IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received December 30, 2017, accepted February 20, 2018, date of publication March 1, 2018, date of current version April 4, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2810848

D3L-Based Service Runtime Self-Adaptation

Using Replanning

XIANGHUI WANG “12, (Member, IEEE), ZHIYONG FENG', (Member, IEEE),

AND KEMAN HUANG3, (Member, IEEE)

! Department of Computer Science and Technology, Tianjin University, Tianjin 300072, China

2Department of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China

3Sloan School of Management, MIT, Cambridge 02142, USA

Corresponding author: Keman Huang (keman@mit.edu)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1401201
and in part by the National Natural Science Foundation of China under Grant 61502333, Grant 61572350, and Grant 61503220.

ABSTRACT For business processes based on micro service architecture in an enterprise, failures often occur
because of modified business rules or goals, change of service availability, and dynamical running environ-
ment. Based on dynamical replanning technologies, these failures can be repaired at runtime. However,
semantic conflicts among services from different providers can greatly decrease response efficiency and
response success rate of a business goal. In this paper, we propose a novel service runtime self-adaptation
framework to decrease response time and raise success rate. Distributed dynamic description logic is utilized
to eliminate semantic conflicts among services and provide basic models for carrying out planning among
services. Considering inputs, outputs, preconditions, and effects properties of services, local and global
planning algorithms based on artificial intelligence graph planning are designed. Local planning can rapidly
search a service-based path only including services from a provider, and global planning can try to explore a
path including services from multiple providers. Based on these two algorithms, local and global replanning
strategies are designed to handle runtime exceptions at service level and path level. We implement a prototype
system by means of workflow engine Activiti and business process language BPMN2.0. Experiments show

that compared with previous works, our framework can guarantee higher efficiency and success rate.

INDEX TERMS Running self-adaptation, software service, graph planning, D3L, workflow.

I. INTRODUCTION

With the popularity of micro service architecture [1], in an
enterprise, more and more services related to business oper-
ations emerge. These services may be developed by dif-
ferent departments of this enterprise, or directly obtained
from different service platforms'-2-3 on Internet. Based on
them, various business processes in the enterprise either are
manually created by domain experts by means of special
tools [2], [3], or automatically generated with the help of
service composition technologies [4]-[8]. Thus, a service
ecosystem [9] within the enterprise is formed, including ser-
vices, service providers, and business processes. However,
a business process tends to encounter failures under dynami-
cal running environment. For example, business rules or goals
are modified; running environment is interrupted; or various

1 https://www.programmableweb.com 2017-12-23
Zhttps://www.juhe.cn/ 2017-12-23
3https://Www.jisuapi.com/ 2017-12-23

exceptions over services (unavailable, unexpected effects,
execution exceptions, etc.). To guarantee robustness of the
service ecosystem, self-adaptation mechanisms for failures at
runtime are urgently required.

Currently, based on artificial intelligence (AI) plan-
ning technology [10], some service runtime self-adaptation
approaches are proposed [11]-[15]. In these approaches,
when a failure occurs at runtime, an adaptation requirement
is determined immediately according to current runtime con-
text; then, a planning operation is utilized to search a currently
feasible path for the requirement from all available services;
at last, the new path is executed by means of off-the-shelf
workflow engines [14], [16], or special process execution
procedures [17], [18]. If the new path succeeds to run, the fail-
ure is repaired successfully.

However, off-the-shelf service runtime self-adaptation
approaches always assume that all services are annotated
by one domain ontology. And a service ecosystem within
an enterprise may adopt distributed ontologies to annotate

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

14974 Personal use is also permitted, but republication/redistribution requires IEEE permission.

VOLUME 6, 2018

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5887-7775

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

TABLE 1. Related works about service runtime self-adaptation using replanning.

Adaptation mechanism
Literature planning Running Exception Strategy Context
mechanism
[14], [15] UCPOP planner YAWL UnPre& UnExe&UnEff Local Predicate facts
[23] RuG planner Special Variable changed Local Variables in dependency scopes
[12], [17] Classical planner Special UnPre Local State about domain objects
[6] HTN and CSP Workflow UnExe Global No
[18] Simplanner Special UnPre& UnExe Local& global | Predicate facts
[13] process-fragment Apache ODE | Feature changed Local& global | Features in variability models
[16] IOPE-based planner | Apache ODE | UnPre& UnExe& UnEff |Local& global | Parameter and predicate facts, execution histories,
Local AdaptFail and available services
D3LSRAF | Distributed Planners | Activiti UnPre& UnExe& UnEff | Local& global | Parameter and predicate facts and available services,
Local AdaptFail execution histories, and they are organized by SKBs

service semantics, because services may be provided by
different providers (departments or platforms). This brings
two new problems for these off-the-shelf approaches. The
first is that unhandled semantic conflicts among different
ontologies would hinder the judgment about interoperability
among services. For example, Person and Passenger express
the same semantics, although they are from different domain
ontologies; effect fact personAtAddress(Tom, Jinan West) is
true in an domain ontology, and then personAtStation(Tom,
Jinan West) also is true in another domain ontology, because
that Jinan West is not only an instance of Address, but also
of Station. If no measure is adopted for these conflicts,
the response success rate of business goals would decrease.
The second is, for each self-adaptation, the searching space
of these approaches always is created by all services, and
this is time-consuming when only a few of services from one
provider are used in the self-adaptation.

To solve the problems above, we propose a D3L-based
service runtime self-adaptation framework (D3LSRAF) that
can provide higher response success rate and efficiency.
Here, all services annotated by the same domain ontol-
ogy can be modeled as a DDL (Dynamic Description
Logic) system [19], [20], namely Service Knowledge Base
(SKB). In each SKB, existing automatic service composition
approaches [8] can be used to plan a service-based path
for a given request. Multiple SKBs are modeled as a D3L
(Distributed Dynamic Description Logic) system [21], [22],
namely Distributed Service Knowledge Base (DSKB), where
various bridge rules are created to solve semantic conflicts
among concepts, relations among SKBs. For a service request
that annotated by distributed ontologies, we design local
planning and global planning algorithms to search a service-
based path from DSKB. Based on these algorithms, two self-
adaptation strategies are created: local and global replanning
strategies. Both strategies can play an important role to guar-
antee higher response success rate and efficiency of a service
ecosystem. The main contributions of this paper are in the
following folds:

1) D3L-based local and global planning algorithms are
provided. For a service request annotated by distributed
ontologies, local planning can rapidly search a service-
based path only including services from a SKB, and

VOLUME 6, 2018

global planning can plan a path including services from
multiple SKBs to the best extent possible.

2) A novel service runtime self-adaptation framework is
proposed, and it can dynamically repair various failures
at runtime by means of local and global replanning
strategies.

3) Based on Activiti engine and BPMN2.0 language,
a prototype system is developed. A series of exper-
iments show that, compared with previous self-
adaptation approaches, our framework has better
response efficiency and higher response success rate.

The remainder of this paper is organized as follows.

Section 2 describes related works. Section 3 proposes an
overview about D3LSRAF. Section 4 presents some formal
definitions, describes two D3L-based planning algorithms,
and illustrates the self-adaptation mechanism based on
replanning technology. Section 5 presents implementa-
tion details about a prototype system of D3LSRAF
Section 6 reports the empirical results. Section 7 concludes
the paper.

Il. RELATED WORKS

A. SERVICE RUNTIME SELF-ADAPTATION

USING REPLANNING

Recently, there are some approaches related to service run-
time self-adaptation using replanning. The core operations in
these approaches are planning, running and self-adaptation.
When a failure occurs over a service-based process at run-
time, the self-adaptation operation would invoke the planning
operation to replan a new path, and then invoke the running
operation to execute the path. And execution of the path
can repair the failure and guarantee that the final goal of
this process is achieved. These approaches adopted different
planning approaches, running mechanism and self-adaptation
mechanism, as shown in Table 1.

Based on a process execution engine YAWL, refer-
ences [14] and [15] provided a business process runtime self-
adaptation mechanism. Various exceptions, which needed
to be adapted, were defined in a business process defini-
tion. When an exception occurred at runtime, the monitor
component would create a planning problem according to the
physical facts in the context and precondition/effects of fault

14975

IEEE Access

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

task, and then a planning service was invoked to repair the
exception. The planning service would employ an Al planner
based on a partial order planning algorithm to find a plan ful-
filling the adaptation goal. And then the plan was converted to
a recovery process and ran over the YAWL. It is noticed that
these exceptions could be set before or after a service task in
the process. Thus UnPre (preconditons unsatisfied), UnExe
(excution Failure), and UnEff (unexpected effects) [16] for
each service can be repaired at runtime.

Reference [23] used dependency scopes (DSs) to specify
the correct execution for critical parts of business processes.
And when a volatile process variable was modified, an inter-
vention process was generated by a domain-independent
RuG planner according the adaptation goal specified in cor-
responding DS declaration. Just as the approach in [14],
self-adaptation operations are triggered by the predefined
exception monitoring points (volatile variables) in process
definitions. However, exceptions in adaptation or intervention
processes can’ t be adapted, because these processes are gen-
erated dynamically and no any exception monitoring point is
set in their definitions. Once these exceptions occur, the main
process would fail to terminate.

References [12] and [17] provided a self-adaptation
approach using context-aware replanning. The approach
could continuously monitor the abnormal situation accord-
ing current context and automatically adapt the main pro-
cess at runtime. The context is defined by a set of domain
objects. Before an activity in a process ran, the current con-
text was checked. When some domain objects had abnormal
status or an abstract activity runs, the process would termi-
nate, and then an Al planning would be invoked to com-
pose existing process fragments into an adaptation process.
In this approach, the concrete monitoring and process run-
ning mechanism can’ t be introduced. Different with previous
two approaches, the approach didn’t predefine any excep-
tion monitoring points in the original process definitions,
and it also could handle abnormal situations of generated
adaptation processes. However, when no adaptation process
was found, or an adaptation process failed to run, no further
adaptation measure for the final business goal was adopted.

In the approaches above, the adaptation goals are precondi-
tions or effects of faulted services, and when corresponding
adaptation operations fail, the final business goals can’ t be
achieved. Here, we call these adaptation strategies as local
adaptation. Accordingly, if an adaptation strategy targets the
final business goals as adaptation goals, it is called global
adaptation. There are some approaches to provide global
adaptation strategies [6], [13], [18].

Reference [13] proposed a framework that used variability
models to support the runtime adaptation of service com-
positions. The variability models recorded various variants
for a business process, and feature models were created for
these variants. An exception at runtime could be monitored
according the changes of features in the running context, and
then was solved through removing and adding some process
fragments in the main process. These fragments could be

14976

searched by means of SQL-like language from predefined
variability models. And the workflow engine Apache ODE
was employed to execute corresponding process fragments.
The variability models constructed a whole solution space
for a business goal, and the approach could theoretically sup-
port local and global adaptation. However, the construction
of variability models is complexity and closely depends on
domain specialists.

Traditional automatic service composition (ASC)
approaches generally included four phases: planning, dis-
covery, selection, and execution. Reference [6] presented
a scalable architecture for ASC by means of nested work-
flow management. When an exception occurred at runtime,
the nested workflow management module would invoke
HTN and CSP-based planners to generate a new path for
the final goal, and the path was automatically deployed
to a workflow engine to run. Each repair in this approach
targeted the final business goal, and didn’ t consider any local
repair, such as local replacement etc. Therefore, this approach
only provides global adaptation strategies, and each repair is
time-consuming.

Reference [18] used a Simplanner to generate an initial
path rapidly, and could solve information lose and ser-
vice unavailable problem during the path ran. When a user
couldn’ t provide necessary input parameters before a service
in the initial path ran, the approach would plan a new path
that could produce these parameters. After the new path suc-
ceeded to run, the service continued to run. When the service
was unavailable, the approach would plan and run a new
path for the final goal. Therefore, local and global adaptation
strategies both could be supported by this approach. However,
just like the approach in [6], for service unavailable problem,
it still did” t try any local adaptation strategy. This decreased
the adaptation efficiency of this approach.

In order to overcome the shortcomings of approaches
above, we provided a service runtime self-adaptation frame-
work (ASAF) for local and global adaptation in our previ-
ous works [16]. We presented the formal definition for four
local self-adaptation exceptions: UnPre, UnExe, UnEff, and
a global exception LocalAdaptFail. Given a service-based
process, the framework firstly converted it into a process for
self-adaptation automatically, where local and global self-
adaptation exception monitoring points are respectively set
at service level and at process level automatically. When an
exception occurs at runtime, corresponding exception units
would invoke an IOPE-based Al planner [8] to search an
adaptation process, and then ran the process by means of
the workflow engine Apache ODE. The adaptation process
in the local exception unit would replace the execution of the
faulted service and didn’ t affect the running of other parallel
services. And the adaptation process in the global exception
would replace the execution of the main process. Specially,
all adaptation processes also could run self-adaptively.

Although ASAF can solve the service runtime self-
adaptation problems, it assumes that all services are annotated
by one domain ontology, and the searching space for each

VOLUME 6, 2018

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

invocation of the Al planner includes all services regardless
of local and global adaptation. However, in practice, available
services may be from different providers, and ontologies
adopted by different providers may be different. Semantic
conflicts among different ontologies can affect the interop-
eration of services and decrease the response success rate.
Moreover, most local exceptions at service level can be solved
by few services from one provider. If the searching space
for local exceptions is limit as all services from different
providers, the response is time-consuming. Therefore, dis-
tributed semantic service composition technology is needed.

D3LSRAF in this paper improve ASAF through consid-
ering distributed domain ontologies. For local adaptation,
a local planner is adopted to rapidly search a service-based
path respectively in each SKB. And for global adaptation,
a global planner is used to search a path from services in
all SKB. Thus, compared with other approaches, the local
planner can greatly reduce the adaptation time when a local
adaptation runs, because it has smaller searching space;
meanwhile, when the local adaptation fails to run, the global
planner can improve the response success rate through
attempting all possible paths for the original business goal.
These improvements are implemented by means of D3L.
Related works about D3L will be discussed in the next
section.

B. D3L AND SEMANTIC SERVICE COMPOSITION

Dynamic description logic (DDL) combines description logic
and action theory, and is a model to depict real world from
dynamic and static respects [19]. It gives unified and logical
syntax and semantics for concept, formula, and action. DDL
has three components: 7Box, ABox, ActBox [20], where, TBox
is a set of assertions related to concepts and relationships,
ABox is a set of individual assertions, ActBox is a set of
atomic actions. Each atomic action in ActBox is modeled
a tuple (Pa, Ea), Pa and Ea respectively represent satisfied
preconditions before execution and effects after execution.
Elements in Pa and Ea come from ABox.

A semantic service can be modeled into an atomic action
in DDL. Thus service composition problem can be converted
into a DDL-based planning problem P=(T, Ac, A, G) [24].
Here, T is a TBox expressing concepts and relationships
related to this problem; Ac is a ActBox describing atomic
actions related to web services; A and G both are ABox respec-
tively describing initial state and goal state of the planning
problem. Therefore, finding a service composition solution
is converted into finding planning path for the planning prob-
lem. Here, semantics in a DDL are from one domain ontology.

Distributed dynamic description logic (D3L) is expansion
of DDL to deal with distributed and heterogeneous knowl-
edge [21], [22]. It has four components. The first is a set
of independent DDL systems, and each system has its own
knowledge representation form and reasoning mechanism.
The second is distributed TBox (DTB) to record link rules
between concepts, relationships and actions. The third is dis-
tributed ABox (DAB) to record link rules between individuals.

VOLUME 6, 2018

The fourth is the reasoning mechanism based on DTB and
DAB. The reasoning on D3L system has two ways: local
reasoning and global reasoning. The former is to reason in
each independent DDL system. The latter links all DDL
systems as a whole by link rules, and then carries on the
reasoning considering all DDL systems.

It is noticed that the link rules in DTB and DAB are
core to eliminate semantic conflicts among different domain
ontologies, also called bridge rules. These rules can be gen-
erated by means of the state-of-the-art ontology alignment
approaches [25], [26], which can be utilized to produce equiv-
alence, subclass or sameAs relations among concepts and
individuals in domain ontologies.

Based on D3L, a semantic service composition problem
under distributed domain ontologies can be modeled as a
local or global planning problem on multiple DDL sys-
tems. However, existing local and global reasoning algo-
rithms [27] for D3L are not usable, because there are some
differences between actions in DDL and services. For exam-
ple, except for preconditions and effects, inputs and outputs
also are needed for a service; some effects only describe
the world permanent state and can’t be altered, such as
addressAtCity(sdjzu,Jinan), but others present the tempo-
rary state and can be canceled by another service, such
as trainlsBooked(D404, Tom, 2017-11-15). Therefore, spe-
cial reasoning algorithms are needed for distributed service
composition problem. In this paper, we model each plan-
ning is a D3L-based reasoning problem, and design special
local and global planning algorithms to generate a service-
based path through improving classical Al graph planning
algorithm [10].

C. RUNTIME CONTEXT AND HUMAN SERVICE

In previous works, runtime context provided necessary infor-
mation for solving runtime self-adaptation problem, and
they can be used to determine abnormal running situations
and various adaptation requirements. In [17], the context
is composed by various domain objects, and status of all
objects can affect current running state of a business process.
In [13] and [23], process variables related to various depen-
dence scopes and process features are respectively put in the
context. Their values can affect the main process structure
changes. In most works [14]-[16] and [18], the execution
effects of each service in a business process are recorded in
the context. Through continuously comparing the physical
context with expected preconditions and effects of services,
UnPre and UnEff exceptions can be automatically deter-
mined. And the initial state of various adaptation require-
ments can be directly obtained from current context.

In order to support various adaptation strategies, ASAF
in our previous work utilized the context to record the run-
ning state, current available services, and execution histories
of a service-based process. The running state includes out-
put parameter facts and effects facts of completed services,
and they play an important role in determining abnormal
situation and the initial state of adaptation requirements.

14977

IEEE Access

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

©

Request

= ~
~

Monitor

Response in self-adaptation

Response| |D3L-based Global Planning ¥, - -7 D3L-based Local Planning ¥~

£ global exception
Execution
1

\
\
1

Semantics

[Distributed Service Runtime Context

N
: Domain Ontology Domain Ontology Domain Ontology |
Services Services Services
Actions Actions Actions
Facts Facts Facts
SKB1 SKB2 e SKBn
Distributed Service Knowledge Base
——————— Em T e T R eI -
Q Q Q
Q Q Q Q o Q X Q
Q 9

‘Services from different providers

FIGURE 1. D3LSRAF at concept level.

Current available services can be used to define the problem
domain of planning for corresponding adaptation require-
ment. And execution histories can be used in a global adap-
tation to cancel the completed effects.

However, under distributed ontologies, the context may
include objects or state literals annotated by multiple domain
ontologies. And it can’ t be consider in previous work. There-
fore, in this paper, we propose Distributed Service Run-
time Context concept to support context with distributed
semantics.

Furthermore, in practice, there are some tasks that can’ t be
replaced by software services, such as taking taxi, checking
in hotel, etc. And these tasks generally can play an important
role during planning a complex service-based path. For exam-
ple, in a whole travel process, searching and booking train,
and calling a taxi are main services that can be obtained from
the Internet, but, taking taxi and taking train also are the key
human tasks in the travel. In order to guarantee the whole-
ness of the travel process, these human tasks also should be
choreographed together with those real services. From the
view of SOA [28], these tasks can be considered as services
(human services), and can be described by unified interface
description language just as services on Internet [29]. In this
paper, we consider a human service as a common software
service, and also use IOPE to describe its function.

14978

Ill. D3LSRAF OVERVIEW

D3LSRAF is a service runtime self-adaptation framework,
and uses D3L-based replanning technology to self-adaptively
respond a service request on a distributed service knowledge
base. Fig. 1 shows an overview of D3LSRAF at concept level.

Distributed service knowledge base (DSKB) is the basis of
D3LSRAF, and it organizes services from different providers
into multiple service knowledge bases. Those services from
the same domain ontology are expressed as a service knowl-
edge base (SKB). And each SKB records not only static
description including semantics for IOPE and invocation
details at syntactic level, but also dynamic features about
known facts (individuals and their relations) and available
service instances (actions for planning). To eliminate seman-
tic conflicts among different SKBs, various bridge rules are
created before the framework runs, mainly including sub-
class and equivalence rules among concepts and predicates
in different domain ontologies. Rule reasoning is needed to
obtain new rules according to created rules when a new SKB
is added.

A request handled by D3LSRAF is composed of known
facts, desired parameters, and desired effects. Semantics
of these components are from multiple domain ontologies
in DSKB. When a request is received, D3LSRAF firstly
uses D3L-based global planning to search a path including

VOLUME 6, 2018

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

services from multiple SKBs (global path for short) for this
request from DSKB; then, it executes the path according
known facts in the request and automatically monitors various
exceptions at runtime.

During the running, the path would encounter three run-
ning situations, and D3ALSRAF would adopt various strategies
to deal with them. The first is that no exception occurs.
Thus, D3LSRAF would response the user successfully, that
is, return the values for desired parameters and achieve the
desired effects. The second is that an exception at system level
occurs, such as process executor breaks down. D3LSRAF
would response the user with corresponding failure informa-
tion. The third running situation is that a service fails to run
because an exception that may be repaired occurs, such as the
preconditions not satisfied, unavailable etc. Thus, D3LSRAF
uses local replanning to repair the faulted service at runtime.
The local replanning firstly creates an adaptation request
for the repair according current distributed service runtime
context; then, it uses D3L-based local planning to rapidly
search a path only including services from single SKB (local
path for short) for the adaption request; next, it executes the
local path. If the local replanning succeeds, the running of
the original path doesn’ t be affected; Otherwise, D3LSRAF
terminates all running services in the path, and adopts global
replanning to repair the whole path. The global replanning
firstly creates an adaptation request that can achieve the
desired parameters and effects of the main path according the
runtime context; secondly, it searches a global path through
exploring all possible paths for the original service request;
thirdly, it executes and monitors the global path. If the global
replanning succeeds, D3LSRAF would response the user
successfully. Otherwise, it would response the user with fault
information. Specially, all new paths during replanning also
run self-adaptively.

Distributed service runtime context provides key infor-
mation for the self-adaptively running of service requests.
It records running status, running histories of each request,
and current available services. The running state includes
known facts produced by completed service instances. These
facts are continuously updated and monitored during the run-
ning of these requests. Various exceptions can be immediately
thrown when the physical running state is inconsistent with
the expected state. Specially, semantics of these facts may be
from distributed domain ontologies because service instances
that produce them may be from different SKBs. The running
histories of a path record which fact is produced by which
service instance, and they are used in the global replanning to
cancel those redundant effects in current running state.

IV. DETAILS FOR D3LSRAF

A. PROBLEM MODELING

In D3LSRAF, various services are organized into SKBs
according to domain ontologies that they use, and their IOPE
functional properties are annotated. Considering the dynamic
respects of services, we model each a SKB as dynamic

VOLUME 6, 2018

description logic (DDL) system that combines description
logic and action theory, shown in Definition 1.

Definition 1 (Service Knowledge Base (SKB)): A service
knowledge base is a DDL system, and is expressed as a tuple
skb = (D, TP, Facts, Actions), where,

o D is a TBox of this DDL system, and includes semantic

concepts and their relation assertions;

o TP is a set of services, and their IOPE are annotated by
D;

e Facts is an ABox of this DDL system and includes
two types of known facts: parameter facts(/OFacts) and
predicate facts (PEFacts) [16], and these facts also are
annotated by D;

o Actions is an ActBox of this DDL system, and they can
be generated by services in TP according to different
assignments for input parameters. That is, there is a
many-to-one mapping from Actions to TP.

According to Definition 1, one domain ontology can be
used by multiple SKBs, but, one SKB only uses one domain
ontology. In practice, the cooperation between services from
different SKBs with different domain ontologies is diffi-
cult, because there are many semantic conflicts among these
domain ontologies. For example, skbl, skb2, skb3 are three
SKBs, an instance of concept Station in skb1 can’ t be consid-
ered as the instance of Address in skb3, but, Station naturally
is a subclass of Address; concept Person in skbl is not equal
to Passenger in skb2, but, both represent a human.

To achieve the reasoning between services from different
SKBs, we use D3L to describe distributed and heterogeneous
knowledge in multiple SKBs. In D3L, various bridge rules are
the key to eliminate semantic conflicts among DDL systems.
Basic bridge rules among concepts, relations, actions, and
individuals in different DDL systems had been defined and
are used in reasoning [21]. However, there are two main
differences between a DDL system and a SKB. The first
is that all individuals and actions in the DDL systems are
known before a reasoning runs, however, Facts (correspond-
ing to individuals in DDL) and Actions (corresponding to
actions in DDL) components in SKBs are unknown before
a reasoning runs. In SKBs, the reasoning is used to plan a
service-based path according the cooperation relation among
services, and it mainly depends on the concepts and relations
in the component D of SKBs. The second is that equiva-
lence and equivalence with conditions relationship among
concepts and relations in different SKBs often are used
during the reasoning among SKBs. For an instance, per-
sonAtAddress(Person, Address) and personAtStation(Person,
Station) are relation predicates respectively in the SKB skbl
and skb2. Person in the two SKBs are equal concepts, and
Station in skb2 is the subclass of Address in skbl. If the
fact personAtStation(Person: Tom, Station:sl) in skb2 is true,
then it is reasonable that the fact personAtAddress(Person:
Tom, Address:sl) in skbl also is true. Here, Tom and sl
respectively are instances of Person and Station. Meanwhile,
if personAtAddress(Person: Tom, Address:sl) in skbl is true
and s/ is the instance of Station, and then we can assert that

14979

IEEE Access

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

personAtStation(Person: Tom, Station:sl) is true in skb2.
That is, the literals of personAtAddress(Person, Address) are
equal to personAtStation(Person, Station) when its second
variable is an instance of Station except for the same param-
eter assignment. Considering the two differences above,
we improve old bridge rules to make them be used for the
reasoning among SKBs. The rules only specify the links
among concepts and relations in different SKBs, shown in
Definition 2.

Definition 2: Let KB; and KB; be two SKBs, satisfying
KB;.D # KB;.D, concept a € KB;.D and b € KB;.D, relation
¢ € KB;.D and d € KB;.D, and then a bridge rule from KB;
to KB is one of the followings:

e KB; : a —% KB; : b represents a is the subset of b, that
is, a can replace b at semantic level;

e KBj:a 3 KB; : b represents a is the superset of b, that
is, a can be replaced by b at semantic level;

e KBi:a— KB; : b represents a is the equivalent of b;

C . . .
e KB; : ¢ = KB; : d represents that if ¢ is true in
KB;, and then d is true in KB; when they have the same
assignments;
) . . .
e KB; : ¢ = KB; : d represents that if d is true in

KBj, and then c is true in KB; when they have the same
assignments;

e KB;:c = KB; : d represents c in KB; is true if and only
if d is true in KB; when they have the same assignments
and the condition F'is true, where F is a limited condition
for semantics of variable values in c.

In the following, we call the first and fourth rules info
bridge rules; the second and fifth rules onfo bridge rules; the
third and sixth rules equivalence bridge rule. For simplicity,

given two literals a, b, and a rule x, we use a — b to
represent that corresponding relation predicates a.pred and

b.pred satisfy a.pred —X> b.pred, and that a and b have the
same assignment.

In D3LSRAF, bridge rules are created by an offline
rule reasoning operation. The operation firstly adopt exist-
ing ontology alignment technologies [25], [26] to deter-
mine equivalence, into, onto rules according to equivalence
and subclass relations between concepts and predicates in
two SKBs; then adjust the reasoning results manually to
guarantee the correctness. When a new SKB is added, all
rules between the SKB and each existing SKB are cre-
ated according to the process above. Ultimately, all rules
are obtained between any two SKBs. The rule reasoning
operation is time-consuming and semi-automatically, there-
fore, it is completed before D3LSRAF responds service
requests.

Definition 3 (Distributed Service Knowledge Base
(DSKB)): A distributed service knowledge base is a D3L
system, and is expressed as a tuple dskb = (SKBs, BRs),
where,

e SKBs is a set of SKBs, and each SKB conforms to

Definition 1;

14980

o BRsisa DTB of this D3L system, and includes all bridge

rules among SKBs.

Generally, a service request is expressed as a tuple:
rq = (In, Init, Out, Goal) ,where In represents known param-
eter facts, Init represents known predicate facts, Out repre-
sents desired output parameters, and Goal represents desired
effects. All facts and their semantics in the request are from
one SKB. Here, for convenience, we call the service request
Single Domain Service Request (Single-SR). However, if we
want to search a path from a DSKB, a service request
with distributed semantics is expected. Here, it is called
D3L-based Service Request (Definition 4).

Definition 4 (D3L-Based Service Request (D3L-SR)): Let
ds be a DSKB, a service request based on ds is a tuple
rq = (In, Out, Init, Goal), where,

o In is a distributed ABox, satisfying

In C U

Vskbeds.SKBs

skb.IOFacts. €))

representing known parameter facts, and each param-
eter facts is a tuple (skb, semType, value) where the
components respectively represent the SKB providing
semantics, its semantic type, and its real value;

o Init is a distributed ABox, satisfying

Init C U

Vskbeds.SKBs

skb.PEFacts. 2)

representing known predicate facts, and each predicate
fact is a tuple (skb, pred, literal) where the components
respectively represent the SKB providing semantics,
corresponding predicate, and the literal that grounded by
parameter facts in In;

o Outis adesired output parameter set, and each parameter
is a tuple (skb, semType, paraname) where the compo-
nents respectively represent the SKB providing seman-
tics, its semantics, and unique ID;

o Goal represents desired goal state, and each element
is a tuple (skb, pred, literal), where the components
respectively represent the SKB providing semantics,
corresponding predicate, and the literal that grounded by
parameters /n and Out.

According to Definition 4, if a DSKB only has one SKB,

all D3L-SR requests on the DSKB are Single-SR.

Given a D3L-SR rq = (In, Init, Out, Goal), if there is
a parameter fact set Out’ that can provide an assignment
for rq.Out, and then rq.Goal can be grounded by Out’ as
predicate facts Goal’ . Thus, a new service request rqg’ =
(In, Init, Out’ , Goal") is called a concrete D3L-SR.

Given a Single-SR based on a SKB, considering known
parameter and predicate facts as an initial state, desired
outputs and effects as a goal, and the Actions in the SKB
as a problem domain, then searching a solution for the
request is converted into a classical Al planning problem
in the SKB. Thus, existing planning algorithms for ser-
vice composition can be used to obtain a solution [8]. The
solution is a service execution path that can be defined

VOLUME 6, 2018

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

as a sequence (aiy, -+ ,Ap, -+, akl, " - » Akp) Where each
element is an action set and called an execution step [8].
However, for a D3L-SR based on a DSKB, existing plan-
ning algorithms can’ t be used, because they can’ t consider
distributed domain ontologies and can’ t solve the semantics
conflicts among SKBs. Here, we call this planning problem
D3L-based Service Planning Problem (Definition 5).

Definition 5 (D3L-Based Service Planning Problem
(D3L-SPlan)): Given a DSKB ds, and a D3L-SR rq,
A D3L-based service planning problem is to search an action
execution path p = (ai1,--- ,aip, -+ , k1, -+ - , Akp) from
ds.SKBs, that can achieve rg with the help of ds.BRs.

In the following, we use a tuple dp = (ds, rq) to represent
a D3L-SPlan. An action execution path for a D3L-SPlan is
composed of service instances, and also is called service-
based path. Specially, the path is called local path if it only
includes services from one SKB, and is called global path if
it includes services from different SKBs.

When a global path runs, it may produce facts annotated
by different domain ontologies, because it may include ser-
vices from different SKBs. To support various runtime self-
adaptation, the service runtime context of a request will
record these facts and services producing them. To dis-
tinguish with service runtime context under single ontol-
ogy [16], we call this context Distributed Service Runtime
Context (Definition 6).

Definition 6 (Distributed Service Runtime Context
(DSRunContext)): Given a DSKB dskb, sr is a D3L-SR for
dskb, a distributed service runtime context for sr at moment ¢
is a tuple 41y = (Ds, Fs, As, DF, CFs, AF), where,

e Ds is a set of domain ontologies in dskb, satisfying

Dsz.Uskbedskb_SKBS skb.D; o
e Fs is a set of known facts currently, satisfying

Ds = Uskpedskp skps Skb-Facts;

e« As is a set of service
Ds = Uskpedskp skps Skb-Actions;

e DF is a many to one mapping DF : Fs — Ds, and
represents which facts in Fs are annotated by which
ontology in Ds;

o CFs is a set of revocable facts, satisfying CFs C Frs;

e AF is a many to one mapping AF : CFs — As, and
represents which facts are produced by which service
instances.

In D3LSRAF, DSRunContext will be monitored contin-
uously to determine abnormal running situations, and is
utilized to generate various adaptation requests for these
abnormal situations. Specially, the revocable facts are those
world-altering effect facts that can be canceled, such as train-
IsBooked(Tom, D404, 2017-01-02) etc. And it is specified
manually in the effect description of services, as in [16].

instances, satisfying

B. D3L-BASED LOCAL PLANNING

In D3LSRAF, the D3L-based local planning is used in
a local replanning strategy, and it can rapidly search an
adaptation path for a D3L-SR request. To raise plan-
ning efficiency, it should search the path from as few as

VOLUME 6, 2018

possible services. Here, we design a D3L-based local plan-
ning algorithm(LocalD3LPlanning), which can concurrently
search a local path for given request in each SKB. Once a path
is found from one of SKBs, the algorithm terminates. Given
a Single-SR based on a SKB, the searching in the SKB can
be achieved by existing planning approaches [8]. However,
requests in D3L-based local planning are D3L-SR. There-
fore, the algorithm needs to convert a D3L-SR request into a
Single-SR before the searching in a SKB runs. Bridge rules
play a key role during the conversion. Let kb be a SKB, BRs
be a set of bridge rules, rg be a D3L-SR, rq’ be a single-SR,
the conversion illustration from rq to rg’ in kb is shown in
the following:

e For Vp € rq.n, if 3sem € kb.D, satisfying
p.semType g—/>: sem, and then put (kb, sem, p.value) into
rq’.In;

e For Vp € rq.nit, if dpred € kb.D, satisty-

ing p.pred SI=(=r pred, and then put (kb, pred,
replace(p.literal, p.pred, pred)) into rq’.Init, where
replace() represents replacing p.pred in p.literal with
pred,

o« For Vp €

rq.Out, if Isem € kb.D, satisfying

p.semType 2—/>: sem, and then put (kb, sem, p.paraname)
into rg’.Out,

o For Vp € rq.Goal, if Ipred € kb.D, p.pred 2—/>: pred,
and then put (kb, pred, replace(p.literal, p.pred, pred))
into rq’.Goal.

x/y x Y
Here,a - b < a—> bVva-— b.

Algorithm 1 D3L-based local planning (LocalD3LPlanning)
Inputs: ds: a DSKB, rq: a D3L-SR

Outputs: a local service-based path in ds and it can achieve rg

01. c=null; //the solution is initialized by null

02. FOR all skb € ds.SKBs DO //concurrently

03. convert rg to a Single-SR rg " in skb according to ds.BRs

04. invoke the IOPE-based graph planner to search a path ¢ satistying ¢’ from skb
05. IF cis not nu/l THEN

06. break; // a path is found and the algorithm terminates

07. ENDIF

08. ENDFOR

09. RETURN ¢;

FIGURE 2. D3L-based local planning algorithm.

Algorithm 1(Fig. 2) shows details of D3L-based local plan-
ning. In each SKB, given D3L-SR firstly is converted into a
Single-SR according to the illustration above (row 03), and
then, based on the Single-SR, an IOPE-based graph planner
is invoked to search a local path (row 04). Once a path is
found, the algorithm would terminate and return the path
(rows 05-07). Otherwise, the algorithm would terminate
until all SKBs have been searched. Ultimately, null will be
returned. Specially, for all SKBs, the searching process runs
concurrently (row 02).

An example is shown here to describe execution pro-
cedure of Algorithm 1. Let skbs be a set of SKBs,

14981

IEEE Access

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

BRs be a set of bridge rules, rg/ be a D3L-SR, then
dpl =<< skbs,BRs >,rql > is a D3L-SPlan problem,
where,

skbs = {skbl, skb2}, here, skbl. TP = {TakeTuxi},
skb2.TP = {ProposeTrain, BookTrain, TakeTrain},

BRs = {skb2 : Person > skbl:Person, skbl .'Vehicle%
skb2:Train, skbl: vehicleCrossCity —% skb2:trainCrossCity,

skbl:vehiclelsBooked —% skb2:trainlsBooked, - - - },

rql.In = {(skbl, Person, Tom),{ skbl, City, JN), { skbl,
City, TJ), (skbl, Date, d)},

rql.Init = {(skbl, personAtCity(Tom, JN)) } where the
component pred in each fact is omitted,

rql.Out = {(skbl, Vehicle, v),(skbl, Address, sl)},

rql.Goal = {(skbl, vehicleFrom(v, s1)), { skbl, vehicle-
CrossCity(v, JN, TJ)), { skbl, vehiclelsBooked(Tom, v, d))}.

According to the algorithm above, the searching operations
carry out in skbl and skb2 concurrently. When in skbl, rql
doesn’ t be converted because semantics of all parameters and
literals are from skbI. Thus, no solution for rgl is found in
skbl. When in skb2, rql would be converted into rgl’:

rql’.In={{(skb2, Person, Tom), { skb2, City, JN), { skb2,
City, T]), (skb2, Date, d)},

rql’ . Init={(skb2, personAtCity(Tom, JN)) },

rql’.Out={(skb2, Train, v), (skb2, Station, sl)},

rql’.Goal={(skb2, trainFrom(v, sl)), { skb2, train-
CrossCity(v, JN, TJ)), { skb2, trainlsBooked(Tom, v, d))}.

Finally, a path ({ProposeTrain}, {BookTrain}) is returned
from skb2, and the algorithm terminates.

The advantage of LocalD3LPlanning is that it can concur-
rently search a local path from multiple SKBs. And compared
with the searching at once from all services in all SKBs,
the planning time can greatly decrease because there are
fewer services in each SKB.

C. D3L-BASED GLOBAL PLANNING

LocalD3LPlanning only finds a local path. However, in some
cases, to achieve a D3L-SR, services from different SKBs are
needed to cooperate with each other. That is, a global path
is needed for a D3L-SPlan problem. Unfortunately, classical
service composition algorithm [10] only can be used when a
request is a Single-SR and all services are annotated by one
domain ontology. To obtain a global path, we improve the
classical algorithm to support the planning in a DSKB, and
the improved algorithm is called D3L-based global planning
algorithm (GlobalD3LPlanning). Fig. 3 shows the detailed
process of this algorithm.

GlobalD3LPlaning firstly constructs a planning graph
according to a DSKB, and then searches a global path for a
D3L-SR based on the graph. The graph would be extended
if no path is found, and the searching operation continues
until it levels off or its number of layers already reaches a
specified max value. Just like the IOPE-based graph plan-
ning algorithm [8], the graph in GlobalD3LPlanning also
includes two types of layers: state and action, and they are
alternated. A state layer is composed of facts, and they may

14982

D
skbn E
\l/ DSKB

Initialize Planning Graph

|

considering BRs
——! Extending Planning Graph % Determine satisfiability of ¢

D3L-SR rq skbl

Planning Graph

Concrete D3L-SR rq’ \L
. . . yes
Searching planning solution &—————— Satisfied
no \l/
yes
Has solution Q
\l/no
yes
L. Level off or no
max level number

FIGURE 3. The detailed process of GlobalD3LPlaning algorithm.

be a known parameter (parameter fact), such as an address,
a train, etc. or a predicate literal (predicate fact), such as per-
sonAtAddress(Tom, sdjzu), addressAtCity(sdjzu, JiNan), etc.
These facts are generated by actions in the previous action
layer. The actions include two types: persistence action [10]
and service instance. A persistence action corresponds to a
fact in the previous state layer, and its precondition and effect
both are the fact. A service instance is an invocation for a
service where its input parameters are instantiated. When the
invocation really occurs, new facts would be produced in the
next state layer. Different with the classical planning graph,
the facts and actions may be from different SKBs. Specially,
each service instance must be satisfied by facts in the previous
state layer according to BRs (Definition 7).

Definition 7 (State Layer Satisfying Service Instance): Let
S be a state layer, a be a service instance, BRs be a bridge rule
set, we say S satisfies a when and only when a./ and a.P are
included by S directly or through BRs:

S Y e Yealc e (@l uaP) Al €S)

N[(skb; = skb.) — (I = ¢)]
v [(skb, £ skb) — (1 5/ c)}} ©)

Fig. 4 shows a planning graph in GlobalD3LPlanning,
where service instances in Ap can be satisfied by facts in
So according Definition 7. It is noticed that instances in
skby are satisfied by facts in skb, and instances in skb;
are satisfied by skb, and skbi. Here, bridge rules between
skby1 and skbp are used when inputs and preconditions of
instances in skb, are matched with facts in skb;. Similarly,
rules between skby and skb3 are used for matching facts in

VOLUME 6, 2018

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

Ao S

So
@ skb;.Actions
I3 I,

Ay

skb,.Actions

skb,.Actions

FIGURE 4. A planning graph in GlobalD3LSearch. Note. rj j represents
bridge rules between skb; and skb;.

«E

skbs.Actions

skby with inputs and preconditions of instances in skb3. And,
fori > 1, §; is generated by service instances and persistence
actions in A;_1.

In GlobalD3LPlanning, the planning graph would be
extended layer by layer, and after it is extended every time,
two new layers are added: one is an action layer; another
is a state layer. In each extending, the key operation in the
following is to determine whether or not the original D3L-SR
is satisfied by the last state layer (Definition 8).

Definition 8 (State Layer Satisfying D3L-SR): Let S be a
state layer, rqg be a D3L-SR, BRs be a bridge rule set, and we
say S satisfies rg when and only when there is a subset S’ of
S and a mapping f : rq.Out U rq.Goal — S’ , satisfying the
four situations in the following:

o If x € rq.out and skby = skbs(y), then f(x) €

S’ .ParaFacts N x.semType = f(x).semType;
o If x € rq.out and skby # skbyy), then f(x) €

S’ .ParaFacts N x.semType 2—/>_f()c).semType;

o If x € rq.Goal and skby = skbs(y), then f(x) €
S’ .PEFacts A Xgrounded = f (%);

o If x € rq.Goal and skby # skbs(y), then f(x) €

S PEFacts A Xgrounded — = F(x).

Here, skb, represents the skb where element x iS; X ounded
is a literal that are grounded by the mapping values of rg.Out.
We use S mﬁify rg simply to denote rg is satisfied by S.

It is noticed that, if S sm—lify rq, we can obtain a concrete
D3L-SR rq’ for rq: ' = { rq.In,{f(x)| x€ rq.Out}, rq.Init,
{f(x)| x€ rq.Goal}). Specially, there may be multiple subsets
of S that conform to Definition 8. Thus concrete D3L-SR for
rg may have more than one, and Algorithm 2(Fig. 5) shows
the generation process of concrete D3L-SR for rg.

Firstly, the algorithm computes all assignments for rg.Out
(rows 02-05). Then it uses these assignments respectively to
instantiate rq. Goal, and multiple goal instances are produced
(rows 06). At last, it checks each goal instance whether or not
satisfied by S, and a concrete D3L-SR request is generated
when the goal instance is satisfied (rows 07-10).

Specially, finding semantically matching parameter facts
from S is a key operation in Algorithm 2. Here, for a parame-
ter fact p in S, and an output parameter g in rq.Out, we say p
matching g when one of two conditions in the following are
satisfied:

o p.semType C g.semType, when skb, = skb,;

o p.semType 5 g.semType, when skb,, # skb.

VOLUME 6, 2018

Once concrete D3L-SR requests are produced, the search-
ing for each request from current planning graph would be
carried out. GlobalD3LPlanning would be ended as long as
one solution is founded. Otherwise the graph would con-
tinue to be extended when it doesn’ t level off and not reach
specified max layer number. GlobalD3LPlanning is shown
in Algorithm 3(Fig. 6).

Here, we illustrate GlobalD3LPlanning through an exam-
ple. Given a D3L-SPlan problem dp2 = ({ SKBs, BRs), rq2),
where, a DKBS (SKBs, BRs) is the same with dp/ in previous
section, and rq2 is described in the following:

rq2.In = {(skbl, Person, Tom), (skbl, City, JN), (skbl,
City, TJ), (skbl, Date, d), (skbl, Address, sdjzu),(skbl,
Address, tju) },

rq2.Init = {(skbl,personAtAddress(Tom, sdjzu)), { skbl,
addressAtCity(sdjzu, JN)), (skbl, addressAtCity(tju, TJ))},

rq2.0ut = {(skbl, Vehicle, v)},

rq2.Goal = {(skbl, vehicleCrossCity(v, JN,)), (skbl,
personAtAddress(Tom, tju))}.

According to Algorithm 3, state and action layers in a
planning graph for dp2 are shown in the following:

So = {(skbl, Person, Tom), (skbl, City, JN), (skbl,
City, TJ), (skbl, Date, d), (skbl, Address, sdjzu), (skbl,
Addpress, tju)},

Ao = {ProposeTrain(JN, TJ, d), - - - },

S1 = SoU {{(skb2, Train, t), (skb2, Station, sl),
(skb2, Station, s2), (skb2, trainFrom(t, sl)), (skb2,
trainTo(t, s2)), (skb2, trainCrossCity(t, JN, TJ)), (skb2,
stationAtCity(sl, JN)), (skb2, stationAtCity(s2, TJ)), (skb2,
trainlsValid(t, d)), - - - },

A1 = Aogcup {BookTrain(Tom, t, d), TakeTaxi(Tom, sdjzu,
sl, JN), - - - }UpersistenAction(Sy),

Sy = 81U {{(skb2, trainlsBooked(Tom, t, d)), (skbl, person-
AtAddress(Tom, sl)), - - - },

Ar = AU {TakeTrain(Tom, t, d, JN, TJ, sl, s2),---}U
persistenAction(S>),

S3 = SoU {(skb2,personAtStation(Tom, s2)),- - - },

Az = ApU {TakeTaxi(Tom, s2, tju, TJ),- - - },

S4 = S3U {(skbl.personAtAddress(Tom, tju))}.

At state layer S4, we can find an parameter fact
(skb2, Train, t) that can instantiate the parameter (skbl,
Vehicle, v) in rq2.0ut, and a concrete request that can be
satisfied by S4 is obtained: rg2’ = (rq2.In,rq2.Init, {(skb2,
Train, t)}, {(skb2, trainCrossCity(t, JN, TJ)), (skbl, person-
AtAddress(Tom, tju))}). The rules are used from S; to A; are
shown in the following:

From Sy to Ag: skbl: City — skb2: City, skbl: Date —
skb2: Date;

From S; to Ay: skb2: Station—% skbl:Address; _

From S, to Ap: skbl: personAtAddress '3 "" skb2:
personAtStation, where the condition para2:Station represents
the second variable value in the personAtAddress is an
instance of Station in skb2;

From §3 to Aj:
personAtAddress.

skb2: personA tStation S skb1:

14983

lE E E ACCGSS X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

Algorithm 2 Generate Concrete D3L-SR Request (GenConcreteReq)

Inputs: rq: a D3L-SR request, S: a state layer, BRs: bridge rule set
Outputs: crgset: concrete D3L-SR Requests for rq satisfied by S

01. crgset— @, assign—{@} //initialize crgset and output parameter assignment set

02. FOR each out parameter g in rq. Out DO

03. factg—getParaFactsMatched(g,S,BRs); /get parameter facts in S that are semantically matched with g
04. assign<assign> fact,

05. ENDFOR

06. according different assignments in assign ground rq.Goal, and generate a goal instance set goalinsts

07. FOR each gi in goalinsts DO

08. Find replacement in S for each literal in gi according BRs, and produce the replacement set gi .

09. IF gi'SS THEN create a concrete request rq «—<rq.In,assignment for gi, rq.Init, gi ">, and add rq " into crgset
0. ENDFOR

11. RETURN crgset

—_

FIGURE 5. Generate concrete D3L-SR requests algorithm.

Algorithm 3 D3L-based global planning (GlobalD3LPlanning)

Inputs: ds: a DSKB, rq: a D3L-SR, MaxLevel: max layer number of in a planning graph
Outputs: a global service-based path for rg

01. PG= Q; //initialize a empty planning grap, and state and action layers will be stored in a list
02. StateLayer<—new StateLayer(0, rq.Init); // 0 is the order number of layer

03. adding StateLayer in PG

04. initialize the order number of the layer leve/=0

05. WHILE /evel>=MaxLevel-1 DO

06. Slever <— the last state layer in PG

07. crqset— GenConcreteReq (rq, Siever» ds.BRs)//Algorithm 2

08. IF crgset is not null, that is, at least one concrete D3L-SR is produced THEN

09. BREAK; //exit and then searching planning solution in PG

10. ELSE A,,,.<—the last action layers in PG

11. ENDIF

12. FOR Vskbe ds.SKBs DO

13. S’ facts in skb that are converted from Sj.,.; according to into/equal in ds.BRs
14. ActlInsSet— service instances in skb that satisfied by S’

15. Aleverc—Ajever UActInsSet

16. ENDFOR

17. Alever—Aievet Unoop(Siever) and add Ajever;in PG // noop(Siever) are persistence actions corresponding to facts in
Stevel

18. Stever+1<=Sjeve U {a. 0Ua. F/a EAjpe} and add Sjeye+;in PG

19. IF PG level off THEN BREAK //Seyer+1 equal Siever

20. level—level+1;

21. ENDWHILE

22. FOR any g€ crgset DO

23. search a path ¢ for g from PG using backward searching
24. IF cexist THEN BREAK

25. ENDFOR

26. RETURN ¢

FIGURE 6. D3L-based global planning algorithm.

At last, an execution path with 4 execution steps D. REPLANNING FOR RUNTIME SELF-ADAPTATION

is generated by a backward searching algorithm [8]: In our previous work [16], we identified three local self-
({ProposeTrain(JN, TJ, d)}, {TakeTaxi(Tom, sdjzu, si, JN), exception exceptions that may occur when a service is
BookTrain(Tom, t, d)}, { TakeTrain(Tom, t, d, JN, TJ, s1, s2)}, invoked: UnPre, UnExe, UnEff. UnPre occurs before invo-
{TakeTaxi(Tom, s2, tju)}). cation, and represents preconditions of this service can’t

14984 VOLUME 6, 2018

X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

IEEE Access

be satisfied by current runtime context. UnExe occurs on
invocation, and means the service fails to run. UnEff occurs
after invocation, and indicates this service doesn’ t obtain the
desired output parameters or effects. These exceptions have
different adaptation requests, and need different adaptation
strategies. The adaptation request for UnPre is to achieve
those unsatisfied preconditions according to current running
state; the request of UnExe is to achieve desired effects
and output parameters of this service according to its pre-
conditions; and the request of UnEff is to also achieve the
desired effects and output parameters according to current
runtime status. All requests can be handled by means of an
IOPE-based planner. We wrapped checking and handling
operations for the three exceptions and a service invocation
into a self-adaptation service activity (SSA).

Except for the three exceptions, a global self-adaptation
exception LocalAdaptFail also was identified, and it can catch
the running failures of SSA, and would be further handled by
a global adaptation strategy at path level. The strategy could
sequentially execute cancel and adaptation operations step
by step, until the goal was achieved or no effects could be
canceled.

In D3LSRAF, we also monitor and handle the four excep-
tions above: UnPre, UnExe, UnEff and LocalAdaptFail, and
improve previous adaptation mechanism through introducing
D3L-based planning algorithms above. The improvement can
guarantee that a D3L-SR request is received by D3LSRAF,
and that high response efficiency and response success rate
are obtained. Local replanning strategy at SSA level and
global replanning strategy at path level play an important role
for the improvement.

UnPre
CheckUnPre !

UnExe el el
service /CheckUnExe rep nnm.g
| o (LocalD3LPlanning)

CheckUnEff I[SSA

FIGURE 7. Concept view of local self-adaptation using local replanning
at SSA level.

UnEff

1) Local Replanning at SSA Level
In D3LSRAF, SSA in our previous work also is used as a
self-adaptive invocation unit for a service, and it can automat-
ically monitor and handle UnPre, UnExe, and UnEff. These
exceptions can be monitored by special procedures that are set
before, on and after service invocation. When an exception
occurs, a local replanning strategy is adopted to repair the
exception. The strategy utilizes LocalD3LPlanning algorithm
to rapidly generate an adaptation path and continues to self-
adaptively execute the path. A concept view about the local
strategy is shown in Fig. 7.

Fig. 8 shows the local self-adaptation exception check-
ing and handling logic in SSA. When a SSA is invoked,

VOLUME 6, 2018

DSRunContext

® Exception

. End

FIGURE 8. Local self-adaptation exception checking and handling process
at SSA level.

there are four main operations (Check UnPre, Invoke service,
Check UnEff, Update UnEff) are executed orderly. And three
local exception monitoring points are respectively set in
Check UnPre, Invoke service, and Check UnEff operations.
If no exception occurs, the SSA can update effects of corre-
sponding service instance into current DSRunContext. Oth-
erwise, when an exception occurs, the Local replanning unit
can immediately catch and deal with it. In the unit, firstly,
an adaptation request is created according to current DSRun-
Context and exception; secondly, D3LLocalPlanning algo-
rithm is invoked to generate a local path for the request; at
last,