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ABSTRACT In this paper, the goal is to reconstruct a tensor, i.e., a multi-dimensional array, when only
subsets of its entries are observed. For well-posedness, the tensor is assumed to have a low-Tucker-rank
structure. To estimate the underlying tensor from its partial observations, we first propose an estimator based
on a newly defined balanced spectral (k, p)-support norm. To efficiently compute the estimator, we come
up with a scalable algorithm for the minimization of the spectral (k, p)-support norm. Instead of directly
solving the primal problem which involves full SVD in each iteration, the proposed algorithm benefits from
the Lagrangian dual through minimizing the dual norm of the (k, p)-support norm which only computes the
first k leading singular values and singular vectors in each iteration. To explore the statistical performance
of the proposed estimator, upper bounds on the sample complexity and estimation error are then established.
Simulation studies confirm that the error bounds can predict the scalable behavior of the estimation error.
Experimental results on synthetic and real datasets demonstrate that the spectral (k, p)-support norm based
method outperforms the nuclear norm based ones.

INDEX TERMS Tensor completion, square deal, atomic norm, sample complexity, APG.

I. INTRODUCTION
Benefiting from its strong multi-linear algebraic back-
ground [1], tensor, or multi-dimensional array, has become
a powerful tool in modeling multidimensional data like
videos [2], hyper-spectral images [3], electroencephalogra-
phy (EEG) [4], etc, and has attracted great attentions in
computer vision, signal processing, data mining, machine
learning and bio-informatics in recent years [5]–[11]. In some
real tasks, like video in-painting, only a small part of the data
tensor is available whereas we want to know the whole tensor.
This motivates us to study the tensor completion problem [2]
which concerns predicting themissing values of a tensor from
its partial observations.

Typically, we consider recovering an underlying K -th
order tensor L∗ ∈ Rd1×···×dK from a subset of its entries.
Generally speaking, the tensor completion problem is ill-
posed, since the unobserved entries can take arbitrary
values. However, if we impose some structural assump-
tions, like low-rankness [2], on the underlying tensor L∗,

the problem may be well-posed. Extending the low-rank
matrix completion [12], the key idea of low-rank tensor
completion [2], [13] is that the underlying tensor is assumed
to be the one which has the smallest ‘rank’ among all tensors
having the same observed entries. A general model is to solve
a constrained tensor rank minimization problem and use one
solution in the solution set to estimate the underlying tensor,
i.e.,

min
L

rank(L)

s.t. Li1···iK = L∗i1···iK , ∀(i1, · · · , iK ) ∈ �, (1)

where � denotes the set of observed indexes. Since a tensor
has many different definitions of rank functions, such as
the CP rank [14], Tucker rank [15], Tubal-rank [16], [17],
etc, one has many choices of rank(L) in Problem (1). How-
ever, no matter which rank function we choose, the gen-
eral constrained rank minimization problem is NP hard [18].
In this paper, we assume that the underlying tensor is
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low-Tucker-rank, i.e., it is simultaneously low rank along all
of its modes [1], [19].

Due to the hardness of directly minimizing the rank
function, many convex or non-convex surrogates of the
rank function are proposed to replace the rank function in
Problem (1) for computational tractability. Among differ-
ent rank surrogates, the tensor nuclear norm (see §II-B.2)
should be the most popular and it has been successfully
adopted in image and video in-painting, recommender sys-
tems, brain MRI data completion, etc [2], [20]. However
the tensor nuclear norm based models have some draw-
backs (see §II-B.2) and models based on many new met-
rics, i.e., the latent nuclear norm [21], Romera-Paredes Pontil
relaxation [22], tensor square norm [23], tubal nuclear norm
[24], TT-norm [25], etc, are proposed to get better low-
rank recovery performances. For different models based on
the above rank surrogates, various optimization algorithms
are proposed [2], [13]. The related convex methods will
be introduced in section II-B. Since this paper only con-
cerns convex tensor completion methods, non-convex meth-
ods like [26] and [27], Alt will not be covered. For a sum-
mary of some fundamental tensor completion approaches,
see §2 in [20].

In this paper, the goal is to complete a partially observed
low-Tucker-rank tensor. A novel estimator based on a newly
defined ‘balanced spectral (k, p)-support norm’ will be
proposed. An efficient optimization algorithm and the sta-
tistical performances will be provided on both the com-
putational side and the statistical side of the proposed
estimator. The effectiveness of the proposed estimator will
be demonstrated through experiments on synthetic and real
datasets.

The remaining of this paper is organized as follows. Nota-
tions and related work are introduced in §II. The problem
will be formulated in §III where a estimator based on a newly
defined ‘balanced spectral (k, p)-support norm’ will be pro-
posed. In §IV, the optimization algorithm is presented. The
statistical performance of the proposed estimator is analyzed
in §V. The experimental results are shown in §VI. This work
is concluded in §VII.

II. NOTATIONS AND RELATED WORK
A. NOTATIONS AND PRELIMINARIES
The notations in this paper follows that of [1]. For any inte-
ger n, we use [n] to denote the set of integers from 1 to n.
Vectors are denoted in bold lower case (e.g. x); Matrices are
denoted in bold upper case (e.g.M); Tensors are denoted by
bold calligraphic letters (e.g. T ). Let 1(·) be the indicator
function whose value is 1 if the condition is true and 0 other-
wise.

Given a vector x ∈ Rm, its l0-(semi-)norm and lp-norm
(p ∈ [1,∞]) are respectively defined as

‖x‖0 :=
m∑
i=1

1(xi 6= 0) and ‖x‖p := (
m∑
i=1

|xi|p)1/p.

Given a matrix M ∈ Rm×n
r , suppose that it has a singular

value decomposition (SVD) as

M = Udiag(σ )V>,

where U ∈ Rm×r and V ∈ Rn×r are orthogonal matrices and
σ = (σ1, σ2, · · · , σr )> ∈ Rr is the vector of singular values
ofM . The spectral norm, nuclear norm and Schatten-p norm
(p ∈ [1,∞]) ofM are respectively defined as

‖M‖2 := max
i
σi, ‖M‖∗ :=

m∑
i=1

σi,

and

‖M‖Sp := (
m∑
i=1

σ
p
i )

1/p.

Given a T ∈ Rd1×···×dK , its mode-k fibers are the vectors
in Rdk obtained by fixing all indices except for the k-th one.
The mode-k matricization or unfolding of T ∈ Rd1×···×dK is
the matrix having the mode-k fibers of T for columns and is
denoted byT (k) ∈ Rdk×d ′k , where d ′k =

∏
j6=k dj [1]. The inner

product between two tensors T 1 ∈ Rd1×···×dK and T 2 ∈

Rd1×···×dK is defined as

〈T 1,T 2〉 := vec(T 1)>vec(T 2),

where vec(·) is the vectorization operation of a tensor [1].
The l1-norm, Frobenius norm and l∞-norm of a tensor are
respectively defined as

‖T ‖1 := ‖vec(T )‖1, ‖T ‖F := ‖vec(T )‖2,

and

‖T ‖∞ := ‖vec(T )‖∞.

The Tucker rank of a K -th order tensor T is the vector(
rank(T (1)), · · · , rank(T (K ))

)
>
∈ RK ,

where rank(T (k)) denotes the rank of the mode-k unfolding.
Given T ∈ Rd1×···×dK , let D =

∏K
k=1 dk be the number of

its entries. For simplicity, other notations are defined when
necessary.

B. RELATED WORK
In this subsection, some directly related work will be listed.
Before introducing the K -th order tensor completion models,
we first introduce the low-rankmatrix completion as a special
case where K = 2.

1) LOW-RANK MATRIX COMPLETION
The low-rank matrix completion problem [12] concerns
imputing missing values of a matrixM ∈ Rm×n

r from partial
observations, supposing that its rank r � min{m, n}. The
main idea to reconstruct a partially observed matrix is the
assumption that it has the smallest rank among all matrices
with the same observations. This idea results in the following
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model that finds a solution of the rank minimization problem
to estimate the unknownM :

min
X∈Rm×n

rank(X)

s.t. X ij = M ij, ∀(i, j) ∈ �, (2)

where� is the set of the observed indices. Due to the combi-
natorial nature of the rank function, Problem (2) is proved
to be NP hard [28]. To get a solution in polynomial time,
the nuclear norm is proposed as the convex envelope, i.e., the
tightest convex relaxation, of the rank function for the rank
minimization problem [28], [29]. The nuclear norm based
matrix completion model is formulated as follows:

min
X∈Rm×n

‖X‖∗

s.t. X ij = M ij, ∀(i, j) ∈ �. (3)

It has been proved that when the unknown matrixM satisfies
the matrix incoherent conditions and the observation num-
ber is of order O(r max{m, n} log2(m + n)) under uniform
sampling, the solution of Problem (3) is M itself with high
probability [12], [30]. The nuclear norm based model has
been extensively used in different fields, see an overview
in [31].

2) TENSOR NUCLEAR NORM BASED TENSOR COMPLETION
To complete a K -th (K ≥ 3) order tensor L∗ ∈ Rd1×···×dK ,
the following low-Tucker-rank tensor completion model is
considered:

min
L

K∑
k=1

rank(L(k))

s.t. Li1···iK = L∗i1···iK , ∀(i1, · · · , iK ) ∈ �, (4)

where L(k) ∈ Rdk×
∏
j6=k dj is the mode-k unfolding ofL. Since

Problem (4) is NP hard, the tensor nuclear norm, defined as

‖L‖* :=
K∑
k=1

‖L(k)‖*,

is proposed to replace item
∑K

k=1 rank(L(k)) in Problem (4)
as a convex relaxation for computational tractability [2], [19].
The tensor nuclear norm based tensor completion model is as
follows:

min
L
‖L‖*

s.t. Li1···iK = L∗i1···iK , ∀(i1, · · · , iK ) ∈ �, (5)

The tensor nuclear norm provides a natural regularization
to encourage low-Tucker-rankness and has been broadly
adopted in various applications [2], [19], [32], [33]. How-
ever, the tensor nuclear norm is not a convex envelope of∑K

k=1 rank(L(k)) [22], [34]. Moreover, as pointed out in [23],
to encourage the low-Tucker-rank structure in tensor L, the
tensor nuclear norm, i.e., the direct summation of nuclear
norms of the unfoldingmatrices along eachmode, is not often
significantly powerful than the nuclear norm of a ‘square’

reshaping of L, which leads to the well-known concept
Square Deal.

3) SQUARE DEAL
Square deal, proposed by Mu et al. [23] seeks a balanced
reshaping of a tensor to a matrix which also preserves low-
rankness. Given T ∈ Rd1×···×dK , let T ∈ Rdl1×dl2×dlK be the
tensor obtained by relabeling the lk -th mode of T to the k-th
mode, where k ∈ [K ] and (l1, l2, · · · , lK ) is a permutation
of (1, 2, · · · ,K ). Selecting j ∈ [K ], the balanced reshaping
matrix T [j] of T is defined through its permuted version T
as follows:

T [j] := reshape
(
T (1),

j∏
k=1

dlk ,
K∏

k=j+1

dlk
)

∈ R
∏j
k=1 dlk×

∏K
k=j+1 dlk , (6)

where reshape(·) is the matrix reshaping operator (see [23]
for more details) and T (1) is the mode-1 unfolding of T .
According to Eq. (6), if j = 1, then T [j] = T (l1). If j > 1,T [j]
becomes a more balanced matrix. Based on the balanced
reshaping, a low-rank tensor recovery model based on the
minimization the nuclear norm of T [j] is proposed in [23]. For
the exact recovery of a K -th order tensor of size d × · · · × d
with Tucker rank (r, · · · , r) under Gaussian measurements,
the sample complexity drops from O(rdK−1) for the tensor
nuclear norm minimization problem [19] to O(rb

K
2 cdb

K
2 c) for

a square norm minimization problem (see [23], Th. 6).

4) SPECTRAL (k,p)-SUPPORT NORM
The recently proposed spectral (k, p)-support norm [35] has
been shown to have flexibility in fitting the decaying pat-
tern of matrix singular values. Given M ∈ Rm×n

r , suppose
that it has an singular value decomposition (SVD) as M =
Udiag(σ )V>, where U ∈ Rm×r and V ∈ Rn×r are orthogo-
nal matrices and σ = (σ1, σ2, · · · , σr )> ∈ Rr is the vector of
singular values of M . The spectral (k, p)-support norm [35]
of M , denoted by ‖M‖spk , is the gauge function whose unit
ball is the convex set

conv
{
σ
∣∣ ‖σ‖0 ≤ k, ‖σ‖p ≤ 1

}
, k ∈ N+, p ≥ 1, (7)

where conv(·) denotes the convex hall of a set [36]. Thus,
the unit ball of the spectral (k, p)-support norm is the convex
hull of matrices whose rank is no larger than k and Schatten-p
norm no larger than 1. It can be computed as follows [35]:

‖M‖spk := ‖σ‖(k,p) =


k−l−1∑
i=1

σ
p
i +

(min(m,n)∑
i=k−l

σi

(l + 1)
1
q

)p
1
p

,

(8)
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where 1
p +

1
q = 1, σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) and l is the

unique integer in {0, . . . , k − 1} satisfying

σk−l−1 >
1

l + 1

min{m,n}∑
i=k−l

σi ≥ σk−l . (9)

Note that when k = 1, the spectral (k, p)-support norm
degenerates to the matrix nuclear norm. The spectral (k, p)-
support norm based model has shown superior performance
over the nuclear norm based models in applications like rec-
ommender systems and moving object detection [35], [37].
For matrices of size m × n, the dual norm of the spectral
(k, p)-support norm (k ∈ N+, p > 1) is the Ky-Fan
(k, q)-norm defined as follows:

‖Y‖sp∗(k,p) := sup
‖X‖sp(k,p)≤1

〈X,Y 〉 =
( k∑
i=1

σi(Y )p
) 1
p ,

where σ1(Y ) ≥ σ2(Y ) ≥ · · · ≥ σk (Y ) are the first k largest
singular values of Y [35].

III. PROBLEM FORMULATION
In this section, the observation model will be first introduced
and then followed by the proposed estimator. In the remaining
of this paper, let L∗ be the underlying tensor. To describe
the low-rankness of L∗, its Tucker rank is denoted by r =
(r1, · · · , rK )>, where rl = rank(L∗(l)) � min{nl, n′l}, for all
l ∈ [K ].

A. THE OBSERVATION MODEL
Suppose that we have N scalar observations y1, · · · , yN gen-
erated through the following observation model:

yi =
〈
X i,L∗

〉
+ ςξi, ∀i ∈ [N ], (10)

where ς > 0 is a known standard deviation parameter,
{X i}

N
i=1 are known random design tensors and {ξi}mi=1 are

unknown normalized random noise variables. In this paper,
we make the following tow assumptions:
Assumption 1 (Uniform Sampling): The design tensors

X i are i.i.d. sampled with replacement from a uniform distri-
bution on the set tensor standard basis, i.e.,

X i ∼ Uniform
({

ej1 ◦ · · · ◦ ejK : ∀l ∈ [K ] , ∀jl ∈ [dl]
})
.

Assumption 2 (Sub-Gaussian Noise): The noise variables
ξi are i.i.d. centered Sub-Gaussian variables with unit vari-
ance, i.e., there exists a positive K0 such that

E[exp(K0ξ
2
i )] ≤ e, ∀i ∈ [N ].

Let y = (y1, · · · , yN )> ∈ RN and ξ = (ξ1, · · · , ξN )> ∈
RN be the vector of observations and noise, respectively.
Define the observation operator X : Rd1×···×dK → RN as

X(T ) :=
(
〈T ,X 1〉 , · · · , 〈T ,XN 〉

)
>, (11)

for any tensor T ∈ Rd1×···×dK . Then the observation
model (10) can be rewritten in a compact form

y = X(L∗)+ ςξ .

In addition, the adjoint operator of X(·) denoted by X∗(·) :
RN
→ Rd1×···×dK is defined as

X∗(z) :=
N∑
i=1

ziX i, (12)

for any vector z ∈ RN .

B. THE PROPOSED ESTIMATOR
The goal is to estimate the underlying tensorL∗ ∈ Rd1×···×dK

given incomplete noisy measurements y from the observation
model (10).

Motivated by the superiority of the spectral (k, p)-support
norm based model over the nuclear norm model for low rank
matrix recovery, we will adopt the spectral (k, p)-support
norm in our low rank tensor completion problem. Follow-
ing the spirit of square deal, we consider the most squared
reshaping matrix of a given tensor and minimize the spectral
(k, p)-support norm of it. A balanced reshaping matrix T [j] of
T ∈ Rd1×···×dK is said to belong to the set of most squared
reshaping matrices if the difference between its row and
column is the smallest over all j ∈ [K ] and all permutations
(l1, l2, · · · , lK ) of (1, 2, · · · ,K ). Given T ∈ Rd1×···×dK ,
we denote one of its most balanced unfolding by T� ∈
RD1×D2 , where D1 ≥ D2 and D1D2 =

∏K
l=1 dl .

In order to estimate the true but known L∗, the following
estimator is defined:

L̂ ∈ argmin
‖L‖∞≤α

‖L�‖
sp
(k,p)

s.t. ‖y− X(L)‖2 ≤ Bcn. (13)

In Eq. (13), α > 0 is a constant that upper estimates the
l∞-norm of L∗, the constraint ‖L‖∞ ≤ α is used to exclude
the ‘over-spiky’ tensors (see [5], [38]), and Bcn > 0 serves as
a tolerance for noise.

IV. OPTIMIZATION ALGORITHM
In this section, we will first formulate the Lagrangian dual
of Problem (13) and then solve the Lagrangian dual using
accelerated proximal (sub-)gradient (APG) algorithm. The
complexity and convergence of the proposed algorithm will
also be analyzed.

A. THE LAGRANGIAN DUAL
Problem (13) can be solved by the popular alternative direc-
tion methods of multipliers (ADMM) [39] which involves a
full SVD of L� to compute the spectral (k, p)-support norm
with time cost O(D1D2min{D1,D2}) in each iteration and is
thus very time consuming. To avoid the expensive full SVD in
each iteration, we consider the dual problem of Problem (13)
which can get rid of computing the spectral (k, p)-support
norm. The same strategy has been used in [37] for spectral
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k-support norm minimization and in [40] for nuclear norm
minimization.

By introducing auxiliary variables τ > 0, g ∈ RN and
K ∈ Rd1×···×dK , we obtain an equivalent formulation of
Problem (13):

min
τ,g,L,K

τ

s.t. ‖L�‖
sp
(k,p) ≤ τ ≤ Bsp,

‖K‖∞ ≤ α, ‖g‖2 ≤ Bcn,
L = K, X(L)+ g = y. (14)

where Bsp is a constant estimation of the upper bound of
‖L�‖

sp
(k,p).

Denoting the Lagrangian multipliers by λ ∈ RN and 3 ∈
Rd1×···×dK , the Lagrangian of Problem (14) is formulated as

max
λ,3

min
τ,g,L,K

L(τ,L,K, g,3,λ)

= τ + 〈3,L−K〉 + 〈λ, y− X(L)− g〉 ,

s.t. ‖L�‖
sp
(k,p) ≤ τ ≤ Bsp, ‖K‖∞ ≤ α, ‖g‖2 ≤ Bcn.

(15)

Next, we will solve the maximization problem in
Problem (15). Note that since ‖L�‖

sp
(k,p) ≤ τ ≤ Bsp,

‖K‖∞ ≤ α, ‖g‖2 ≤ Bcn, we have
L(τ,L,K, g,3,λ)

(i1)
= τ +

〈
3− X∗(λ),L

〉
− 〈3,K〉 − 〈λ, g〉 + 〈λ, y〉

(i2)
≥ ‖L�‖

sp
(k,p) − ‖

(
3− X∗(λ)

)
�
‖
sp∗
(k,p)‖L�‖

sp
(k,p)

−‖3‖1‖K‖∞ − ‖λ‖2‖g‖2 + 〈λ, y〉
(i3)
≥ ‖L�‖

sp
(k,p)

(
1− ‖

(
3− X∗(λ)

)
�
‖
sp∗
(k,p)

)
+ 〈λ, y〉

−α‖3‖1 − Bcn‖λ‖2
(i4)
≥ 〈λ, y〉 − Bspmax

{
0, ‖

(
3− X∗(λ)

)
�
‖
sp∗
(k,p) − 1

}
︸ ︷︷ ︸

=:−f (3,λ)

− α‖3‖1︸ ︷︷ ︸
=:r1(3)

−Bcn‖λ‖2︸ ︷︷ ︸
=:r2(λ)

,

where equality (i1) holds because of the definitions of X(·)
X∗(·) in Eqs. (11) (12), inequality (i2) holds because of the
Holder-like inequality of dual norms and ‖L�‖

sp
(k,p) ≤ τ ,

inequality (i3) holds because that ‖K‖∞ ≤ α and ‖g‖2 ≤
Bcn, inequality (i4) holds because of ‖L�‖

sp
(k,p) ≤ Bcn.

Thus, we have

max
λ,3

min
τ,g,L,K

L(τ,L,K, g,3,λ)

= max
λ,3
−f (3,λ)− r1(3)− r2(λ),

which is equivalent to

min
λ,3

f (3,λ)+ r1(3)+ r2(λ), (16)

where

f (3,λ) = max
{
0,Bsp(‖

(
3+ X∗(λ)

)
�
‖
sp∗
(k,p) − 1)

}
−〈λ, y〉 ,

and r1(3) = α‖3‖1, r2(λ) = Bcn‖λ‖2.

B. APG SOLVER FOR THE LAGRANGIAN DUAL
We will solve Problem (16) with the accelerated prox-
imal gradient descent (APG) algorithm summarized in
Algorithm 1. In detail, we keep two interpolation sequences
(3̂t , λ̂t ) and (3t ,λt ), which is typical for APG-type meth-
ods. Specifically, in each iteration, we iteratively solve the
(3,λ)-subproblem and the (3̂, λ̂)-subproblem.

1) THE (3,λ)-SUBPROBLEM
In APG, the dual variables 3 and λ are updated iteratively
through approximating f (3,λ) with a quadratic function
QHt+1

(
(3,λ); (3̂t , λ̂t )

)
which is defined as follows:

QHt+1
(
(3,λ); (3̂t , λ̂t )

)
:= f (3̂t , λ̂t )+

〈
g(3̂t , λ̂t ), (3, λ̂)− (3̂t , λ̂t )

〉
+
Ht+1
2
‖(3, λ̂)− (3̂t , λ̂t )‖2F . (17)

whereHt denotes the reciprocal of the step size which should
be carefully tuned via line-search, and the (sub-)gradient
g(3̂t , λ̂t ) can be computed by Lemmas 1 and 2.
Lemma 1: A particular sub-gradient of f (3,λ) can be

given by:

g(3,λ) =

{
(0,−y), ‖

(
3+ X∗(λ)

)
�
‖
sp∗
(k,p) ≤ 1,

g#, otherwise,
(18)

where

g# =
(
BspL#,BspX(L#)− y

)
,

and

L# := (L#)� = argmax
‖A‖sp∗(k,p)≤1

〈(
3+ X∗(λ)

)
�
,A
〉
. (19)

Lemma 2 [37]: A closed-form solution of Problem (19)
can be given by Udiag(s)V>, where

si =


σi

‖
(
3+ X∗(λ)

)
�
‖
sp∗
(k,p)

, i = 1, . . . , k,

0, i = k + 1, · · · ,min(m, n).
(20)

and
(
3 + X∗(λ)

)
�
= Udiag(σ )V> is a particular SVD of

matrix
(
3+ X∗(λ)

)
�
.

According to Eq. (17) and Lemmas 1 and 2, the dual
variables 3t+1 and λt+1 can be updated in closed-form as

3t+1 = argmin
3

QHt+1 ((3,λ); (3̂t , λ̂t ))+ r1(3)

= sign(3̃)�max(|3̃| − τ̄ , 0). (21)

and

λt+1 = argmin
λ

QHt+1 ((3,λ); (3̂t , λ̂t ))+ r2(λ),

=

{
max{1− τ̃ /‖λ̃‖2, 0}λ̃, ‖λ̃‖2 6= 0,
0, otherwise,

(22)

where � denotes the element-wise multiplication and
g(3̂t , λ̂t ) = (g3t , gλt ), 3̃ = 3̂t−g3t /Ht+1, τ̄ = α/(NHt+1),
λ̃ = λ̂t − gλt /Ht+1, τ̃ = Bcn/Ht+1.
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2) THE (3̂, λ̂)-SUBPROBLEM
According to [41], the variable (3̂t+1, λ̂t+1) is updated as
an extrapolation of (3t ,λt ) and (3t+1,λt+1), the (3̂, λ̂)-
subproblem can be solved by

3̂t+1 = 3t+1 +
βt − 1
βt+1

(3t+1 −3t ), (23)

and

λ̂t+1 = λt+1 +
βt − 1
βt+1

(λt+1 − λt ), (24)

where {βt } is a scalar sequence which can be updated itera-
tively as follows

βt+1 =
1+

√
1+ 4β2t
2

, (25)

with an initial value 1.

Algorithm 1 APG Solver for Problem (16)

Require: L0 = O,λ0, λ̂0, β0 = 1, ν,Bcn,Bsp, ε >

0,Tmax.
1: Set t = 0.
2: while t ≤ Tmax do
3: Compute L# by Eq. (20) at (3̂t , λ̂t );
4: Compute g(3̂t , λ̂t ) by Eq. (18);
5: Compute Ht+1 by

line-search ((3̂t , λ̂t ), g(3̂t , λ̂t ),Ht , ε, βt ) ;
6: Update 3t+1 by Eq. (21);
7: Update λt+1 by Eq. (22);
8: Update Lt+1 by Eq. (26);
9: Update 3̂t+1 and λ̂t+1 by Eqs. (23) and (24);

10: t = t + 1.
11: end while
Ensure: Lt .

3) LINE-SEARCH SUBROUTINE
The line search subroutine aims at finding the smallest Ht+1
which satisfies

f (3t+1,λt+1) ≤ QHt+1((3,λ); (3̂t , λ̂t ))+
ε

2βt
.

The line-search step is summarized in Algorithm 2 which
follows [37].

4) PRIMAL VARIABLE RECOVERY
While carrying out a dual iteration, we simultaneously
recover the primal variable L as follows:

Lt+1 = (1− γt )Lt + γtBspL#, (26)

whereL# is computed through Eq. (19) and γt is a weighting
parameter which can be updated as follows:

γt =
βt/Ht∑t
i=1 βi/Hi

. (27)

Algorithm 2 Line-Search Subroutine

Require: (3̂, λ̂), g(3̂, λ̂),H0, ε, β.
1: for i = 1, · · · , Imax do
2: Compute new point (3i+1,λi+1) using (21) and (22)

at (3̂t , λ̂t ) with penalty parameter Hi;
3: if f (3i+1,λi+1) ≤ QHi (3i+1,λi+1; 3̂t , λ̂t )+ ε

2β then
4: break;
5: else
6: Hi+1 = 2Hi.
7: end if
8: end for

Ensure: (3̂t , λ̂t ),Hi.

C. COMPLEXITY AND CONVERGENCE ANALYSIS
Note that in Algorithm 1, computation of L# costs O(kD),
computation of g(3̂t , λ̂t ) costs O(D + N ), computation of
Ht+1 costs at most O(ImaxkD) according to Algorithm 2,
computations of3t+1, λt+1,Lt+1, 3̂t+1 and λ̂t+1 costO(D),
O(N ), O(D), O(D) and O(N ), respectively. Recall that D
denotes

∏K
i=1 di. Thus, the per-iteration time complexity is

dominated by

O
(
(Imax + 1)k

K∏
i=1

di

)
,

which indicates that the proposed algorithm has scalability in
high dimensionality.

The convergence of Algorithm 1 is a direct consequence of
the analysis in [41].
Theorem 1: The sequence of primal variables {Lt } gener-

ated by Algorithm 1 converges to a stationary point L̂, and the
iteration number in the worst case to achieve an ε-solution is

Tmax = O
(

inf
0≤ν≤1

(
Mν

ε
)

2
1+ν

)
,

where Mν is defined as

Mν := sup
(3,λ)6=(3̃,λ̃)∈Dom(f )

‖∇f (3,λ)−∇f (3̃, λ̃)‖

‖(3,λ)− (3̃, λ̃)‖νF
.

V. STATISTICAL PERFORMANCE OF THE
PROPOSED ESTIMATOR
In this section, we study the statistical performance of the pro-
posed estimator. Specifically, we establish the upper bounds
on the sample complexity and the estimation error. For the
ease of notation, we consider the K -th order tensor of size
d × · · · × d with Tucker rank (r, · · · , r)> ∈ RK . Given
L ∈ Rd×···×d , its most squared reshaping matrix L� is of
size ddK/2e × dbK/2c.

Our analysis follows the unified framework of analysis
of matrix completion under general low dimensional con-
straints induced by any norm regularization provided by
Gunasekar et al. in [42]. In the framework, the bounds on the
sample complexity and the estimation error are given in term
of a well understood complexity measure of Gaussian width
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of a restricted error set associated withL∗. First, the Gaussian
width is defined as follows.
Definition 1 (Gaussian Width): Gaussian width of a set

S ⊂ Rd1×···×dK is defined as:

wg(S) = EG sup
X∈S
〈X ,G〉 ,

where G ∈ Rd1×···×dK is a tensor of independent standard
Gaussian random variables.

We then define the restricted error cone and its subset

T (L∗) = cone
{
1 ∈ Rd1×···×dK :

‖L∗� +1�‖
sp
(k,p) ≤ ‖L

∗
�‖

sp
(k,p)

}
,

and

E(L∗) = T (L∗) ∩
{
X ∈ Rd1×···×dK : ‖X‖F = 1

}
.

With a slight abuse of notation, we use wg(E(L∗�)) to denote
wg(E(L∗)), since wg(E(L∗�)) can be upper bounded in the
manner of [42, Lemma 3] . We then have the bound of
wg(E(L∗�)) as follows:
Lemma 3 (Bound of w2

g(E(L∗�))): Let σ ∗ ∈ RbK/2c denote
the vector of singular values of L∗� which are sorted in non-
descending order. Let l ∈ {0, 1, · · · , k − 1} be the unique
integer that satisfies:

σ ∗k−l−1 >
1

l + 1

bK/2c∑
i=k−1

σ ∗i ≥ σ
∗
k−l,

then we have

w2
g(E(L∗�)) ≤

(
A+ 2rbK/2c + l − k + 1

)
(2ddK/2e−rbK/2c),

(28)

where

A =

(l + 1)
2p
q
k−l−1∑
i=1

(σ ∗i )
2(p−1)

(
rbK/2c∑
i=k−l

σ ∗i )
2(p−1)

.

To prove the above lemma, we need the following two
lemmas:
Lemma 4 [42]: For a non-empty convex cone C ∈ Rm×n,

we have the following relationship:

wg(C ∩ Smn−1) ≤ EG[ inf
X∈C◦
‖G− X‖F],

where Smn−1 = {X ∈ Rm×n
: ‖X‖F = 1}, G ∈ Rm×n is a

matrix of independent standard Gaussian random variables
and C◦ is the polar cone of C defined as C◦ := {Y : 〈X,Y 〉 ≤
0,∀X ∈ C}.
The sub-gradient of the spectral (k, p)-support norm is pro-

vided in the following lemma that can be achieved according
to [43].
Lemma 5: For any matrix X ∈ Rm×n

r̃ having a sin-
gular value decomposition X = UXdiag(σ̃ )VX

>, where
the singular values are sorted in non-descending order.

Let l ∈ {0, 1, · · · , k − 1} be the unique integer satisfying:
σ̃k−l−1 >

1
l+1

∑bK/2c
i=k−1 σ̃i ≥ σ̃k−l , then we have

∂‖X‖sp(k,p) =
{
UXdiag(σ )V>X
(‖X‖sp(k,p))

1/q

}
, (29)

where σ in Eq. (29) satisfies

σi


= σ̃

p−1
i , 1 ≤ i ≤ k − l − 1

= ς̃ , k − l ≤ i ≤ r̃
≤ ς̃ , r̃ ≤ i ≤ min{d1, d2}

and ς̃ = (k − l)−p/q(
∑r̃

j=k−l σ̃j)
p−1.

Proof of Lemma 3: The error cone for ‖·‖sp(k,p) at L
∗
� is given

by the tangent cone

T = cone
{
‖1+ L∗�‖

sp
(k,p) ≤ ‖L

∗
�‖

sp
(k,p)

}
,

and the polar of the tangent cone, i.e., the normal cone is
given by

T ∗ = N (L∗�) =
{
Y : 〈X,Y 〉 ≤ 0,∀X ∈ T

}
= cone(∂‖L∗�‖

sp
(k,p)).

Let L∗� = U∗16
∗V∗> be the full singular value decompo-

sition of L∗�, such that σ ∗ = diag(6∗) ∈ RdbK/2c , and let
σ ∗1 ≥ σ

∗

2 ≥ · · · σ
∗

dbK/2c
. Let u∗i and v

∗
i for i ∈ [dbK/2c] denote

the i-th column of U∗ and V∗, respectively. Further, the rank
of L∗� is ‖σ

∗
‖0 ≤ rbK/2c, according to [23, Lemma 4].

Denote I2 = {1, · · · , k− l−1}, I1 = {k− r, · · · , rbK/2c},
and I0 = {rbK/2c+1, · · · , dbK/2c}. Also define the subspace:

M = span
{
u∗i x
>
: i ∈ I2 ∪ I1,∀x ∈ R

dK/2e}
∪span

{
yv∗i
>
: i ∈ I2 ∪ I1,∀y ∈ R

bK/2c}
.

Let M⊥ be the subspace orthogonal to M and let PM and
PM⊥ be the projections ontoM andM⊥,respectively. From
Eq. (29) we have

N (L∗�) =
{
tU∗diag(σ )V∗>

}
,

where σ satisfies

σi


=
σ̃
p−1
i

ς̃
, 1 ≤ i ≤ k − l − 1

= 1, k − l ≤ i ≤ r̃
≤ 1, r̃ ≤ i ≤ min{d1, d2}

and ς̃ = (k − l)−p/q(
∑r̃

j=k−l σ̃j)
p−1.

Finally, we obtain

w2
g(E(L∗�)) ≤ EG inf

X∈N (L∗�)
‖G− X‖2F.

Note that

G− X = PM(G)−
t
ς̃

∑
i∈I2

(σ ∗i )
p−1u∗i v

∗
i
>

− t
∑
i∈I1

u∗i v
∗
i
>
+ PM⊥ (G)− t

∑
i∈I0

hiu∗i v
∗
i
>.
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FIGURE 1. Plots of log(‖L̂−L∗‖2F/D) versus the sample size N for 4-th order tensors of size d × d × d × d and Tucker rank (r , r , r , r ) with different
balanced spectral (k,p)-support norm regularizers. We consider tensors with 4 size and rank settings (d , r ) ∈ {(20,2), (30,2), (30,3), (40,2)}.
Subplots (a)-(d) show the results of different choices of (k,p) pairs: (k,p) = (1,2), (2,1.5), (2,2) and (2,4), respectively.

Let PM⊥ (G) =
∑

i∈I0 σi(PM⊥ (G))u∗i v
∗
i
> be the decom-

position of PM⊥ (G) in the basis of {u∗i v
∗
i
>
}i∈I0 . Taking

t = ‖PM⊥ (G)‖2 = maxi∈I0 σi(PM⊥(G)) and hi =
σi(PM⊥ (G))/‖PM⊥ (G)‖2 ≤ 1, we have

w2
g(E(L∗�))

≤ EG‖PM(G)‖2F + EG‖PM(G)‖22
( 1
ς̃2
+rbK/2c−k+l+1

)
.

Since

EG‖PM(G)‖2F ≤ r
bK/2c(2dbK/2c − rbK/2c),

and

EG‖PM(G)‖22 ≤ 2(2dbK/2c − rbK/2c),

the statement of Lemma 3 is proved. �
Equipped with Lemma 3, the main theorem is given as

follows:
Theorem 2: If the sample size

N ≥ c0w2
g(E(L∗�))K log d,

for some sufficiently large c0 and Bcn is chosen by Bcn =
2ς
√
N then there exists parameter κc0 ≈ 1 − o(d−bK/4c),

and constants c1 and c2 such that, the following inequal-
ity holds with probability at least 1 − exp(−c1w2

G) −
2 exp(−c2Kw2

G log d),

‖L̂−L∗‖2F
D

≤ max
{
Bς ,Bwg

}
, (30)

with

Bnoise =
4ς2

κc0
, and Bwg =

4c0Kα2w2
g(E(L∗�)) log d
N

,

where wg(E(L∗�)) is upper bounded in Eq. (28).
The proof of this theorem directly follows that of

[42, Th. 1a] and is thus omitted.
Remark 1 (Sample Complexity): According to Theorem 2,

the sample complexity is of order

O
(
Kw2

g(E(L∗�)) log d
)
.

Remark 2 (No Exact Recovery Guarantee): When the stan-
dard deviation of the noise ς = 0, i.e., the observations
are noiseless, then from the right hand side of Eq. (30), the
estimation error will be dominated by the second term, which
indicates that exact recovery can not be guaranteed. This can
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FIGURE 2. Plots of log(‖L̂−L∗‖2F/D) versus the rescaled sample size N0 = N/(Kα2w2
g (E(L∗� )) log d ) for 4-th order tensors of size d × d × d × d and

Tucker rank (r , r , r , r ) with different balanced spectral (k,p)-support norm regularizers. We consider tensors with 4 size and rank settings
(d , r ) ∈ {(20,2), (30,2), (30,3), (40,2)}. Subplots (a)-(d) show the results of different choices of (k,p) pairs: (k,p) = (1,2), (2,1.5), (2,2) and (2,4),
respectively.

be seen as a trade-off that we don’t assume strict incoherent
conditions on L∗ [12], [44].
Remark 3 (The Nuclear Norm Case): When k = 1 the

results on the sample complexity and error bound degenerate
to case of nuclear norm. By using Lemma 3, we get that

w2
g(E(L∗�)) ≤ 4rbK/2c

(
2ddK/2e − rbK/2c

)
,

which indicates that the sample complexity is

O
(
KrbK/2cddK/2e log d

)
,

and the estimation error ‖L̂−L∗‖2F/D is

O
(
KrbK/2cddK/2e log d

N

)
.

VI. EXPERIMENTS
In this section, we will first corroborate the correctness of
Theorem 2 through an experiment on synthetic data. We will
then evaluate the effectiveness of the proposed algorithmwith
experiment on synthetic data and video data. The algorithms
are implemented in Matlab and the experiments are con-
ducted on a PC with Intel i5 CPU and 12GB RAM.

A. CORROBORATION OF THEOREM 2
In this subsection, we will corroborate the correctness of
Theorem 2. Specifically, we will show that the proposed
upper bound can predict the scaling behavior through numer-
ical simulations. First, the ground truth tensor L∗ ∈
Rd1×···×dK with Tucker rank (r1, r2, · · · , rK ) is generated by

L∗ = C ×1 U1 ×2 U2 ×3 · · · ×K UK , (31)

where the core tensor C ∈ Rr1×···×rK and the factor matrices
Uk ∈ Rrk×dk are all generated by element-wisely i.i.d. stan-
dard Gaussian. Then, given observed entries of L∗, the addi-
tive noise {εi}Ni=1 isc drown from i.i.d. standard Gaussian and
the noise level are controlled by a parameter c ≥ 0. The noise
setting is specialized as follows:

εi ∼ N (0, 1), ς =
c‖L∗‖F
√
D

, (32)

with c controlling the noise to signal ratio.
In this experiment, we consider 4-th order tensors of

size (d, d, d, d) and Tucker rank (r, r, r, r) chosen from
(d, r) ∈ {(20, 2), (30, 2), (30, 3), (40, 2)}. The balanced
spectral (k, p)-support norm regularizers are chosen from
(k, p) ∈ {(1, 2), (2, 1.5), (2, 2), (2, 4)}. The sampling ratio
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TABLE 1. RSE values in noisy tensor completion result on synthetic datasets. The proposed balanced spectral (k,p)-support norm based method
(with different choices of (k,p) pairs) is compared with the nuclear norm based methods SNN [19] and SquareNN [23]. (‘SR’ is short for
‘sampling ratio’, i.e., N/D.)

N/D varies from 0.1 to 0.9 with step size 0.1. For fixed tensor
size, Tucker rank, sampling ratio and specific spectral (k, p)-
support norm, the experiment is repeated in 10 runs.

Note that according to Theorem 2, for a specific spectral
(k, p)-support norm, when the noise is very small, the esti-
mation error will be upper bounded by Bwg , i.e.,

‖L̂−L∗‖2F
D

≤
4c0Kα2w2

g(E(L∗�)) log d
N

,

with high probability. Define the rescaled sample size

N0 :=
N

Kα2w2
g(E(L∗�)) log d

. (33)

and let c = 0 in Eq. (32). Thus it is expected that if we plot the
estimation error against the rescaled sample size, then plots
of different tensor sizes and ranks will align relatively well.

Fig. 1 shows the plots of the estimation error in log scale,
i.e., log(‖L̂−L∗‖2F/D), versus the sample size for different
tensor sizes, ranks and different spectral (k, p)-norm regu-
larizers. It can be seen from Fig. 1 that, given a specific
spectral (k, p)-norm regularizer, larger tensors with larger
ranks require more observations to obtain a small estimation
error which is consistent with our intuition. Fig. 2 shows
the plots of the estimation error versus the rescaled sample
size N0 defined in Eq. (33). One can see from Fig. 2 that,
given a certain spectral (k, p)-support norm regularizer, the
estimation error of tensors (with different sizes and ranks)
align relatively well with respect to N0. This phenomenon is
consistent with our expectation that the proposed upper bound
can predict the scaling behavior of the estimation error. Thus,
the correctness of Theorem 2 is corroborated.

B. EFFECTIVENESS OF THE PROPOSED ESTIMATOR
The motivation of this work is to exploit the flexibility of
spectral (k, p)-support norm in fitting the decaying pattern
of spectrum in a squared reshaping manner for tensor com-
pletion. To show the superiority of the proposed model over
the nuclear norm based ones, i.e., the square nuclear norm
model [23] (‘SquareNN’ for short) and the tensor nuclear
norm based model [2] (‘SNN’ for short), experiments for
noisy tensor completion on synthetic datasets and color
videos are carried out.

FIGURE 3. The impact of different choices of (k,p) on the estimation
error in different settings: (a) (d , r ) = (20,2), noise level c = 0.05 and
sampling ratio 15%, (b) (d , r ) = (30,3), noise level c = 0.05 and sampling
ratio 12.5%.

Since the SquareNN model is a special case of our bal-
anced spectral (k, p)-support norm based model with k = 1,
we simply use the result of the proposed model by setting
k = 1. Since the observed entries are noisy, we consider the
the SNN model formulated as follows:

min
L∈Rd1×···×dK

K∑
k=1

ωk‖L(k)‖∗,

s.t. ‖y− X(L)‖2 ≤ Bcn. (34)
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FIGURE 4. Qualitative comparison in noisy video inpainting. (a) is the ground truth frame, (b) is the observed frame with sampling ratio N/D = 8% and
noise level c = 0.05. (c)-(f) show the inpainting results of SNN, SquareNN and two examples of the proposed balanced spectral (k,p)-support norm
based model with different (k,p) choices. The PSNR values are put behind each method.

Problem (34) is solved through the framework of
ADMM [39] and coded in Matlab, for more details, see [13].

1) SYNTHETIC SIMULATION
In this subsection, random tensors of different sizes and
Tucker ranks are generated with different noise levels to
compare performances of the proposed balanced spectral
(k, p)-support norm based model with the SquareNN and
SNN model. The ground truth tensor are generated through
Eq. (31) with additional Gaussian noise satisfying Eq. (32).
For the SNN model, the elements of the weight vector ω
are set to 0.25. For the SquareNN model and the proposed
model, the permutations (l1, l2, l3, l4) are all [1, 2, 3, 4] with
balancing mode j = 2 in Eq. (6). The parameter Bcn is simply
set to 2ς

√
N for the three models . The remaining parameters

are manually tuned for better performances in most cases. For
an estimation L̂ of the underlying tensorL∗, the relative root
squared error (RSE), i.e.,

RSE =
‖L̂−L∗‖F
‖L∗‖F

,

is employed to evaluate the quality of L̂.
In Table 1, the results of noisy tensor completion are

reported. According to Table 1, we can see that the proposed
method outperforms SquareNN and SNN thanks to the flexi-
bility of fitting the spectrum of spectral (k, p)-support norm.
To illustrate the impact of different choices of (k, p) on the
estimation error, the RSE values obtained by the proposed
method with different (k, p) pairs are shown in Fig. 3. It can
be seen from Fig. 3 that the proposed balanced spectral
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FIGURE 5. The quantitative comparison in PSNR values for noisy video
in-painting with sampling ratio 8% and noise level c ∈ {0,0.05}. The
proposed balanced spectral (k,p)-support norm based method (with
different choices of (k,p) pairs) is compared with the nuclear norm based
methods SNN and SquareNN. (a) c = 0. (b) c = 0.05.

(k, p)-support norm based model performs better when p is
around 2.

2) VIDEO IN-PAINTING
In video in-painting, the goal is to reconstruct a video from
incomplete and noisy observations. Since color videos can be
represented as a 4-order tensor (height × width × channels
× frames), we fulfill the video in-painting task using tensor
completion. In this subsection, the proposed algorithm is
compared with the SNN and the SquareNN on video data.
The color videos include suzie_qcif, trevor_qcif, akiyo_qcif,
container_qcif, coastguard_qcif and grandma_qcif1. For the
limitation of computation, we use the first 32 frames of each
video and get 4-th order tensors of size height× width×3×
32. The sampling ratio N/D is set to 8% and the noise setting
follows Eq. (32) with noise level parameter c ∈ {0, 0.05}.
For the SNN model, the elements of the weight vector ω
are set to 0.25. For the SquareNN and the proposed method,
the permutations (l1, l2, l3, l4) are all [1, 4, 2, 3] with balanc-
ing mode j = 2 in Eq. (6). The parameter Bcn is simply set
to 2ς
√
N . The remaining parameters are manually tuned for

better performances. For an estimation L̂ of the underlying
tensor L∗, the peak signal-to-noise ratio (PSNR), i.e.,

PSNR = 10 log10
(n1n2n3‖L∗‖2∞
‖L̂−L∗‖2F

)
,

is employed to evaluate the quality of L̂.
The qualitative comparison results with observation ratio

8% of six videos are shown in Fig. 4. For quantitative com-
parison, we report the PSNR values on the six test videos
with noise level c ∈ {0, 0.05} in Fig. 5. It can be seen that

1The videos are available from https://sites.google.com/
site/subudhibadri/fewhelpfuldownloads.

FIGURE 6. Comparison of computation time in seconds for video
in-painting with sampling ratio 8% and noise level c = 0. The proposed
method (with different choices of (k,p) pairs) is compared with SNN.
Note that SquareNN is a special case of our balanced spectral
(k,p)-support norm based method with k = 1.

the SquareNN performs better than the SNN. Besides, the
recovery results by the proposed method outperform those
by the SNN and the SquareNN in terms of PSNR values and
visual quality2.
Comparison of computation time is also presented in Fig. 6

for the case where c = 0. As shown in Fig. 6, the SquareNN is
the most efficient, models based on the spectral (k, p)-support
norm are the second efficient, and the SNN is the most time-
consuming. Note that the SquareNN is a special case of
the proposed model and it is solved through the proposed
Algorithm 1. The efficiency of SquareNN and other spectral
(k, p)-support norm based models benefits from the APG
solver in Algorithm 1 which only computes first k leading
singular values and singular vectors in each iteration. Since
the SNN is implemented in the ADMM framework which
involves full SVD on the unfolding matrices along all modes
in each iteration, it is computationally expensive.

VII. CONCLUSION
To estimate a K -th order tensor from its partial noisy obser-
vations, we defined an estimator based on a newly defined
‘balanced spectral (k, p)-support norm’. A scalable algorithm
was proposed to efficiently compute the estimator. Instead of
directly solving the primal problem which involves full SVD
in each iteration, the proposed algorithm benefits from the
Lagrangian dual through minimizing the dual norm of the
(k, p)-support norm which only computes the first-k lead-
ing singular values and singular vectors in each iteration.
For statistical performance of the proposed estimator, upper
bounds on the sample complexity and the estimation error
were established and verified through simulation study. The
proposed method is shown to outperform the nuclear norm
based methods through experimental results on synthetic and
real datasets. It is interesting to consider fast algorithms like
[45] and [46], other atomic norm regularization [47], [48]
or other tensor decomposition approaches [49] for low-rank
tensor recovery in future research.

2As pointed out by one kind reviewer of this manuscript, in the
c = 0.05 case, the improvement of the proposed model on the SquareNN
is not significant on suzie_qcif, trevor_qcif and akiyo_qcif. The reason is
still under study.
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