showed a very good agreement with the statistical
values (PCC = 0.9994, SCC = 0.9986, KCC = 0.9864,
RMSE = 0.31 beats/min and MAE = 0.29 beats/min for
HR measurements and PCC = 0.9942, SCC = 0.9918,
KCC = 0.9501, RMSE = 0.32 breaths/min and MAE =
0.3 breaths/min for RRmeasurements). The proposed system
with the head motion analysis could also extract the car-
diopulmonary signal with good agreement (PCC = 0.9967,
SCC = 0.9958, KCC = 0.9632, RMSE = 0.7 beats/min and
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FIGURE 26. Error rates of various RR measuring methods under long-distance assumption using (a) RMSE, (b) MAE.

MAE = 0.69 beats/min for HR measurements and PCC =
0.9775, SCC = 0.9566, KCC = 0.8604, RMSE =
0.65 breaths/min and MAE = 0.61 breaths/min for
RR measurements), which were better statistical out-
comes than both ICA and PCA. ICA-based method
under the stationary scenario had statistical outcomes
(PCC = 0.949, SCC = 0.9657, KCC = 0.8655,
RMSE = 2.69 beats/min and MAE = 2.02 beats/min
for HR measurements and PCC = 0.8724, SCC =
0.8236, KCC = 0.6782, RMSE = 1.65 breaths/min and
MAE = 1.44 breaths/min for RR measurements), whereas,
PCA-based method had statistical outcomes (PCC = 0.913,
SCC = 0.9355, KCC = 0.7971, RMSE = 3.51 beats/min
and MAE = 2.76 beats/min for HR measurements and
PCC = 0.7696, SCC = 0.6769, KCC = 0.5325, RMSE =
2.45 breaths/min and MAE = 2.18 breaths/min for RR mea-
surements). The estimated results under the non-stationary
scenario also exhibited good and acceptable statistical values
(PCC = 0.9913, SCC = 0.99, KCC = 0.9334, RMSE =
1.14 beats/min and MAE = 1.12 beats/min for HR measure-
ments and PCC = 0.9383, SCC = 0.9062, KCC = 0.7768,
RMSE = 1.16 breaths/min and MAE = 1.09 breaths/min for
RR measurements) with respect to skin color analysis and
statistical outcomes (PCC = 0.98, SCC = 0.9809, KCC =
0.9039, RMSE= 1.74 beats/min and MAE= 1.68 beats/min
for HR measurements and PCC = 0.9072, SCC = 0.8651,
KCC = 0.7204, RMSE = 1.42 breaths/min and MAE =
1.33 breaths/min for RR measurements) with respect to the
head motion analysis, whereas, ICA-based method and
PCA-based method under the non-stationary scenario have
failed in extracting HR and RR from multiple subjects with
weaker agreement, lower correlation coefficients and higher
RMSE and MAE.

For the long-distance detection assumption, the proposed
system with skin color analysis under the stationary scenario
showed a very good agreement with the statistical values
(PCC = 0.9973, SCC = 0.9964, KCC = 0.9706, RMSE =
0.89 beats/min and MAE = 0.71 beats/min for HR measure-
ments and PCC = 0.9827, SCC = 0.9851, KCC = 0.9238,

RMSE = 0.67 breaths/min and MAE = 0.51 breaths/min
for RR measurements). The proposed system with the head
motion analysis could also extract the cardiopulmonary signal
with good agreement (PCC= 0.9953, SCC= 0.9924, KCC=
0.9478, RMSE= 1.12 beats/min and MAE= 1.01 beats/min
for HR measurements and PCC = 0.9652, SCC = 0.9601,
KCC = 0.8649, RMSE = 0.99 breaths/min and MAE =
0.84 breaths/min for RRmeasurements), which outperformed
the statistical outcomes obtained by the ICA-based method
and the PCA-based method. ICA-based method under the
stationary scenario had statistical outcomes (PCC = 0.964,
SCC = 0.9669, KCC = 0.8664, RMSE = 2.59 beats/min
and MAE = 2.18 beats/min for HR measurements and
PCC = 0.8809, SCC = 08616, KCC = 0.7264, RMSE =
1.92 breaths/min and MAE = 1.66 breaths/min for RR mea-
surements), whereas, the PCA-based method had lower sta-
tistical outcomes (PCC = 0.948, SCC = 0.9516, KCC =
0.8252, RMSE= 3.11 beats/min and MAE= 2.68 beats/min
for HR measurements and PCC = 0.8126, SCC = 0.7826,
KCC = 0.6358, RMSE = 2.51 breaths/min and MAE =
2.21 breaths/min for RR measurements). The estimated
results under the non-stationary scenario also exhibited good
and acceptable statistical outcomes (PCC = 0.9929, SCC =
0.9823, KCC = 0.9374, RMSE = 1.38 beats/min and MAE
= 1.29 beats/min for HR measurements and PCC = 0.9494,
SCC = 0.9423, KCC = 0.8271, RMSE = 1.16 breaths/min
and MAE = 1.05 breaths/min for RR measurements) with
respect to the skin color analysis and statistical outcomes
(PCC = 0.9889, SCC = 0.985, KCC = 0.9212, RMSE =
1.8 beats/min and MAE = 1.74 beats/min for HR measure-
ments and PCC = 0.9268, SCC = 0.9094, KCC = 0.7745,
RMSE = 1.48 breaths/min and MAE = 1.18 breaths/min for
RR measurements) with respect to the head motion analysis,
whereas, ICA-based method and PCA-based method under
the non-stationary scenario have failed in extracting HR and
RR from long-distance with weaker agreement, lower corre-
lation coefficients and higher RMSE and MAE.

The computational time of the proposed method to remove
noise artifacts using both improved signal decomposition
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technique and the BSS against the traditional measurement
methods (ICA and PCA) has also been evaluated in this
paper by using the MATLAB environment (2017b). The test
was running on a PC with Microsoft Windows 10 (64 bits),
i7-2.6 GHz of CPU and 8.00 GB of RAM. The mean
computational time for the noise artifact removal method
with 200 iterations for 30 second cardiopulmonary signal
was 1.01 s, whereas it takes about 0.80 s and 0.75 s when
ICA and PCA were used instead. The computational time
is acceptable for noise artifact removal from the acquired
signal, making the proposed method more suitable for real-
time applications.

V. CONCLUSION
In conclusion, this paper explored the feasibility of extract-
ing the cardiopulmonary signal from video data captured by
different types of camera sensors (UAV and digital camera)
under three assumptions: noise artifacts, multiple detection
and long-distance. The proposed system used the magnifica-
tion process to magnify the imperceptible variations caused
by cardiopulmonary activity, including skin color and head
motion to extract the cardiopulmonary signal followed by
a new, robust and fast noise removal method based on a
combination of improved signal decomposition technique
and BSS-based CCA technique to remove the noise artifacts
generating from the subject’s movement, cameramotion, skin
tone and lighting conditions. The experimental evaluation of
the proposed system has been conducted using three video
data sources and showed a strong agreement, high correlation
and low noise level compared with the reference measure-
ments. Also, the proposed system outperformed the conven-
tional measurement methods such as ICA-based method and
PCA-based method in both the stationary and non-stationary
scenarios.
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