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ABSTRACT In this paper, a new method for controlling and guidance of guided gliding vehicle (GGV)
is provided. In this regard, a hybrid structure of nonlinear optimal control has been proposed to minimize
control effort. The inner loop has a regulating function that guarantees the stability of motion and rotation
equations and reduces the effect of external disturbances. The outer loop provides optimal tracking with a
straight line scroll criterion for the GGV. The use of state dependent Riccati equation control involves deter-
mining the appropriate state dependent coefficient (SDC) form, which requires a complete understanding
of the dynamics of the system. One of the methods for determining the relative dynamics of a nonlinear
time-varying system and calculating SDC is the online identification method. The advantage of this method
in determination of the SDC is more evident when it is not possible to fully understand the dynamics of
the system or external factors and disturbance affect the system. This method also eliminates the problem
of uncertainty and accurate measurement of parameters. In other words, it provides an adaptive model
for different conditions. In this paper, the ANFIS network has been used for the first time for continuous
and online identification of the system dynamics and calculating SDC. In order to ensure the stability of
identification, the identifier will be trained first with the particle swarm optimization and the online back-
propagation learning algorithm. The stability of the closed loop system with a proposed hybrid structure
is investigated with the help of the Lyapunov function and the concept of passivity. The optimal and robust
performance of the proposed framework has been investigated in terms of the ability to simultaneously pursue
the target in the optimal path despite disturbance and optimize the control effort with multiple simulations.

INDEX TERMS ANFIS network, continuous online identification, guided glide vehicle (GGV),
LOS guidance, nonlinear optimal control.

I. INTRODUCTION
During past decades, researchers’ attention had been mainly
focused on the development of UAVs with respect to control
theories and their implementation. The unique characteristics
of these aerial systems and their vast range of dimensions and
capabilities have increased the demand of various industries
and their comprehensive presence. In this respect, the guided
glide vehicles (GGVs) have a significant potential to support
missions and considerably reduce costs.

GGVs are a specific group of UAVs which are utilized
for targets with low maneuverability since propulsion sys-
tems are removed. Under actuated states and lack of propul-
sion systems in dynamic systems, the inclusion of GGVs
has caused many control problems, and the use of conven-
tional methods faces some restrictions. The main factor for

complexities in appropriate trajectory tracking control and
stability analysis of these systems is their nonlinear input-
output and non-minimum phase mapping [1]. Hence, GGV
guidance, which is an especially challenging problem com-
pared to other types of UAVs in this field, has attracted many
researchers in recent years.

GGVs are employed for survivability, telecommunication,
and military objectives. Hence, military applications have
overshadowed control studies performed on these systems.
Maximizing the level of range with guidance in the desired
path [2] and real-time path planning based on the inverse
dynamics [3] are the subjects of some of these studies.
In these researches, the utilization of the real dynamic model
system is necessary to achieve the appropriate results. The
application of genetic algorithm for regulating PID controller
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parameters is investigated by Attallah et al. [4]. However,
the exerting of linear or linearized dynamic is the limitation
of such methods. The modeling of linear free-fall flight in
a windy environment is another attempt to simplify control
problems and overcome upcoming challenges [5]. On the
other hand, new differential glider equations based on optimal
control are presented in order tomaximize the final velocity at
the objective point [6]. The assumption of a high-speed glider
for overcoming gravitational effects is the major limitation of
such researches.

The control of GGVs is generally defined as solving an
optimization problem. In fact, the control scheme would
overcome different obstacles during gliding by consuming
the lowest energy and have to take the target with the
minimum positioning error. By developing optimal nonlin-
ear control theories and presenting practical methods for
minimizing the cost function, Pearson presented the SDRE
method in 1962 that was later developed by Wernti and
Cook [7]. Simply, optimal linear control tactics are embedded
in control schemes for nonlinear systems. For this purpose,
system dynamics is first redefined into the state dependent
coefficient (SDC) form by factorization. Finally, the online
Riccati equation is solved for the optimal sub-problem solu-
tion related to the current moment’s conditions. The SDC
form gives more flexibility and action power to the designer
compared to linearization around the nominal path [8]. On the
other hand, the extraction of the appropriate SDC form that
is able to satisfy controller design conditions always poses
challenges [9]. Owing to the lack of practical solutions in
choosing this form, SDC matrices are selected by designer
intelligence with regard to the individual dynamics of each
problem.

Along with the researchers in all engineering sci-
ences, aerospace engineers have extensively used this
method. The development of an advanced guidance law by
Cloutier and Stansbery [10] and Cloutier and Zipfel [11]
(1999), flight control and guidance of a pair of UAV
leader-follower [12], [13], and the optimal guidance law for
missile with control of state changes in impact with stationary
surface targets [14] are some of these attempts. Designing an
autopilot using the optimal control theory has evoked high
interest till date [1], [15], [16]. In recent years, the incor-
poration of different control approaches with SDRE control
to improve performance and implementation capability has
been the objective of scholars. For instance, an integrator was
augmented to SDRE to reduce the steady state error in the
attitude control of super-maneuverable aircraft [17] and the
SDRE control was incorporated with a sliding mode control
for motion planning and end-effect control of multiple quad
rotors under uncertainties and external disturbances [18]. The
spacecraft and satellite controls are also amongst the interest-
ing research fields [19]–[21].

Since the idea of identification with fuzzy structure
in control systems was for the first time introduced by
Takagi-Sugeno, many applications have been presented for
utilizing ANFIS in identifying and improving control per-

formances of complex nonlinear systems in the presence
of uncertainties and unmodeled dynamics [22]. The results
of simulations show the complete superiority of these con-
trollers over conventional PIDs [23]. As a solution in aerial
vehicles control, different methods are proposed based on
neuro-fuzzy structures that are sometimes implemented in
real conditions. Among them are the implementation of the
heading control for UAV with delta wing [24] and the control
of the passenger airplane model of NASA under uncertainties
and compared to adaptive approaches [25]. The superiority of
ANFIS nonlinear control does not require further parameter
adjustments after training. Meanwhile, PID control, despite
the simplicity of implementation in the real world, needs a
high degree of experience in regulating the parameters and
the best result is not obtained in all flight conditions [26].
The desired performance of positioning control of the UAV
Aerosonde model with three fuzzy models is one of the other
endeavors [27].

One of the most important ANFIS capabilities used
in control algorithms is identification with this method.
In online identification and nonlinear dynamic modeling,
inverse dynamics would be identified for control purposes,
since the delayed dynamic outputs are the inputs of ANFIS
network [28]–[30]. In the case of propagating delayed control
inputs, the identification of a direct model is conceivable.
Identification can be considered for the whole system dynam-
ics [31] and/or a part of it [32]. Besides, Al-Hadith et al. [31]
modified the optimal control law corresponding to the iden-
tified discrete-time relation, and the high effectiveness of the
ANFIS model is shown as well as the generality and simplic-
ity of implementation. However, in both proposed configu-
rations, the final approximation is a discrete-time one due to
the nature of the input data and static and recursive essence
of the identifier. On the other hand, various approaches are
utilized in the online and offline training of ANFIS networks.
Gradient-based methods [33], evolutionary algorithms such
as GA [30], PSO [34] or their combination [35], [36], and
trainingwith neural networks included RBF [37] and, in some
cases, the combination of classical and evolutionary meth-
ods [38] are some of the learning strategies.

The guidance systems can strongly reach various targets
by distinct initial conditions. In these systems, a programmed
algorithm is used that calculates angular positioning and
the launch time for receiving the target. Designating the
method of guidance and navigation depends on the aerial
vehicle qualification and the communication type between
flight systems [38]. Of the available guidance methods, line
of sight (LOS) has the optimal performance especially for
non-delayed communicating systems (or with a little time
delay), stationary targets (or of low maneuverability), and in
the absence of accelerometers [39]. This method endeavors
to minimize the control attempt by determining the most
optimized trajectory. In more detail, the guidance law in
the LOS strategy involves the rewriting of the optimization
problem for reducing tracking error. The aim of this method
is to preserve the orientation of the aerial vehicle in the inter-
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face line between the target and the aerial vehicle [38]–[40].
The mentioned line is the most optimized path possible in
terms of time cost and control attempt. The benefits of this
method are not only simplicity and effectiveness in practical
implementation, but also no additional actuator and sensor are
required.

A combination of two nested loops of SDRE is presented in
this paper to overcome the physical and dynamical limitations
of UAVs, especially GGVs. In the outer loop, the optimal
guidance with LOS includes target tracking by means of
minimizing the changed level in system orientation. However,
the SDRE regulator in the inner loop tries to minimize the
cost function with a minimum control attempt. The exclu-
sive innovation of the proposed framework is driving the
appropriate SDC form in each moment with online ANFIS
identification. Online identification creates the probability of
convergence of the approximation error of state matrices to
zero in the presence of turbulence in the dynamic system.
On the other hand, the initialization of the offline identifier
with PSO is evidence of rapid convergence without trapping
in local minimums. In this case, in addition to enhancing
the robustness of the control scheme, the necessity of unex-
ceptionable knowledge of system dynamics and turbulence,
and the system’s parameter identification are eliminated. The
suggested control scheme ensures the stability and limiting of
tracking errors related to the initial conditions in the case of a
stable dynamic system of UAV without a propulsion system
that is an essential constraint in dynamic design process.

The structure of this paper is as follows: First, the prob-
lem of nonlinear optimal control of SDRE is expressed
in section 2. The UAV Dynamic Model is then introduced in
section 3.

Generalities of the proposed control framework are pre-
sented in Section 4. Method of extracting SDC matrices
by the ANFIS identifier are involved in section 5. In addi-
tion, the online update and offline dynamic detection method
have been presented in this section. The control method for
minimizing positioning error is discussed in section 6. The
designing of the inner regulator and optimal guidance law are
involved in this section. In Section 7, stability analysis and
its conditions are described in detail. In Section 8, multiple
simulations are done to verify the effects of the recommended
control framework and the level of its robustness under exter-
nal turbulence. Finally, the concluding remarks of this study
are contained in Section 9.

II. SDRE NONLINEAR CONTROL
A. SDC PARAMETERIZATION
The SDC structure is a factorization method that shows a
nonlinear system in a linear-like form. Consider the nonlinear
system (1).

ẋ (t) = f (x)+ B (x)u (t)+ F(x, t), x (0) = x0 (1)

where, x ∈ Rn, u ∈ Rm are the vector of state and input
control variables, respectively, x0 is the vector of initial state
variables, f (x) : Rn → Rn, B (x) : Rn → Rn×m where,

(∀x, B (x) 6= 0) and F(x, t) is the vector of other nonlinear
terms.

If f (x) is differentiable, then the nonlinear continuous
matrix A (x) is obtained from (2).

A (x) = f (x) /x (t) (2)

A (x) is an n × n matrix derived from mathematical factor-
ization methods and is not unique for n > 1. With these
definitions, the linear-like system obtained from the nonlinear
system (1) is obtained as (3).

ẋ (t) = A (x) x (t)+B (x)u (t)+F (x.t) t > 0; x (0) = x0
(3)

where, A (x) and B(x) are SDCmatrices that at any time of tc,
the system dynamics can be considered in a linear-like form
with fixed matrices A (x(tc)) and B(x(tc)), thus suitable linear
control theories can be applied.

B. CONTROL PROBLEM FORMULATION
For the optimal control problem of the nonlinear sys-
tem (3), the control input is designed to minimize the cost
function (4):

J (x0,u)

=
1
2

∫ ∞

0

{
xT (t)Qx (x) x (t)+ u

T (t)Rx (x)u (t)
}
dt (4)

where, the matrices Qx (x) : Rn → Rn×n and Rx (x) :
Rn → Rn×m are symmetric positive semi-definite and pos-
itive definite matrices, respectively. Weight state-dependent
matrices Qx (x) and Rx(x) are design parameters for the
estimation of state variables and control signals. In fact, the
choice of weight matrices has become an effective factor
on the quality of the system response. Physically, larger
Rx (x) matrix affects the stability of the system associated
with reduced response speed and increased tracking error.
Selecting large values for this matrix will be accompanied
by operator saturation. On the other hand, the large values
of the matrix Qx (x) are stabilize the system at the minimum
cost of the state variables or in other words, a reduction in the
convergence time and error rate. However, the large values of
this matrix increase control effort.

For the nonlinear system described in (3), the control rule
for the infinite problem will exist in form (5) [7].

u (x) = −Kx (x) x(t) (5)

where, Kx (x) = R−1x (x)BT (x)Px (x) and ∀x ∈ Rn,
the matrix Px(x) is the positive definite unique solution for
the Riccati equation (6).

Px (x)A (x)+ AT (x)Px (x)− Px (x)B (x)R−1x (x)BT (x)

× Px (x)+ Qx (x) = 0 (6)
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FIGURE 1. System coordinate and dynamic variable definition.

III. DYNAMIC SYSTEM MODELING
The promising controller design relies on exploiting an
appropriate dynamic model for problem formulation. These
dynamics can be attributed to the system’s real behavior
and could simulate simplicity. Utilizing Newton’s second
law can lead to a simpler closed form than other dynamic
modeling approaches. Considering Newton’s second law, the
employment of linear and angular momentum easily shows
that GGV’s 6 DOF nonlinear dynamic equations of motion
at the release point coordination (Fig. 1) can be expressed
as (7) [4].

U̇ = −QW + VR− gsin (θ)+
FAx
m

V̇ = −RU + PW + gcos (θ) sin (φ)+
FAy
m

Ẇ = −PV + QU + gcos (θ) cos (φ)+
FAz
m

Q̇ =
1
Iyy

[
(Izz − Ixx)PR+ Ixz

(
R2
− P2

)
+MA

]
{
Ṗ
Ṙ

}
=

1

IxxIzz − I2xz

[
Izz Ixz
Ixz Ixx

]
×

{
IxzPQ+

(
Iyy − Izz

)
RQ+ LA

−IxzQR+
(
Ixx − Iyy

)
PQ+ NA

}
(7)

where, {U,V ,W } are linear velocities and {P,Q,R} are
angular velocities in line with axes x, y and z. M and g are the
UAV’s mass and gravity acceleration and θ , φ, and ψ are the
Euler angles. SubscriptA and subscript i refer to aerodynamic
and the direction of motion. F represents forces while L,M ,
andN denote the torques applied to aircraft, too. Substituting
forces and torques in relation to y(7) and some simplification,
6DOF dynamic equations of GGV are obtained [41].

The dynamics governing the angles and positions of the
GGV considering its dynamics are expressed in the form of

equations (8) and (9). θ̇φ̇
ψ̇

 =
 0 cosφ −sinφ
1 cosφtanθ sinφtanθ
0 cosφsecθ sinφsecθ

 P
Q
R

 (8)

 ẋẏ
ż

 =
 cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 cosθ 0 sinθ
0 1 0
−sinθ 0 cosθ


×

 1 0 0
0 cosφ −sinφ
0 sinφ cosφ

 U
V
W

 (9)

Given the forces and aerodynamic moments, Equations (7)
can be represented in the general form (10).

ẋin = f (xin)+ B(xin)uin(t) (10)

where, xin =
[
U V W P Q R

]T
∈ Rnin are the system

states, uin =
[
δa δe δr δT

]T
∈ Rmin are vehicle control

surfaces, f (xin) : Rnin → Rnin and B (xin) : Rnin → Rnin×min .

IV. METHODOLOGY
The SDREDouble-Loop Control Framework, with the online
SDC calculation at any given moment resulted in optimal
control and closed loop system resistance. Consequently,
GGV is positioned more precisely in spite of adverse weather
conditions, and target tracking is done with less error.
Figure 2 shows the general view of this structure.

FIGURE 2. Robust optimal control framework.

According to this figure, the proposed framework can be
upgraded to control performances in two stages. In the first
stage, the GGV dynamic would be initialized and identified
by an offline ANFIS network based on an acquired database
tuned by the PSO algorithm. The second stage of the GGV
control concentrates on target tracking. In this stage, while
the state matrices of the SDC form are determined, based on
the initial identified model, the SDRE controller reshapes the
robust optimal control input to hold the GGV in the desired
path. In fact, the optimal control phase is a nested architecture
that ensures guidance of the GGV toward the target and, fur-
thermore, optimizes control efforts and state regulation. If the
allowable identification tolerance is not satisfied, the ANFIS
identifier parameters have to be adopted online. The details
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of the suggested control framework and its advantages are
described in the next section.

V. DYNAMIC REDEFINITION, SDC FORMULATION
The use of a nonlinear regulator (5) depends on the repre-
sentation of the dynamic equations of nonlinear systems in a
form similar to (3).

FIGURE 3. Structure of unknown dynamic online identification.

The determination of the appropriate form of SDC for
dynamic (10) demands complete identification of the system,
adequate knowledge of the dynamic parameters, and, maybe,
the modeling of existing uncertainties not conceivable in real-
ity. Hence, online identification, which finds an approximated
model of time-variant nonlinear dynamic, is a promising
solution. It means that the GGV dynamic is identified to
improve the performance and robustness of the controller
at each moment (Fig. 3). The main circumscription of the
identification methods in this issue is the extraction of a high-
precision linear corresponding model (3) for replacement
with the complex nonlinear dynamic of GGV. This factor
severely limits selection identification techniques. However,
the concurrent use of neural and fuzzy network capabilities
in the ANFIS network amplifies the identification power of
this structure. On the other hand, the matrices of A and B can
be determined according to GGV’s condition at any moment.
As a result of the linear outer layer of this model. It should
be noted that A and B are not exactly equal to the matrices
in the main dynamic but will be selected so that the identifier
output is coincidental with the output of the real dynamic.

A set of input and output data is necessary for training
the ANFIS network. According to (10), network inputs are
state and control inputs of real dynamic (X = [xin.uin])
and its outputs are the derivative of state variables ẋ. The
current issue’s outputs are linear and angular accelerations.
Use of the observer in the absence of an accelerometer and/or
filtering method is essential. Filtering is a prevalent method,
when static neural networks are approximated dynamic func-
tions. In these methods, the static and dynamic parts are
separated from each other and the integration of their out-
put can present a dynamic relation. In such a structure, the
network merely identifies the static part. Thus, the needs
for the derivatives of output variables or design observation
are obviated. The fuzzy-neural nature of ANFIS networks,
inspiration from dynamic filtering, and online continuous
training of the ANFIS network as the identifier are presented
for the first time in this paper.

A. FILTERING DYNAMIC
A nonlinear system (10) can be considered as the following:

ẋ = g(x.u) (11)

where u is inputs vector and x is state vector of the system and
g is also an unknown function that must be identified. Adding
±Hx to and subtracting from (11) where H is an arbitrary
Hurwitz matrix:

ẋ = Hx + h(x.u) (12)

that

h (x.u) = g (x.u)− Hx (13)

FIGURE 4. Using filtering in ANFIS identifier.

Figure 4 shows the method of identification and the use of the
dynamic term for static identification. Stable transfer function
M (s) = (sI − H)−1 is equivalent to the dynamic part and
integral operator. For detailed information about filtering,
please refer to Talebi et al. [42] (2009).

Finally, the identified equation of the system
dynamic (10) is:

˙̂x = ĥ
(
x̂.u
)
+ H x̂ (14)

This method rectifies the need for recursive network and stor-
age of delayed data, so the identified dynamic is continuous.

FIGURE 5. ANFIS multi-layer block diagram.

B. ONLINE ADAPTATION OF STATIC ANFIS
The ANFIS model partitions the input space into small
local regions for approximation of complex nonlinear sys-
tems, yielding simpler approximated models for each region.
The ANFIS structure is shown in Fig. 5 for function
approximation with two inputs and the assumption of two
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fuzzy rules. For example, the output for the two inputs
X1 and X2 is:

Rule1 : if X1 is A11 and X
2A21. then f1 = p11X

1
+ p21X

2
+ p31

Rule2 : if X1 is A12 and X
2A22. then f2 = p12X

1
+ p22X

2
+ p32
(15)

As seen in Fig. 5, the structure has two separate parts: first,
the antecedent part and then the inference part. These two
parts are related by fuzzy rules in the network bed. The final
network has adaptive topology equivalent to Sugeno Fuzzy
Inference System. In this five-layer network, only the first
and fourth layers are trained. The only limitation to using this
structure is its one-dimensional output. So, for any state an
individual ANFIS network has to be designed.

The parameters of the first fuzzy layer are called premise
parameters. In any appropriate fuzzy membership function
including Gaussian membership function, cji and σ

j
i are the

values of center and standard deviations for each input X j

from the i-th Gaussian membership function. The output of
the i-th node in this layer is in the following form:

Oj1i = µD
j
i(X )

µDji (X) = exp

−1
2

(
X j − cji
σ
j
i

)−2 (16)

The output of second layer that is called the firing strength is
the multiplication of the previous layer output.

O2i = wi =
∏
j

µDji(X ) (17)

Normalized firing strength is the output of next layer that
normalizes the previous layer output.

O3i = w̄i =
wi∑r
i wi

(18)

where r is the number of fuzzy rules equivalent to the number
of membership functions. The output of the fourth adaptive
layer, the defuzzy layer, is described in the following relation:

O4i = w̄ifi = w̄i
∑
j

pjiχ
j (19)

where χ = [X1] unit value is added as a bias effect. In these
linear nodes, pji coefficients, known as consequent parame-
ters, should also be adapted. The overall output in the fifth
layer is a summation of all incoming signals from the previous
layer.

O5i =
∑
i

w̄ifi (20)

The identification with this structure, the identified matrices
Â and B̂, and the vector F̂ are equal to:

Â = w̄T pj=1.n + H

B̂ = w̄T pj=n+1.n+m

F̂ = w̄T pn+m+1 (21)

Adapting ANFIS network parameters is an optimization
problem. Hence, both the groups of optimization methods
such as gradient base and population base and/or their com-
bined methods are used for this purpose. While, a high
response speed and online training is required for this prob-
lem, using heuristic methods and complex hybrid methods of
gradient base is not intelligent decision. The gradient decent
method has lower complexity and computational cost than
other training ANFIS structure algorithm [43].

For consequent parameters in the i-th node, the updated
formula based on modified back-propagation algorithm is
defined as

˙̂pi = −ηi
∂J
∂ p̂i
− ρi ‖ỹ‖ p̂i (22)

where ỹ, J, and ηi are identification error, error function
and positive learning constant, respectively. The second term,
called the momentum term, is improved for design robust-
ness. This term increases error convergence acceleration in a
back-propagation strategy without changing constant learn-
ing. In general, if learning data do not have sufficient preci-
sion for some reason, the weights of network oscillate and
do not converge on its optimal and appropriate value. This
method highly obviates this defect by adjusting parameters
based on parameter values in the previous iteration and error
value. However, ρ is a small and positive constant. In this
regard, the modified back-propagation algorithm has better
proficiency in identifying complex nonlinear functions [44].

The error function can be expressed as:

J =
1
2
ỹT ỹ (23)

The employment of the chain rule, considering the ANFIS
structure and some simplification computations (24), can be
derived as

∂J
∂ p̂i
= −ỹT

∂ ŷ
∂Y

∂Y
∂ p̂i

(24)

(∂y∧)/∂Y is calculated on the assumption that identification
is based on identified output (Fig. 4), which is called static
back propagation, and so it is assumed that ˙̂y = 0. Therefore:

∂ ŷ
∂Y
= −H−1 (25)

The relationship (24) can be replaced with a simplified
form (26) by the characteristics of the structure of multi-layer
network ANFIS

∂J
∂ p̂i
= ỹTH−1W̄i[X1] (26)

Bias terms would be concluded by adding a unit vector.
Consequently, the adaptation law for consequent parameters
is equivalent to:

˙̂pi = −ηiỹ
TH−1W̄i[X1]− ρi ‖ỹ‖ p̂i (27)

The selection of the appropriate value of learning rate is of
high importance because of its direct influence on conver-
gence and stability. High learning rate will reduce the stability
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of the system by improving convergence. On the other hand,
smaller values for the learning rate disturbed convergence
against improved stability assurance [45] This methodology
can be also used for updating premise parameters matrices c
and σ , thus:

˙̂c = ηcỹT
∂ ŷ
∂Y

∂Y
∂w̄

∂w̄
∂w

∂w
∂ ĉ
− ρc ‖ỹ‖ ĉ

˙̂σ85 = ησ ỹT
∂ ŷ
∂Y

∂Y
∂w̄

∂w̄
∂w

∂w
∂σ̂
− ρσ ‖ỹ‖ σ̂ (28)

Considering (18) and (19), it can be easily shown that:

∂Y
∂w̄
= 3

(
[f1. . . . .fi. . . . .fm]T

)

∂w̄j
∂wk
=

∑r
l=1 wl − wi(∑r
l=1 wl

)2 j = k

∂w̄j
∂wk
=

−wj(∑r
l=1 wl

)2 j 6= k
(29)

where the subscript ‘‘m’’ represents the number of fuzzy
rules and 3(·) is the diagonalization operator of the vector
[f1. . . . .fi. . . . .fm]T . With layer definition (16) and (17) and
after simplification, adaptation laws take the form

∂w
∂ ĉij
=

xj − ĉij(
σij
)2 wi

∂w
∂aij
=

(
xj − ĉij

)2
σ 3
ij

wi (30)

Substituting (29) and (30) to (28) results in a simplified form.
Although the back-propagation method has high power,

this performance is dependent on the initial values and there
is the possibility of trapping into local minimums. Unfortu-
nately, online updating is associated with high computational
costs and can cause high errors and oscillations in the primary
moments. In presence of the fuzzy inference system, it can
be expected that the necessity of updating network during
control process is considerably reduced with appropriate
initial training of the ANFIS network. In this case, all the
mentioned defects including the probability of trapping in
local minimums and high computational costs are resolved
in the primary moments.

Hence, a set of stored input and output data in vari-
ous conditions can be initially trained for the ANFIS net-
work. The training set should contain rich data that describe
the full behavior of the system and decrease identification
error. In this stage, evolutionary algorithms can be used to
achieve a high degree of precision and avoid local minimums
since there is no time limit. The particle swarm optimiza-
tion (PSO) is one of the optimization algorithms whose indi-
vidual characteristics have attracted much attention in recent
years [30], [46], [47]. Finding high quality solutions within
short computational time compared to other optimization
heuristic algorithms [48] ensuring stable convergence, and
approximating more appropriate input-output relation in
highly complex problems [33], [49] are some of reasons for
developing this method.

C. PSO TUNED INITIAL ANFIS
The PSO method is a parallel evolutionary computational
algorithm that was developed by Kennedy and Eberhart [50]
in 1995, based on choreography of birds and fishes in finding
food sources. Initially, populations are initialized based on
randomized selection. Each particle of population is allocated
a position and velocity that make its movement possible
toward an optimal solution. The position of each particle in
the design space is referred to the bounds of design variables.
In each iteration, particle velocity and position is updated
considering the personal best Pbest , global best gbest and the
velocity in the previous iteration. Mathematically, velocity,
v and position, x in k + 1th iteration are:

vk+1 = wvk + c1r1 (Pbest − xk)+ c2r2 (gbest − xk)

xk+1 = xk + vk+1 (31)

where w is inertia weight, c1 and c2 are positive acceleration
constants, and the parameters r1 and r2 are random values
between 0 and 1. The global best has the optimum value
of cost function compared to other positions. The searching
iteration is repeated until any termination conditions are met
and convergence is obtained.

The mutation operator is employed like a genetic algo-
rithm, decreasing the probability of trapping in local
minimums. This operator deduces its range of action over
time. In addition, particle velocity is restricted to search space
boundaries. In case any particle passes through the design
space, the related position element is modified to maintain
position inside the design space.

The set of premise and consequent parameters [cσp] are
design variables in training the ANFIS structure.

For the reasons mentioned earlier, dynamic filtering is also
necessary here. In this offline training, the error function is
considered as the mean square error (MSE). The optimiza-
tion process is terminated when the value of error function
achieves an acceptable level.

The stability of the PSOmethod as the optimizer in training
ANFIS identifier is assured with some constraints on the
inertia coefficient, acceleration constants, and learning con-
stant [51]. Such conditions are considered in addressing this
problem.

VI. ROBUST OPTIMAL CONTROL FRAMEWORK
The primary purposes of the controller design for UAVs are
the reduction of target tracking error and time consumption
along with the ensuring of stability and robustness. This
problem is faced with additional challenges in the case of
GGVs because of omitting propulsion systems. The small
dimensions of this category make stability a problem partic-
ularly in the presence of disturbances and magnify tracking
error. The other point is the quiddity of the under-actuated
and non-minimum phases of these systems that limit the use
of control methods.

The control objectives can be met with the State-
Dependent Riccati Equation (SDRE) method. This method
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has interested engineers more than other optimal control
techniques since the propounding of an effective algorithm
for nonlinear feedback control and high design flexibility
by selecting weighted matrices. It can be argued that the
foremost advantage of this controller is the possibility of com-
promising between control effort, admissible state errors, and
fast error convergence owing to the adjustment of weighting
matrices [10].

In this section, the control framework is designed and its
performance is perused in terms of stability and the level
of tracking error. The SDRE controller is designed in two
inner and outer loops by guidance with the LOS method for
convergence of the target tracking error to the lowest level
in an acceptable distance. The inner loop regulates the states
in the zero criterion, and the outer loop reclaims the optimal
path to explore the target LOS. The results of both loops are
to preserve the system in the optimal path and confront with
each kind of diversion from the optimum condition.

FIGURE 6. The overall block diagram of the proposed approach.

Figure 6 shows a general diagram of the proposed control
method. In this diagram, the ANFIS network, in accordance
with the previous section, calculates the SDC matrices for
dynamics (10) at any point by receiving linear and angular
velocity values from the sensor, and provides the controller
for the inner loop. The inner loop has a regulating function,
which ensures the stability of motion and rotation equations
and reduces the effect of external disturbances. In this loop,
the linear and angular velocity information of the system are
measured and the internal loop gain are calculated. At the
same time, the outer loop generates the desired angular veloc-
ity as a guidance signal by receiving tracking error informa-
tion, which is applied as a mandatory input to the inner loop
controller. Then, in the inner loop, the final control signal is
determined according to the mandatory input and the gain of
the inner loop controller. Eventually, after the GVV is placed
on the target’s path, the output of the outer loop controller
will be zero and the inner loop controller continues its path
by stabilizing the angular velocities. As long as the tracking
error is zero, no change in the angular velocity is generated
and the GVV continues to move at the desired angle to reach
the target.

The design of the inner loop controller and the optimal
guidance in the outer loop according to this structure are
described in details therein.

A. SDRE INNER LOOP
The main purpose of the controller design for GGVs is min-
imizing control effort in spite of sustaining target tracking
error at an acceptable level. This purpose is the genuine aim
of optimal control (5). Nonlinear regulator (5) ascertains this
bymaintaining state constantly at anymoment. The controller
absolutely rejects any turbulence in angular velocities. There-
fore, GGV could keep its orientation in the desired path after
transition time for any initial condition.

Therefore, in accordance with Fig. 6 after online compu-
tation of the SDC matrices, the inner loop control rule is
presented as (32).

u (x) = −Kin (xin) x(t) (32)

where, Kin (xin) = R−1in (xin)B
T
in (xin)Pin (xin) is the gain of

the controller of the inner loop; x ∈ Rnin is the sum signal
of the values of linear and angular velocities by sensors;
deviations are (x = xin + dx). The deviations dx include all
mandatory external disturbances which are imposed by the
outer loop guidance rule for guiding GGV.

Here,Pin (xin) is a positive definitive and symmetric matrix
obtained from solving the Riccati equation (33) where the
matrices Ain (xin) and Bin (xin) are the same SDC matrices
obtained at any time from the ANFIS network.

Pin (xin)Ain (xin)+ ATin (xin)Pin (xin)− Pin (xin)Bin (xin)

×R−1in (xin)B
T
in (xin)Pin (xin)+ Qin (xin) = 0 (33)

Qin (xin) : Rnin → Rnin×nin and Rin (xin) : Rnin → Rnin×min are
weight matrices related to the objective function of the inner
loop.

B. OPTIMAL GUIDANCE LAW
LOS guidance is one of the applicable methods that satisfy
design criteria including production cost, implementation
capability, efficiency, and tolerablemaneuverability for GGV.
This method maintains the relative velocity vector of GGV in
each moment tangent to the line passing the target. In other
words, target LOS is the optimum flight trajectory of GGV.
This issue necessitates that the rate of LOS rotation tends to
zero using the aileron and rudder commands.

The guidance law in this approach is designed online,
based on the error of the vehicle’s angular position with LOS
(Fig. 7). Accordingly, the optimum orientation signals values
in time t are mathematically equal to:

θd (t) = −tan−1
(

Za (t)
Xt (t)− Xa (t)

)
+ α(t) (34)

where θd is the desired pitch angle, Za is the altitude, Xt
and Xa are the positions of the target and GGV in the X
direction, respectively. α is the angle of attack related to LOS.
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FIGURE 7. Guidance strategy for tracking target.

So, the desired Yaw angle ψd is defined as:

ψd (t) = tan−1
(
Yt (t)− Ya (t)
Xt (t)− Xa (t)

)
+ β(t) (35)

where Yt and Ya are target and GGV positions in the direction
of Y and β is the side slip.
For the GGV to continue to move in a desirable direction

it is necessary for the GGV angles to reach the desired angles
in the line of sight. In this case, the GGV continues its path
until it hits the target by maintaining angular velocities of the
inner loop controller. The tracking problem in the outer loop
can be considered as tracking error stabilization problem. The
model of the tracking error is shown in (36).

ẋout (t) =

 0 coseϕ −sineϕ
1 coseϕ taneθ sineϕ taneθ
0 coseϕseceθ sineϕseceθ

 uout (t) (36)

In this relationship, xout ∈ Rnout is the tracking error vector
and uout ∈ Rmout is the control signal of the outer loop, defined
as (37) and (38).

xout =

 eθ
eϕ
eψ

 =
 θd − θ

ϕd − ϕ

ψd − ψ

 (37)

uout = dx =

 pdqd
rd

 (38)

The dynamic tracking error is in the SDC form, thus the outer
loop control rule is obtained as (39).

uout (t) = −Kout (xout )xout (t) (39)

where

Kout (xout) = R−1out (xout )B
T
out (xout )Pout (xout )

Given the SDC form, the outer loop of the linear-like matrix
is Aout = 0. Therefore, the system’s controllability is easily
verifiable, and the Riccati equation for this section is simpli-
fied as (40).

−Pout (xout)Bout (xout)R−1out (xout)B
T
out (xout)Pout (xout)

+Qout (xout) = 0 (40)

where;

Bout =

 0 cos(eφ) −sin(eφ)
1 sin(eφ)tan(eθ ) cos(eφ)tan(eθ )
0 sin(eφ)sec(eθ ) cos(eφ)sec(eθ )



and Qout (xout) : Rnout → Rnout×nout and Rout (xout) : Rnout →
Rnout×mout are the weight matrices related to the objective
function of the outer loop.

In accordance with Fig. 6, angular velocities must be
determined in such a way that the difference between the
angular position of the GGV and the reference path is zero.
This goal is consistent with the overall performance of the
SDRE regulator. In this case, by adding the angular velocity
determined in this loop as an external disturbance of the outer
loop, the inner loop regulator moves the control variables
(displacement of control surfaces) in a direction so that the
GGV maintains its direction in the reference path.

VII. CONTROLLABILITY AND DYNAMIC
STABILITY ANALYSIS
A. CONTROLLABILITY ANALYSIS
For infinite-horizon optimal control problems, the linear sys-
tem must be completely controllable. Controllability ensures
the settlement of the optimal cost. Otherwise, the cost func-
tion value diverges (infinite) and it is meaningless to consider
optimal performance for controller. The linear system is con-
trollable, if all the columns of the controllability matrix are
linearly independent (41).[

B AB . . . An−1 B
]

(41)

This is equivalent to being Hurwitz for a closed-loop matrix
Acl = A − BK. With regard to the used approach and
the assumption of system linearity in each moment, which
means changing the value of A(x) and B(x), controllability
must be guaranteed for ∀x in the design space. Assuming the
controllability of the pair of matrices A (x (tc)) and B (x (tc))
in each moment tc, the control law (5) exists [52].
Cloutier et al. [53] proved that if ∀x is a symmetric Acl (x)

matrix, the global stability of this method is assured. There
are some heavy constraints for SDRE control stability that
being locally Lipchitz for the A, B and C matrices is one
of controllability condition. This means roundedness of these
matrix functions poses some challenges in finding the appro-
priate SDC form [54]. Beside high efficiency of the SDRE
method in practical applications, its stability investigation
encounters difficulties in the absence of proper theories in this
field. The asymptotic stability constraints occasionally cause
difficulties in distinguishing the SDC form [55]. However,
if the system has unstable and uncontrollable modes, it can
be totally stabilized by adding a stabilizer term to unstable
subsystems [56] or ignoring uncontrollable modes in stable
systems [57].
Stability or simplified stability of GGV dynamics can

be examined with a small deviation from the equilibrium
configuration. It is clear that the effects of the forces on
control surfaces are negligible compared to torques. This
simplified assumption is prevalent in the designing of aerial
vehicle control and does not affect controllability [58]. On the
other hand, aileron and rudder commands have the uppermost
impression in roll and yaw moments respectively; but their
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little influence on pitch is deniable. Hence, the elevator is
the main factor in pitch moment changes. With this analysis,
the relative independence of control commands from to each
other and, consequently, from the implicit controllability of
the matrix pair (A (x) .B (x)) can be concluded. According
the principles of system identification, if the dynamic that
should be identified is stable and identification error remains
bounded, the identified system will be stable. Earlier, some
points were presented about stability of online ANFIS identi-
fier. On the other hand, for a wide range of data, convergence
identified output to real output can be interpreted that identi-
fied relations for the A and B matrices and the F vector have
minimum admissible error. Therefore, the controllability of
the real dynamic is equivalent to the identified dynamic’s
controllability.

Despite all the mentioned difficulties, the SDRE con-
trol method has fascinated researchers and engineers com-
pared to other nonlinear control approaches like feedback
linearization [59].

B. CLOSED-LOOP STABILITY ANALYSIS
As mentioned above, stability assurance to convince all con-
trol subjects is the most important challenge. The stability of
the outer loop is investigated in Theorem 1 before studying
hybrid framework stability in the Theorem 2.
Theorem 1: Dynamic system (36) controlled by (39) satis-

fies all control objectives, and the error of angular positions
tend global asymptotically to zero.

Proof: Stability of the outer loop can be easily estab-
lished using mechanical energy as the Lyapunov function
candidate. The positive definite function is supposed in the
following form:

V (xout) =
1
2
xToutPoutxout (42)

Differentiating the storage function (42)

V̇ (xout) =
1
2
ẋToutPoutxout +

1
2
xToutPout ẋout (43)

Replacing the control law (39) in (36) and substituting (36)
in (43) is concluded as

V̇ (xout) = −xToutPoutBout (xout)R
−1
out (xout)B

T
out (xout)

×Poutxout (44)

Given the property of positive definite functions, H (xout) =
PoutBout (xout)R

−1
out (xout)B

T
out (xout)Pout is a positive defi-

nite term. Thus:

V̇ (Xout) = −XToutH (Xout)Xout < 0 (45)

In the case of a negative definition of the Lyapunov function
candidate differentiation, boundedness of energy function
and asymptotic stability of system are presumable. Addition-
ally, it can be deduced that the Lyapunov function (42) is
radially unbounded and globally stable.

Definition: A dynamic system is considered as the follow-
ing model:

ẋ = f (x.u)

y = h(x.u) (46)

where f : Rn × Rm → Rn is locally Lipchitz, h : Rn ×
Rp → Rp is continuous and h (0.0) = 0, f (0.0) = 0.
System (46) is strictly passive if there is a positive semi-
definite differentiable continuous function V(x) such that for
the positive definite function ψ(x), the next relationship is
satisfied:

uT y ≥ V̇ + ψ(x) (47)

FIGURE 8. Feedback connection.

Lemma 1: For the closed-loop system similar to the one
in Fig. 8, dynamic systems H1 and H2 have the conditions of
definition (46), If H1 and H2 are passive (strictly passive),
their feedback connection is also passive (strictly passive).
Detailed proof of this lemma is given by Khalil [60].
Theorem 2: Dynamic system (36) controlled by (39) is

strictly passive.
Proof: Dynamic (39) can be rewritten to the form (48)

ẋout (t) = Bout (xout) uout (t)

= −Bout (xout)R−1out (xout)B
T
out (xout)Poutxout (t)

Y = U = −R−1out (xout)B
T
out (xout)Poutxout (t) (48)

The establishment of all the above defined conditions for
this dynamic system depends on finding the storage func-
tion, V (x). The boundedness of matrix Bout can be simply
proved since system function (f ) is Lipchitz. Simplifying the
left side of inequality (47)

UTY = UTU = XToutH (Xout)H
T (Xout)Xout ≥ 0 (49)

Defining ψ (x) = XTout�Xout such that positive definite
matrix� satisfies the condition (50), Lyapunov function (42)
is the storage function corresponding to the definition. Con-
sequently, the outer closed-loop system is strictly passive.

H (Xout)−� ≥ 0 (50)

Theorem 3: On the assumption of inner-loop passivity,
closed-loop system (10) controlled by (32) (Fig. 6) is stable.

Proof of Theorem 3: It is clear that the system control
block diagram (Fig. 6) is similar to the feedback connection
described in Fig. 8 by considering H1 as the outer loop
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dynamic and H2 as inner-loop dynamic. In this case, the con-
ditions of Theorem 1 can be held under the passivity of both
subsystems, while the overall system is stable.

VIII. NUMERICAL SIMULATIONS
The suggested hybrid framework was simulated to evaluate
controller performance for a GGV. The main objective of
the simulation is to describe the speed of the identifier in
determination of the SDC form and its effect on controlling
resistance performance in the presence of disturbances and
noise measurement on target tracking.

Required to use the proposed control method, the availabil-
ity of all system states is required. Extremely IMU accurate
and fast sensors are used to measure angle and angular veloc-
ity and, GPS is used to measure linear position and velocity.
Typically, IMU sensors have a precision of 0.01-0.1◦, where
sampling frequency provide data until 400 Hz through an
RS422 serial interface [61]. However the work frequencies
in GPSs are usually less than 10 Hz, and their measurement
accuracy varies with product quality.

In this paper, sensors measurement error is considered as
noise in simulations, so that the performance of the simulated
systemwill be closer to reality. Themeasurement error for the
IMU sensor is 0.1◦ and for the GPS is 1 m, which has been
modeled as white noise with zero mean. The sampling time
for the IMU sensor is 0.005 s and for GPS 0.2 s which is
equivalent to 200 and 5 Hz, respectively.

FIGURE 9. Input for validation online-ANFIS identifier performance.

The simulated GGV has a weight of m = 90Kg, wing
span of b = 1.45m, and average cord length of c̄ = 0.17m.
At first, the PSO algorithm tunes offline ANFIS network
based on a set of stored data from control inputs and states.
Training data are collected from the optimal solution in
tracking a stationary target in the absence of any turbulence.
In fact, efforts were made to as much rich data as possible
that includes all UAV behavior during tracking. As seen in
Fig. 9, the step input was applied to the system that ver-
ifies identifier reaction in online adjustment and evaluates
initial training. Definition step input not only demonstrates
identification accuracy but also responds to speed in the case

FIGURE 10. The states’ identification percent error.

of sudden turbulence and commands. Relative identification
percentage error (Fig. 10) proves the claim of online ANFIS
identification ability.

Since the identifier goal in this problem is appropriate
determination of the matrices A and B, controller perfor-
mance in GGV trajectory tracking is representative of this
ability. After training, the initial network is put inside the
control loop.

To set weighting matrices and online learning constants,
the control framework efficiency was evaluated in two dif-
ferent cases. It should be noted that all tests were done
in the presence of atmospheric turbulence. In the first case
study, the position of the target was assumed to be constant.
In the second scenario, the GGV had to track a moving target
like a landing platform on a ship deck or a mobile vehicle.
These simulations indicated the general performance of the
recommended scheme in terms of stability, robustness, and
error boundedness.

In order to illustrate the importance and impact of SDC
matrices on controller performance and closed loop sys-
tem behavior, the proposed SDC matrix online identification
method is compared with the model presented in [62].

The important point in determining the initial conditions
is the initial GGV velocity that is equivalent to reference
vehicle velocity at the moment of release. This velocity
must be more than the GGV’s stall speed and proper release
speed, depending on the maneuver speed of the target and
GGV ability.

A. ATMOSPHERIC TURBULENCE
Atmospheric turbulence, consisting of air mass movements,
affects the efficiency and easy handling of aerial vehicles.
Two main models are generally used to simulate gusts: 1-cos
model and sharp-edge gust. The occurrence of both models
is probable; however, harmonic gusts have priority compared
to real industrial methods in implementation [63]. Owing
to the specific gust speed profile in ideal sharp edge, this
kind of wind rarely happens in nature [64]. The simulations
are exerted in the presence of harmonic gusts that show the
effectiveness of the hybrid control framework.

Evaluation of the robustness of the suggested control
scheme in facing turbulence is required for modeling the real
behavior of atmospheric conditions. In practical terms, with
regard to the absence of the possibility of deterministic pre-
diction of air molecule behavior, statistical descriptions are
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used to categorize the intensity and spectral characteristics of
turbulence. From Von Karman and Dryden wind turbulence
models, the Dryden spectrum has priority because of simpler
simulation possibilities [65].

According to Dryden’s studies [66], and considering lim-
ited white noise, angular and linear velocities of stochas-
tic model of wind is determined proportional to the flight
altitude, velocity profile, and the GGV orientation added to
simulations.

Turbulence air not only includes waves with a frequency
but a full spectrum of frequencies. According to the men-
tioned standard, spectral function in longitudinal direction is

φug (ω) =
2σ 2

u Lu
πV

1

1+
(
Luω
V

)2
φpg (ω) =

σ 2
w

VLw

0.8
(
πLw
4b

)1/3
1+

(
4bω
πV

)2 (51)

where b is the wing span of vehicle, V and L are the vehicle’s
velocity and the length of turbulence scale and the standard
deviation σ is a function of altitude and turbulence intensity.
The subscripts ‘‘u,’’ ‘‘v’’ and ‘‘w’’ are referred to as the lon-
gitudinal, lateral, and vertical directions of the aerial vehicle.
The spectral density of longitudinal turbulence angular rates
is a partial differential of velocities in other directions.

pg =
∂wg
∂y

(52)

Transfer functions of velocities are also defined as bounded
subtraction functions. Other spectral functions are also stated
in [66].

B. CASE 1: ROBUST TRACKING TARGET WITH
MINIMUM POSITIONING ERROR
First, the simulation concentrates on evaluating the robust-
ness of the suggested framework in the presence of
turbulence. In this simulation, the initial velocity of GGV
is 160m/s and height 2200m at the release point, and the
stationary ground target is placed at 3700m. For this purpose,
the weight coefficients for achieving the best performance
and the lowest tracking error relative to the fixed target was
defined.

Then it is assumed that the gust 1 − cos has been applied
at 10 to 15 s interval to the GGV from the front. The effect
of this gust on Euler’s angles and the target orientation error
is shown in Fig. 11 and Fig.12 Due to the fact that the gust
is only applied to the GGV from the front, its effect is only
evident at an angle θ . After the release, the GGV is quickly
seen on the line of sight and continues its path without any
error before the gust. However, at the 10 to 15 s interval,
the GGV nosepiece swings high and low due to the presence
of a sinusoid gust. The result of the changes in this direction
causes harmonic angular velocity around the y axis to result
in linear velocity changes along x and z (Fig. 13).

FIGURE 11. GGV’s euler angles in the presence of gust.

FIGURE 12. Tracking position errors in the presence of gust.

Control commands have been shown in Fig. 14. At the
moment of release, control commands experience sud-
den changes, due to the controller’s effort to correct the
orientation toward the target and; after placing on the tar-
get path, the average value of control commands reaches
zero. However, in the 10 to 15 s interval, changes are
observed in the elevator control command, due to the impact
of the gust on the GGV nose. In justifying this behavior,
it is necessary to examine the 10 to 15 s interval in three
periods.

As shown in Fig. 11, the gust at 10 s causes a sudden drop in
the angle θ . This action makes the elevator control command
in the face of this sudden change behave in such a way that the
GGV nose goes upwards and the tracking error is corrected.

In the 10 to 15 s interval, due to harmonic changes at
angle θ , the elevator control command also changed with
the same frequency. But at 15 s, the elevator control com-
mand prevented the nose from rising suddenly by applying a

25808 VOLUME 6, 2018



M. Sayadi et al.: Robust Optimal Control for Precision Improvement of GGV Positioning

FIGURE 13. GGV’s velocities in tracking fixed target in the presence
of gust.

FIGURE 14. Control surface commands in tracking fixed target.

negative angle to the GGV. This change is due to the fact
that the force applied to the nose by the gust suddenly
disappeared.

After 15 s, the average value of the elevator control com-
mand reached zero again, and the controller was able to reset
the tracking error to zero (Fig. 12).

FIGURE 15. Tracking CGV positioning despite gust blowing.

Fig. 15 shows how to trace the target line of sight with the
GGV. The trajectory of the path to the target and tracking
with the lowest arrival error (10.2 m) indicate high strength
and speed of the identifier in dynamic approximation in the
presence of disturbances.

In accordance with Fig. 12 to Fig.15, despite the gust at
the 10-15 s time interval during motion, track tracing is quite
evident. The GGV is quickly targeted at the line of sight and
remain in this direction until reaching the target (Fig. 15).
From this perspective, the controller has the ability to track
the entire path (Fig. 12).

Online detection of SDC matrices, in addition to reducing
the disturbance effect on closed loop system states implied
that the controller surfaces (with less changes and less energy
than the method presented in [62] directed the GGV towards
the target. In addition, the elevator control command is
zero after sudden changes at the moment of application and
destruction of the gust; faster than the method presented
in [62] and in 10 to 15 s interval, it also behaves better with
less sudden changes.

After assuring the ability of the controller to eliminate
external disturbances and their effects on the final range,
a turbulent flow is simulated at speed of 30m/s. Due to the
short duration of flying, it is assumed that there is a simulated
wind speed along the path. Fig. 16 and Fig.17 Show the
simulated wind speed and angular momentum in accordance
with the Dryden statistical model along the path.

Despite applying such turbulence, appropriate GGV con-
trol inputs preserve it on the optimal path and help it reach
the target in the distance of 15m (Fig. 18). The rapid elevator
response could be repressed by the effects of turbulences
on the aerial vehicle’s movement and maintained the GGV
direction. Non-smoothing control inputs related to variable
amplitudes and frequencies of modeled disturbances is plot-
ted in Fig. 19 This, in the first place, shows high potency and
velocity of identifier reaction, and controller robustness in the
presence of external turbulences, in the second.
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FIGURE 16. Turbulence velocities.

FIGURE 17. Turbulence angular rates.

FIGURE 18. Tracking GGV positioning despite wind turbulence.

Fig. 20 illustrates the effect of control commands on states
for achieving the smooth path toward target.

The matched identifier output with real output demon-
strates the high speed of the identifier in tracking

FIGURE 19. Control surface commands for atmospheric turbulence
rejection.

FIGURE 20. GG’s states in the presence of atmospheric turbulence.

changes (Fig. 21). Even in the moments that high oscil-
lation of the system, output and, consequently, identifier,
is reported, error amplitude does not violate an acceptable
level. However, the identifier is not trained for such situations
and the initial training data have been without any noise
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FIGURE 21. States’ identification errors.

FIGURE 22. GGV’s euler angles in tracking target.

and turbulence. Therefore, the identifier robustness during
atmospheric turbulence is attributable in addition to control
robustness.

Guidance and orientation error of GGV toward target is
also evident in connection with the claim that the online
ANFIS network identifier and suggested control framework
have strong potentials (Fig. 22 and Fig. 23).

FIGURE 23. Angular tracking errors in turbulence presence.

C. CASE 2: TRACKING MOVING TARGET IN PRESENCE
OF EXTERNAL DISTURBANCES
The second scenario, which is designed for tracking a moving
target, shows how the proposed framework can be success-
fully implemented in real applications. The target is moving
north east at a constants speed 14m/s and 5m/s in the
direction X and Y, respectively. GGV is released at a height
of 3200m and a distance of 8200m from the target with veloc-
ity 165m/s. This expansion case study is also provided with
air disturbances to practically investigate the effectiveness of
the proposed control strategy. The velocities and the rate of
angular changes of the modeled wind during the time are
depicted in Fig. 24. The goal of applying this turbulence is to
show the online structural ability of ANFIS in identification
and controller ability in suppressing turbulence effects with
high changes of amplitude during the application time.

Unlike the previous state, the path that the GGV traversed
to reach the target also had variations along the y axis
(Fig. 25). Fig. 26 justified this behavior. The GGV, after a
short period of release moment will be at the desired angles
and when the tracking error reached zero (Fig. 27). Roll and
Yaw angles adjusted the GGV in y-axis and given that the
target in the y axis has velocity, therefore, roll and yaw angles
also increased in the direction of tracking the target. This
process continues for 35 s, and the GGV continues to move
steadily without any changes in angular velocity (Fig. 28).

But at 35 s, the optimal roll angle is zero and the yaw angle
decreases. This is due to GGV overtaking the moving target
due to high velocity of the GGV. At 35 s interval, GGV could
compensate for the distance in the y and x axes. As a result,
the GGV in the y axis moves forward from the target and the
desired angles change in accordance with the relationships of
the guidance section.

However, at 47 s, the desired angles of roll and yaw
increase such that the target overtakes along the Y axis. This
behavior occurs several times before the moment of collision
which is mainly due to the moving target which causes the
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FIGURE 24. Wind turbulence velocities and angular rates.

FIGURE 25. Positioning GGV in tracking moving target despite wind
turbulence.

GGV’s forward and backward movement toward the target in
the direction of the y axis.

The changes made to the roll and yaw angles cause lin-
ear velocity changes in the y axis and angular velocities
around the x and z axes (Fig. 28). By changing the angular
velocities, the system is removed from the stable state.

FIGURE 26. Angular tracking of moving target despite wind turbulence.

FIGURE 27. Wind turbulence effect on positioning in tracking target.

Therefore, the controller must restore the system to a stable
state, in addition to reducing tracking error. Under these
conditions, the duty to modify these changes is on the aileron
and rudder control commands.

As shown in Fig. 29, aileron and rudder control commands
suddenly changed precisely at the moments when the desired
angles were changed which causes the stability of the angular
velocities and thus provides the optimal tracking.

According to Fig. 25 to Fig. 29, the identifier has been able
to follow the moving object even in the event of disturbances
and arrives at an acceptable accuracy to the designated point.

Owing to low speed response of the system dynamic, high
oscillations and fast control commands could not disturb the
smooth resultant behavior of the system (Fig. 28). GGV
tracks target by trying to get equivalent velocity of target
movement in the Y direction and increasing velocity in the
X direction than in the previous case (stationary target).
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FIGURE 28. Dynamic system response due to wind turbulence.

FIGURE 29. Turbulence effect on flight control commands.

Generally, the performance of the identifier in determining
states is defendable (Fig. 30) and the identification error
is increased only in the case of sudden changes in the
value or direction of variables.With respect to the simulations

FIGURE 30. Identifier percentage errors.

of the previous stage, error amplitude is increased because of
an absence of initial training identifier for such a situation.
In addition, the highest percentage of relative identifier error
is about 4%; while the identification error is less than 1%
unless in short times. This means that the identifier could be
updated to match dynamic behavior under turbulence with
high amplitude and frequency, and tracking a moving target.
This result highlights the practical aspect of this structure.

IX. CONCLUSION
In this paper, a novel hybrid optimal control design for GGVs
is presented under uncertainties and in the presence of envi-
ronmental turbulence. The presented framework includes the
SDRE feedback controller for state regulation in the inner
loop, which is incorporated with the optimal guidance law
outside this loop. On the other hand, utilizing the high poten-
tial of the ANFIS network in identifying nonlinear complex
functions, an innovative method for online continuous iden-
tification of dynamic systems is introduced for the first time.
This strategy establishes an appropriate SDC form for inner
controller loop bymeans of filtering nonlinear dynamic, mod-
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ifying online error in the back propagation training algorithm
and initial offline PSO for learning algorithm. Therefore,
the exact model of system dynamic, uncertainties, and tur-
bulence could be removed. Although GGVs are unpowered
systems, the tracking of the optimal path involves minimizing
the control effort and the positioning error related to the initial
conditions.

Comprehensive stability analysis of the entire closed-loop
system is performed. According to the theoretical investiga-
tion, all system states will remain bounded, if the dynamic
of the system is essentially stable. Furthermore, the tar-
get positioning error converges on the minimum acceptable
level on the passivity assumption of the inner loop. In addi-
tion, the robustness of this approach is guaranteed under
external disturbances included atmospheric turbulence and
uncertainties.

The new control scheme on a GGV is carried out in the
presence of external turbulence. Subsequently, training ini-
tial ANFIS network with PSO algorithm, the identifier is
placed in the inner loop. Implementing assorted atmospheric
turbulence, tracking and guidance toward stationary and low
maneuverable target are investigated. The results successfully
demonstrate the effect of online identification of the SDC
form and nested SDRE control framework in minimizing
control effort, diminishing positioning error, and tracking the
optimal path into target.

The simulation results show the successful effect of online
identification of the SDC form and combined SDC control
in minimizing the controlling effort, reducing target error,
and navigating the optimal path to the target as compared to
previous approaches.

The setting of weighting matrices for achieving the best
performance of the SDRE control is the limitation of this
technique. Hence, recommending a proper model for predict-
ing the optimum values of these parameters would not only
speed up the design process but also enhance the capability
of practical implementation of this method. The feasibility of
this idea should be a concern of future studies.
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