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ABSTRACT Locatingmultiple optima/peaks in a single run andmaintaining these found optima until the end
of a run is the goal of multimodal optimization. Three variants of brain storm optimization (BSO) algorithms,
which include original BSO algorithm, BSO in objective space algorithm with Gaussian random variable,
and BSO in objective space algorithm with Cauchy random variable, were utilized to solve multimodal
optimization problems in this paper. The experimental tests were conducted on eight benchmark problems
and its applications in seven nonlinear equation system problems. The performance and effectiveness
of various BSO algorithms on solving multimodal optimization problems were validated based on the
experimental results. The conclusions could be made that the global search ability and solutions maintenance
ability of an algorithm needs to be balanced simultaneously on solving multimodal optimization problems.

INDEX TERMS Brain storm optimization, swarm intelligence, brain storm optimization in objective space
algorithm, multimodal optimization, nonlinear equation systems.

NOMENCLATURE
BSO brain storm optimization algorithm;
BSO-OS brain storm optimization in objective space

algorithm;
DSI developmental swarm intelligence algorithms;
FWA fireworks algorithm;
PSO particle swarm optimization algorithm;
NES nonlinear equation system.

I. INTRODUCTION
Optimization is concerned with finding the optimum feasi-
ble solution(s) for a given optimized problem. An optimiza-
tion problem is a mapping from decision space to objective
space. The solutions are searched in the decision space, while
the function value (objective) is evaluated in the objective
space. For swarm intelligence or evolutionary computation
algorithms, the solutions in the search space are represented
by individuals in the swarm. The position of an individ-
ual is corresponded with decision variables of a solution in
the decision space, while the fitness value of an individual

corresponds with the objective value of the solution in the
objective space. Individuals are guided toward the better and
better search areas through the cooperation and competition
among individuals until some stopping conditions are met.

Different algorithms could be summarized into a frame-
work to analyze their common properties. Based on the
framework, it could give a better understanding of algorithms
and guide designing or implementing a new strategy. There
are several most used frameworks, such as memetic com-
puting methodologies [1], cultural algorithms, and devel-
opmental swarm intelligence (DSI) algorithms [2], etc.
Developmental swarm intelligence algorithm is defined as a
swarm intelligence algorithm with both capability learning
ability and capacity developing ability [2].

Capability learning is a micro level learning ability, which
focuses on its actual search from the current solution for
single point based optimization algorithms and the current
population for population-based swarm intelligence algo-
rithms. Capability learning describes the ability of an algo-
rithm to find the better solution(s) from current solution(s)
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with the learning capacity it possesses. This learning ability
is focused on the data-driven approach. The aim of capability
learning is to solve a problem more effectively based on
the obtained solutions (data points). Capacity developing is
a macro level learning ability, which focuses on moving
the algorithm’s search to the area(s) where higher search
potential may exist. The capacity developing describes the
learning ability of an algorithm to adaptively change its
parameters, structures, and/or its learning potential according
to the search states of the problem to be solved. In other
words, the capacity developing is the search strength pos-
sessed by an algorithm. This learning ability is focused on
the model-driven approach. The aim of capacity developing
is to solve different problems through the parameter/structure
adaptation.

Several swarm intelligence algorithms could be catego-
rized as the developmental swarm intelligence algorithms.
Brain storm optimization (BSO), fireworks algorithm (FWA)
[3], [4], and particle swarm optimization algorithm are three
typical DSI algorithms [2].

The brain storm optimization (BSO) algorithm is based on
the collective behavior of human being, that is, the brain-
storming process [5], [6]. The individuals in brain storm
optimization are diverging into several clusters. The new
individuals are generated based on themutation of one existed
individual or a combination of two individuals. In the original
BSO algorithm, the clustering strategy is performed at each
iteration. The computational resources are consumed a lot on
the clustering operation. Thus, to reduce the computational
burden, the clustering strategy needs to be modified. The
brain storm optimization in objective space (BSO-OS) algo-
rithm was proposed and the clustering strategy was replaced
by a simple elitist strategy based on the fitness values [7].
For BSO algorithms, the ‘‘good enough’’ optimum could be
obtained through solutions’ diverging and converging in the
search space. Since the invention of the brain storm optimiza-
tion algorithm in 2011 [5], [6], it has attractedmany attentions
in the swarm intelligence research community. An analysis of
BSO algorithm from the data analytics perspective is intro-
duced in [8]. A comprehensive survey of BSO algorithm was
given in [9], and a simple brain storm optimization algorithm
with a periodic quantum learning strategy is proposed in [10],
just to name a few.

The aim of multimodal optimization is locating multi-
ple global optima in a single run and maintaining these
found optima until the end of a run [11]–[13]. Two per-
formance criteria could be used to measure the success of
search algorithms. One is whether an optimization algorithm
could find all desired optima including global and/or local
optima, and the other is whether it can maintain multiple
candidate solutions stably over a run [13]. A framework is
proposed for locating and tracking multiple optima in [14].
Population diversity of swarm intelligence could be a good
way to measure the average distance among candidate solu-
tions, which could reflect the algorithm’s ability of solutions
maintenance [15].

The principal contributions presented in this work can be
summarized as follow:
• The brain storm optimization algorithms have been uti-
lized on solving eight multimodal optimization bench-
mark problems and seven nonlinear equation system
problems.

• The analysis on properties of different variant of BSO
algorithms to solve multimodal optimization problems.

• A comparison of different algorithms on different func-
tion was given to show the efficiency and effectiveness
of the test algorithms.

The remaining of the paper is organized as follows. The
basic concept of brain storm optimization algorithms is
introduced in Section II. Section III introduces the con-
cepts and performance criteria of multimodal optimiza-
tion. Experimental study of three BSO variants (original
BSO algorithm, BSO-OS-Gaussian, and BSO-OS-Cauchy
algorithm), fireworks algorithm, and particle swarm opti-
mization (PSO) algorithms on eight multimodal optimization
benchmark functions are conducted in Section IV. An appli-
cation of multimodal optimization, solving the nonlinear
equation system, is given in Section V. Finally, Section VI
concludes with some remarks and future research directions.

II. BRAIN STORM OPTIMIZATION ALGORITHMS
A. BACKGROUND
The developmental swarm intelligence algorithm is defined
that a swarm intelligence algorithm has two kinds of ability:
capability learning and capacity developing [2]. The capabil-
ity learning is a micro level learning ability, which focuses
on its actual search from the current solution for single point
based optimization algorithms and the current population for
population-based swarm intelligence algorithms. While the
capacity developing is a macro level learning ability, which
focuses onmoving the algorithm’s search to the area(s) where
higher search potential may exist.

B. ORIGINAL BRAIN STORM OPTIMIZATION
The brain storm optimization algorithm is based on the col-
lective behavior of human being, that is, the brainstorm-
ing process [5], [6]. The individuals (solutions) in BSO are
converging into several clusters. The best solution in the
population will be kept if the newly generated solution at
the same index is not better. The new individual can be
generated based on the mutation of one or two individuals
in clusters. The exploration ability of algorithm is enhanced
when the new individual is generated randomly or gener-
ated based on the combination of two individuals in two
clusters. While the exploitation ability is enhanced when
the new individual is generated close to the best solution
founded.

It is simple in concept and easy in implementation for the
original BSO algorithm [5], [6]. The procedure of BSO algo-
rithm is given in Algorithm 1. There are three strategies in this
algorithm: the solution clustering, new individual generation,
and selection [16].
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Algorithm 1 The Basic Procedure of the Original Brain
Storm Optimization Algorithm

1 Initialization: Randomly generate n individuals
(potential solutions), and evaluate the n individuals;

2 while not find ‘‘good enough’’ solution or not reach the
pre-determined maximum number of iterations do

3 Clustering operation: Group n individuals into m
clusters by a clustering algorithm;

4 New individual generation operation: Select
one or two cluster(s) randomly to generate new
individual (solution);

5 Selection operation: Compare the newly generated
individual (solution) and the existing individual
(solution) with the same individual index; the better
one is kept and recorded as the new individual;

6 Evaluate the n individuals (solutions);

Algorithm 2 The Basic Procedure of the BSO in
Objective Space Algorithm

1 Initialization: Generate n individuals (potential
solutions) randomly, and evaluate them;

2 while have not found ‘‘good enough’’ solution or not
reached the pre-determined maximum number of
iterations do

3 Elitist strategy: Classify all solutions into two
categories: the solutions with better fitness values as
elitists and the others as normals;

4 New individual generation operation: randomly
select one or two individuals from elitists or normal
to generate new individual;

5 Solution disruption operation: re-initialize one
dimension of a randomly selected individual and
update its fitness value accordingly;

6 Selection operation: The newly generated
individual is compared with the existing individual
with the same individual index; the better one is
kept and recorded as the new individual;

7 Evaluate all individuals;

C. BRAIN STORM OPTIMIZATION IN OBJECTIVE SPACE
In the original BSO algorithm, the computational resources
are spending a lot on the clustering strategy at each itera-
tion. To reduce the computational burden, the brain storm
optimization in objective space (BSO-OS) algorithm was
proposed, and the clustering strategy was replaced by a
simple elitist strategy based on the fitness values [7]. The
procedure of the BSO in objective space algorithm is given
in Algorithm 2.

1) NEW INDIVIDUAL GENERATION OPERATION
The new individual generation strategy is the chief dif-
ference between the original BSO and the BSO-OS

Algorithm 3 The Basic Procedure of New Individual
Generation Operation

1 New individual generation: Select one or two
individual(s) randomly to generate new individual;

2 if random value rand < a probability pelitist then
/* generate a new individual based on
elitists */

3 if random value rand < a pre-determined
probability pone then

4 generate a new individual based on one
randomly selected elitist;

5 else
6 two individuals from elitists are randomly

selected to generate new individual;

7 else /* generate a new individual based
on normal */

8 if random value rand < a pre-determined
probability pone then

9 generate a new individual based on one
randomly selected normal individual;

10 else
11 two individuals from normal are randomly

selected to generate new individual;

12 The newly generated individual is compared with the
existing individual with the same individual index,
the better one is kept and recorded as the new
individual;

algorithm. Individuals are clustered into several groups
in the original BSO algorithm. While for the BSO-OS
algorithm, individuals are classified into two categories,
the elitists and the normals, according to their fit-
ness values. The procedure of new individual genera-
tion strategy is given in Algorithm 3. Two parameters,
probability pelitist and probability pone, are used in this
strategy.

The new individuals are generated according to the
functions (1) and (2).

x inew = x iold + ξ (t)× N (µ, σ 2) (1)

ξ (t) = logsig(
0.5× T − t

k
)× rand() (2)

where x inew and x iold are the ith dimension of xnew and xold;
rand() is a random function to generate uniformly distributed
random numbers in the range [0, 1); and the value xold is a
copy of one individual or the combination of two individuals.
The N (µ, σ 2) is a random value that generated with a Gaus-
sian distribution. The parameter T is the maximum number of
iterations, t is the current iteration number, k is a coefficient to
change logsig() function’s slope of the step size function ξ (t),
which can be utilized to balance the convergence speed of the
algorithm.
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FIGURE 1. The function logsig(−a) with different variable ranges. (a) a ∈ [−40, 40]. (b) a ∈ [−10, 10].
(c) a ∈ [−5, 5]. (d) a ∈ [−1, 1].

2) DISTRIBUTION FUNCTION
The individual is generated by adding a Gaussian
random value in Eq. (1). The distribution of this ran-
dom number could be changed to Cauchy distribu-
tion. The BSO-OS algorithm with the Gaussian random
values is termed as the BSO-OS-Gaussian, which the
BSO-OS algorithm with the Cauchy random values is termed
as the BSO-OS-Cauchy algorithm. The new individual gen-
eration equation for BSO-OS-Cauchy algorithm is in Eq. (3).

x inew = x iold + ξ (t)× C(µ, σ
2) (3)

3) TRANSFER FUNCTION
A transfer function logsig(a), which is given in Eq. (4), has
been deployed in step size Eq. (2). The parameter k is used to
adjust the function’s slope. In the original BSO-OS algorithm,
the maximum number of iterations T is set as 2000, and the
slope k is 25 [7]. Thus, the value 0.5×T−t

k in Eq. (2) is linearly
decreased from 1000−0

25 to 1000−2000
25 , i.e., it is mapped into

a range [−40, 40]. Figure 1 gives the function logsig() with
different variable ranges. It shows that, for function logsig()
with variables in range [−40, 40], nearly the half values are
close to one, and the other half values are close to zero. In this
paper, to have a smooth curve of step size, the value 0.5×T−t

k
is mapped into the range [−10, 10].

logsig(a) =
1

1+ exp(−a)
(4)

4) BOUNDARY CONSTRAINT
The original BSO algorithm and BSO-OS algorithm lack of
strategies to handle the boundary constraints. A new indi-
vidual may be generated out of the search space. For the
conventional boundary handling methods, the solutions were
kept inside the feasible search space. The fitness value is
only calculated when solutions created in the search space.
If a solution exceeds the boundary limit in one dimension at
one iteration, that search information will be abandoned. The
different boundary constraint handling strategies for particle
swarm optimization algorithm have been investigated [17].
Resetting the individual in that dimension is an effective
choice for boundary constraint handling. The classic strategy
is to set the solution at the boundary when it exceeds the
boundary. The equation of this strategy is as follows:

xj =


xmax,j if xj > xmax,j

xmin,j if xj < xmin,j

xj otherwise

(5)

This strategy resets solutions in a particular point, i.e.,
the search boundary, which constrains solutions to explore in
the search space limited by a boundary.

III. MULTIMODAL OPTIMIZATION
A. MULTIMODAL OPTIMIZATION PROBLEM
Many optimization algorithms are designed for locating
a single global solution. Nevertheless, many real-world
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FIGURE 2. An example of a function with equal maxima.

FIGURE 3. An example of function with uneven decreasing maxima.

problems may have multiple satisfactory solutions exist. The
multimodal optimization problem is a function with multiple
global/local optimal values.

The equal maxima function, given in Eq. (6), is an example
of the multimodal optimization problem,

f (x) = sin6(5× π × x) (6)

where x ∈ [0, 1]. From Fig. 2, it can be seen that there are
five equal optima for Eq. (6).

The uneven decreasing maxima function in Eq. (7) is
another example of the multimodal optimization problem.
From Fig. 3, it can be seen that there are one global optimum
and four local optima for Eq. (7).

f (x)= exp(−2 log(2)(
x − 0.08
0.854

)2) sin6(5π (x
3
4− 0.05)) (7)

where x ∈ [0, 1].

B. MULTIMODAL OPTIMIZATION
For multimodal optimization, the objective is to locate multi-
ple peaks/optima in a single run [18], [19], and to keep these
found optima until the end of a run [11]–[13]. An algorithm
on solving multimodal optimization problems should have
two kinds of abilities: find global/local optima as many as
possible and preserve these found solutions until the end of
the search.

Algorithm 4 The Basic Procedure for Determining if All
Global Optima Are Found

1 Input: Sindividuals: a set of individuals (candidate
solutions) in the population; ε: accuracy level; fit(g∗):
the fitness of global optima;

2 Output Ssolutions: a set of best-fit individuals identified
as unique solutions; count: the number of identified
global optima found in the end of a run;

3 Initialization: Ssolutions = ∅, count = 0;
4 for each individual xi in the candidate solutions set
Sindividuals do

5 if |fit(g∗)− fit(xi)| ≤ ε then
6 if count == 0 then
7 count+ = 1; Ssolutions← xi;

8 else if xi 6∈ Ssolutions then
9 count+ = 1;

10 Ssolutions← xi;

Different kinds of swarm intelligence and evolution-
ary computation algorithms have been used to solve mul-
timodal optimization problems, such as species conserv-
ing genetic algorithm [20], niching particle swarm opti-
mization with local search [18], adaptive elitist-population
based genetic algorithm [21], differential evolution algorithm
with neighborhood mutation [19], dynamic fitness sharing
mechanism [22], hybrid niching PSO enhanced with
recombination-replacement crowding strategy [23], collec-
tive animal behavior algorithm [24], sequential niching
memetic algorithm [25], the multiobjective optimization
techniques [26], [27], and multistart hillclimbing strat-
egy [28], just to name a few. Result visualization is an
important issue in multimodal optimization. Similar to the
multiobjective optimization, a set of candidate solutions
are found for the multimodal optimization. A visualization
method for multimodal optimization was proposed to give
the distribution information and convergence information in
a coordinate plane [29].

C. PERFORMANCE CRITERIA
Two criteria are used to measure the performance of an
algorithm. One is the NPF , which denotes the total number
of global optima found in all runs. The other indicator is the
peak ratio (PR), which measures the average percentage of
all known global optima found over multiple runs [30]. The
equations of PR calculation are given in Eq. (8).

PR =

∑NR
run=1 NPFi
NKP× NR

=
NPF

NKP× NR
(8)

where NPFi denotes the number of global optima found in
the end of the i-th run, NKP the number of known global
optima [30]. The process for determining whether all global
optima are found is given in Algorithm 4.
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TABLE 1. The benchmark problems used in experimental study, where D is the dimension of each problem.

TABLE 2. The settings of benchmark problems.

IV. EXPERIMENTAL STUDY
A. BENCHMARK FUNCTIONS AND PARAMETERS SETTING
The eight benchmark functions are given in Table 1, and the
settings of each function are given in Table 2 [30]. Table 3
gives the parameters of population size and the number of
iterations. Two kinds of accuracy levels ε, 1.0E − 02 and
1.0E−04 respectively, are used to reveal the properties of the
algorithms’ search process. All other parameters of fireworks
algorithm are taken from [3]. The parameters of PSO are
taken from [31] and [32]. The detailed parameter settings are
as follows:
• Original BSO algorithm: pclustering = 0.2, pgeneration =
0.6, poneCluster = 0.4 and ptwoCluster = 0.5. The parame-
ter k in k-means algorithm is 25.

• BSO-OS algorithm: pelitist = 0.1, pone = 0.8, slope
k = 500.

• Fireworks algorithm: a = 0.04, b = 0.8, m̂ = 5.
• PSO algorithms: w = 0.72984, c1 = c2 = 1.496172.

B. EXPERIMENTAL RESULTS AND ANALYSIS
The percentages of global optima found by different algo-
rithms on these functions are listed in Table 4 and Table 5. The
Table 4 is the results with accuracy level ε = 1.0E−02, while
the Table 5 is the results with accuracy level ε = 1.0E − 04.
For both accuracy level, the parameter settings and number of
iterations are the same, and the difference only occurs on the
performance criteria. Results in Table 4 is better than results

FIGURE 4. An example of nonlinear equation systems (nonlinear
function n1).

in Table 5 because some solutions may reach the accuracy
level ε = 1.0E − 02 but not reached an accuracy level
ε = 1.0E − 04.
In general, the BSO-OS-Gaussian algorithm performs best

than the BSO-OS-Cauchy algorithm. The BSO-OS-Gaussian
algorithm and PSO-vonNeumann algorithm were outper-
formed than other algorithms among all the test variants.
PSO with star structure will converge to one optimum at
the end of a run. The PSO with star structure and fireworks
algorithm could not find multiple solutions on problems
with multiple global optima, and it only finds all solutions
on function f3. This is because that function f3 has one
global optimum. The BSO-OS algorithm performs better than
PSO-Star algorithm but worse than PSO-vonNeumann algo-
rithm for problems with high dimensions. For computational
efficiency, the original BSO algorithm has spent the longest
running time because the solution clustering strategy has used
a large number of computing resources. In two BSO-OS
algorithms, the search efficiency has been enhanced by the
elitist strategy.

From the results of the experimental study, it could be con-
cluded that: the exploitation ability of BSO-OS variants and
original BSO algorithm should be improved. The solutions
found by the BSO-OS algorithm are close to the real optima,
but the solution accuracy needs to be enhanced. Combining
the BSO-OS algorithm with some local search strategies,
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TABLE 3. The population size and number of iterations for BSO, fireworks, and PSO algorithms. ‘‘Popu.’’ is the population size, ‘‘Iter.’’ is the number of
iterations, and the ‘‘MaxFEs’’ is the maximum number of fitness evaluation.

TABLE 4. Peak Ratio (PR) of seven algorithms (with accuracy level ε = 1.0E − 02).

such as the variable neighborhood search algorithm, could
be a good approach to improve the performance of BSO-OS
variants for multimodal optimization problems.

V. NONLINEAR EQUATION SYSTEM
The definition of a nonlinear equation system (NES) could be
stated as


e1(x) = 0
e2(x) = 0
· · ·

eM (x) = 0

(9)

where x = [x1, . . . , xD] ∈ S is the decision vector consisting
of D decision variables, S is the search space. ei(x)(i ∈
{1, . . . ,M}) is the ith equation, and M is the number of
equations. Generally, A NES contains at least one nonlinear
equation [26]. For example, as showed in Fig. 4, there are two
solutions, i.e., [−

√
2
2 ,−

√
2
2 ] and [

√
2
2 ,
√
2
2 ] for Eq. (10).{

x21 + x
2
2 − 1 = 0

x1 − x2 = 0
(10)

The solving of nonlinear equation system could be trans-
ferred to locate multiple optimal solutions at the same time,
i.e. the multimodal optimization. The Eq. (10) could be con-
verted to an optimization function as follows:

VOLUME 6, 2018 17045



S. Cheng et al.: Locating Multiple Optima via BSO Algorithms

TABLE 5. Peak Ratio (PR) of seven algorithms (with accuracy level ε = 1.0E − 04).

FIGURE 5. Two examples of nonlinear equation systems.

Seven test instances of NES, which listed in Table 6, are
used in the experimental study to test the effectiveness of
different algorithms on solving nonlinear equation systems.
Three functions (n1, n3, n4) have 2 dimensions in the search
space. Fig. 4 gives an illustration of nonlinear function n1,
and Fig. 5 gives illustrations of nonlinear function n3 and n4,
respectively. The distribution of optima is not the same for
different functions. Function n4 have two optima pairs that an
optimum is very close to another. This may increase the diffi-
culty of search that solutions are easily stuck in one optimum.
Functions n2 and n7 have 20 variables in the search space,
i.e. 20 dimensions. For other functions, n5 has 3 dimensions

and n6 has 6 dimensions in the search space. The peak ratio
measure is not applicable for function n5, n6, and n7 due to
these functions have an infinite number of optima.

The population size and number of iterations are given
in Table 7. Two accuracy levels ε are 1.0E−02 and 1.0E−04
respectively. The results of algorithms on solving seven NES
functions are given in Table 8 and Table 9, respectively. The
Table 8 is the results with accuracy level ε = 1.0E−02, while
the Table 9 is the results with accuracy level ε = 1.0E − 04.
In general, BSO-OS-Gaussian and PSO with von Neu-

mann structure perform better than other algorithms. From
the results, these two algorithms have found all solutions
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TABLE 6. Seven nonlinear equation systems used in the experimental study, where D is the dimension of each problem, ‘‘Lin.’’ is number of linear
equations, ‘‘Non.’’ is number of nonlinear equations, and ‘‘Optima’’ is number of the optimal solutions.

TABLE 7. The population size and number of iterations for BSO, fireworks, and PSO algorithms.

TABLE 8. Results of the seven algorithms on solving seven nonlinear equation systems (with accuracy level ε = 1.0E − 02).

for function n1 and n2, most solutions for function n3 and
n4, and many solutions for function n5, n6, and n7. It can
be concluded that the BSO-OS-Gaussian and PSO with von

Neumann structure are two good search algorithms for solv-
ing NES functions. The original BSO algorithm performs
worst among all algorithms. The original BSO algorithm has
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TABLE 9. Results of the seven algorithms on solving seven nonlinear equation systems (with accuracy level ε = 1.0E − 04).

a slow convergence, thus, all solutions could not reach the
certain accuracy level after all iterations. Results of BSO-OS
and fireworks algorithm with accuracy level ε = 1.0E − 02
are significantly better than results with accuracy level
ε = 1.0E − 04. This indicates that algorithms have found
the areas that may contain optima, but the convergence speed
is not fast enough to locate the optima with certain accuracy
level. In other words, algorithms should enhance its exploita-
tion ability during the search.

VI. CONCLUSIONS
On solving multimodal optimization problems, the aim is to
locate multiple optima/peaks in a single run and to maintain
these found optima until the end of a run. In this paper, three
variants of brain storm optimization algorithms have been
utilized to solve multimodal optimization problems. The per-
formance and effectiveness of different algorithms on solving
multimodal optimization problems have been validated. The
experimental tests are conducted on eight benchmark func-
tions and seven nonlinear equation system (NES) problems.
Based on the experimental results, the conclusions could be
made that the BSO-OS algorithm performs better than FWA
and PSO-Star algorithm but worse than PSO-vonNeumann
algorithm for multimodal optimization problems in several
problems.

The exploitation ability of BSO-OS algorithm should
be enhanced on solving multimodal optimization problems.
Combining the BSO-OS algorithm with some local search
strategies, such as the variable neighborhood search algo-
rithm, may be a good approach to improve the search
performance of different variants of BSO-OS algorithm.
In addition, to obtain good performances on multimodal opti-
mization problems, a swarm intelligence algorithm needs to
balance its global search ability and solutions maintenance
ability simultaneously.
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