
Received December 30, 2017, accepted February 20, 2018, date of publication March 1, 2018, date of current version April 4, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2810848

D3L-Based Service Runtime Self-Adaptation
Using Replanning
XIANGHUI WANG 1,2, (Member, IEEE), ZHIYONG FENG1, (Member, IEEE),
AND KEMAN HUANG3, (Member, IEEE)
1Department of Computer Science and Technology, Tianjin University, Tianjin 300072, China
2Department of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
3Sloan School of Management, MIT, Cambridge 02142, USA

Corresponding author: Keman Huang (keman@mit.edu)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1401201
and in part by the National Natural Science Foundation of China under Grant 61502333, Grant 61572350, and Grant 61503220.

ABSTRACT For business processes based on micro service architecture in an enterprise, failures often occur
because of modified business rules or goals, change of service availability, and dynamical running environ-
ment. Based on dynamical replanning technologies, these failures can be repaired at runtime. However,
semantic conflicts among services from different providers can greatly decrease response efficiency and
response success rate of a business goal. In this paper, we propose a novel service runtime self-adaptation
framework to decrease response time and raise success rate. Distributed dynamic description logic is utilized
to eliminate semantic conflicts among services and provide basic models for carrying out planning among
services. Considering inputs, outputs, preconditions, and effects properties of services, local and global
planning algorithms based on artificial intelligence graph planning are designed. Local planning can rapidly
search a service-based path only including services from a provider, and global planning can try to explore a
path including services from multiple providers. Based on these two algorithms, local and global replanning
strategies are designed to handle runtime exceptions at service level and path level.We implement a prototype
system by means of workflow engine Activiti and business process language BPMN2.0. Experiments show
that compared with previous works, our framework can guarantee higher efficiency and success rate.

INDEX TERMS Running self-adaptation, software service, graph planning, D3L, workflow.

I. INTRODUCTION
With the popularity of micro service architecture [1], in an
enterprise, more and more services related to business oper-
ations emerge. These services may be developed by dif-
ferent departments of this enterprise, or directly obtained
from different service platforms1,2,3 on Internet. Based on
them, various business processes in the enterprise either are
manually created by domain experts by means of special
tools [2], [3], or automatically generated with the help of
service composition technologies [4]–[8]. Thus, a service
ecosystem [9] within the enterprise is formed, including ser-
vices, service providers, and business processes. However,
a business process tends to encounter failures under dynami-
cal running environment. For example, business rules or goals
are modified; running environment is interrupted; or various

1https://www.programmableweb.com 2017-12-23
2https://www.juhe.cn/ 2017-12-23
3https://www.jisuapi.com/ 2017-12-23

exceptions over services (unavailable, unexpected effects,
execution exceptions, etc.). To guarantee robustness of the
service ecosystem, self-adaptation mechanisms for failures at
runtime are urgently required.

Currently, based on artificial intelligence (AI) plan-
ning technology [10], some service runtime self-adaptation
approaches are proposed [11]–[15]. In these approaches,
when a failure occurs at runtime, an adaptation requirement
is determined immediately according to current runtime con-
text; then, a planning operation is utilized to search a currently
feasible path for the requirement from all available services;
at last, the new path is executed by means of off-the-shelf
workflow engines [14], [16], or special process execution
procedures [17], [18]. If the new path succeeds to run, the fail-
ure is repaired successfully.

However, off-the-shelf service runtime self-adaptation
approaches always assume that all services are annotated
by one domain ontology. And a service ecosystem within
an enterprise may adopt distributed ontologies to annotate

14974
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-5887-7775


X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

TABLE 1. Related works about service runtime self-adaptation using replanning.

service semantics, because services may be provided by
different providers (departments or platforms). This brings
two new problems for these off-the-shelf approaches. The
first is that unhandled semantic conflicts among different
ontologies would hinder the judgment about interoperability
among services. For example, Person and Passenger express
the same semantics, although they are from different domain
ontologies; effect fact personAtAddress(Tom, Jinan West) is
true in an domain ontology, and then personAtStation(Tom,
Jinan West) also is true in another domain ontology, because
that Jinan West is not only an instance of Address, but also
of Station. If no measure is adopted for these conflicts,
the response success rate of business goals would decrease.
The second is, for each self-adaptation, the searching space
of these approaches always is created by all services, and
this is time-consuming when only a few of services from one
provider are used in the self-adaptation.

To solve the problems above, we propose a D3L-based
service runtime self-adaptation framework (D3LSRAF) that
can provide higher response success rate and efficiency.
Here, all services annotated by the same domain ontol-
ogy can be modeled as a DDL (Dynamic Description
Logic) system [19], [20], namely Service Knowledge Base
(SKB). In each SKB, existing automatic service composition
approaches [8] can be used to plan a service-based path
for a given request. Multiple SKBs are modeled as a D3L
(Distributed Dynamic Description Logic) system [21], [22],
namely Distributed Service Knowledge Base (DSKB), where
various bridge rules are created to solve semantic conflicts
among concepts, relations among SKBs. For a service request
that annotated by distributed ontologies, we design local
planning and global planning algorithms to search a service-
based path from DSKB. Based on these algorithms, two self-
adaptation strategies are created: local and global replanning
strategies. Both strategies can play an important role to guar-
antee higher response success rate and efficiency of a service
ecosystem. The main contributions of this paper are in the
following folds:

1) D3L-based local and global planning algorithms are
provided. For a service request annotated by distributed
ontologies, local planning can rapidly search a service-
based path only including services from a SKB, and

global planning can plan a path including services from
multiple SKBs to the best extent possible.

2) A novel service runtime self-adaptation framework is
proposed, and it can dynamically repair various failures
at runtime by means of local and global replanning
strategies.

3) Based on Activiti engine and BPMN2.0 language,
a prototype system is developed. A series of exper-
iments show that, compared with previous self-
adaptation approaches, our framework has better
response efficiency and higher response success rate.

The remainder of this paper is organized as follows.
Section 2 describes related works. Section 3 proposes an
overview about D3LSRAF. Section 4 presents some formal
definitions, describes two D3L-based planning algorithms,
and illustrates the self-adaptation mechanism based on
replanning technology. Section 5 presents implementa-
tion details about a prototype system of D3LSRAF.
Section 6 reports the empirical results. Section 7 concludes
the paper.

II. RELATED WORKS
A. SERVICE RUNTIME SELF-ADAPTATION
USING REPLANNING
Recently, there are some approaches related to service run-
time self-adaptation using replanning. The core operations in
these approaches are planning, running and self-adaptation.
When a failure occurs over a service-based process at run-
time, the self-adaptation operation would invoke the planning
operation to replan a new path, and then invoke the running
operation to execute the path. And execution of the path
can repair the failure and guarantee that the final goal of
this process is achieved. These approaches adopted different
planning approaches, runningmechanism and self-adaptation
mechanism, as shown in Table 1.
Based on a process execution engine YAWL, refer-

ences [14] and [15] provided a business process runtime self-
adaptation mechanism. Various exceptions, which needed
to be adapted, were defined in a business process defini-
tion. When an exception occurred at runtime, the monitor
component would create a planning problem according to the
physical facts in the context and precondition/effects of fault

VOLUME 6, 2018 14975



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

task, and then a planning service was invoked to repair the
exception. The planning service would employ an AI planner
based on a partial order planning algorithm to find a plan ful-
filling the adaptation goal. And then the plan was converted to
a recovery process and ran over the YAWL. It is noticed that
these exceptions could be set before or after a service task in
the process. Thus UnPre (preconditons unsatisfied), UnExe
(excution Failure), and UnEff (unexpected effects) [16] for
each service can be repaired at runtime.

Reference [23] used dependency scopes (DSs) to specify
the correct execution for critical parts of business processes.
And when a volatile process variable was modified, an inter-
vention process was generated by a domain-independent
RuG planner according the adaptation goal specified in cor-
responding DS declaration. Just as the approach in [14],
self-adaptation operations are triggered by the predefined
exception monitoring points (volatile variables) in process
definitions. However, exceptions in adaptation or intervention
processes can’t be adapted, because these processes are gen-
erated dynamically and no any exception monitoring point is
set in their definitions. Once these exceptions occur, the main
process would fail to terminate.

References [12] and [17] provided a self-adaptation
approach using context-aware replanning. The approach
could continuously monitor the abnormal situation accord-
ing current context and automatically adapt the main pro-
cess at runtime. The context is defined by a set of domain
objects. Before an activity in a process ran, the current con-
text was checked. When some domain objects had abnormal
status or an abstract activity runs, the process would termi-
nate, and then an AI planning would be invoked to com-
pose existing process fragments into an adaptation process.
In this approach, the concrete monitoring and process run-
ningmechanism can’t be introduced. Different with previous
two approaches, the approach didn’t predefine any excep-
tion monitoring points in the original process definitions,
and it also could handle abnormal situations of generated
adaptation processes. However, when no adaptation process
was found, or an adaptation process failed to run, no further
adaptation measure for the final business goal was adopted.

In the approaches above, the adaptation goals are precondi-
tions or effects of faulted services, and when corresponding
adaptation operations fail, the final business goals can’t be
achieved. Here, we call these adaptation strategies as local
adaptation. Accordingly, if an adaptation strategy targets the
final business goals as adaptation goals, it is called global
adaptation. There are some approaches to provide global
adaptation strategies [6], [13], [18].

Reference [13] proposed a framework that used variability
models to support the runtime adaptation of service com-
positions. The variability models recorded various variants
for a business process, and feature models were created for
these variants. An exception at runtime could be monitored
according the changes of features in the running context, and
then was solved through removing and adding some process
fragments in the main process. These fragments could be

searched by means of SQL-like language from predefined
variability models. And the workflow engine Apache ODE
was employed to execute corresponding process fragments.
The variability models constructed a whole solution space
for a business goal, and the approach could theoretically sup-
port local and global adaptation. However, the construction
of variability models is complexity and closely depends on
domain specialists.

Traditional automatic service composition (ASC)
approaches generally included four phases: planning, dis-
covery, selection, and execution. Reference [6] presented
a scalable architecture for ASC by means of nested work-
flow management. When an exception occurred at runtime,
the nested workflow management module would invoke
HTN and CSP-based planners to generate a new path for
the final goal, and the path was automatically deployed
to a workflow engine to run. Each repair in this approach
targeted the final business goal, and didn’t consider any local
repair, such as local replacement etc. Therefore, this approach
only provides global adaptation strategies, and each repair is
time-consuming.

Reference [18] used a Simplanner to generate an initial
path rapidly, and could solve information lose and ser-
vice unavailable problem during the path ran. When a user
couldn’t provide necessary input parameters before a service
in the initial path ran, the approach would plan a new path
that could produce these parameters. After the new path suc-
ceeded to run, the service continued to run. When the service
was unavailable, the approach would plan and run a new
path for the final goal. Therefore, local and global adaptation
strategies both could be supported by this approach. However,
just like the approach in [6], for service unavailable problem,
it still did’t try any local adaptation strategy. This decreased
the adaptation efficiency of this approach.

In order to overcome the shortcomings of approaches
above, we provided a service runtime self-adaptation frame-
work (ASAF) for local and global adaptation in our previ-
ous works [16]. We presented the formal definition for four
local self-adaptation exceptions: UnPre, UnExe, UnEff, and
a global exception LocalAdaptFail. Given a service-based
process, the framework firstly converted it into a process for
self-adaptation automatically, where local and global self-
adaptation exception monitoring points are respectively set
at service level and at process level automatically. When an
exception occurs at runtime, corresponding exception units
would invoke an IOPE-based AI planner [8] to search an
adaptation process, and then ran the process by means of
the workflow engine Apache ODE. The adaptation process
in the local exception unit would replace the execution of the
faulted service and didn’t affect the running of other parallel
services. And the adaptation process in the global exception
would replace the execution of the main process. Specially,
all adaptation processes also could run self-adaptively.

Although ASAF can solve the service runtime self-
adaptation problems, it assumes that all services are annotated
by one domain ontology, and the searching space for each

14976 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

invocation of the AI planner includes all services regardless
of local and global adaptation. However, in practice, available
services may be from different providers, and ontologies
adopted by different providers may be different. Semantic
conflicts among different ontologies can affect the interop-
eration of services and decrease the response success rate.
Moreover, most local exceptions at service level can be solved
by few services from one provider. If the searching space
for local exceptions is limit as all services from different
providers, the response is time-consuming. Therefore, dis-
tributed semantic service composition technology is needed.

D3LSRAF in this paper improve ASAF through consid-
ering distributed domain ontologies. For local adaptation,
a local planner is adopted to rapidly search a service-based
path respectively in each SKB. And for global adaptation,
a global planner is used to search a path from services in
all SKB. Thus, compared with other approaches, the local
planner can greatly reduce the adaptation time when a local
adaptation runs, because it has smaller searching space;
meanwhile, when the local adaptation fails to run, the global
planner can improve the response success rate through
attempting all possible paths for the original business goal.
These improvements are implemented by means of D3L.
Related works about D3L will be discussed in the next
section.

B. D3L AND SEMANTIC SERVICE COMPOSITION
Dynamic description logic (DDL) combines description logic
and action theory, and is a model to depict real world from
dynamic and static respects [19]. It gives unified and logical
syntax and semantics for concept, formula, and action. DDL
has three components: TBox,ABox,ActBox [20], where, TBox
is a set of assertions related to concepts and relationships,
ABox is a set of individual assertions, ActBox is a set of
atomic actions. Each atomic action in ActBox is modeled
a tuple 〈Pa,Ea〉, Pa and Ea respectively represent satisfied
preconditions before execution and effects after execution.
Elements in Pa and Ea come from ABox.

A semantic service can be modeled into an atomic action
in DDL. Thus service composition problem can be converted
into a DDL-based planning problem P=〈T ,Ac,A,G〉 [24].
Here, T is a TBox expressing concepts and relationships
related to this problem; Ac is a ActBox describing atomic
actions related toweb services;A andG both areABox respec-
tively describing initial state and goal state of the planning
problem. Therefore, finding a service composition solution
is converted into finding planning path for the planning prob-
lem.Here, semantics in aDDL are from one domain ontology.

Distributed dynamic description logic (D3L) is expansion
of DDL to deal with distributed and heterogeneous knowl-
edge [21], [22]. It has four components. The first is a set
of independent DDL systems, and each system has its own
knowledge representation form and reasoning mechanism.
The second is distributed TBox (DTB) to record link rules
between concepts, relationships and actions. The third is dis-
tributed ABox (DAB) to record link rules between individuals.

The fourth is the reasoning mechanism based on DTB and
DAB. The reasoning on D3L system has two ways: local
reasoning and global reasoning. The former is to reason in
each independent DDL system. The latter links all DDL
systems as a whole by link rules, and then carries on the
reasoning considering all DDL systems.

It is noticed that the link rules in DTB and DAB are
core to eliminate semantic conflicts among different domain
ontologies, also called bridge rules. These rules can be gen-
erated by means of the state-of-the-art ontology alignment
approaches [25], [26], which can be utilized to produce equiv-
alence, subclass or sameAs relations among concepts and
individuals in domain ontologies.

Based on D3L, a semantic service composition problem
under distributed domain ontologies can be modeled as a
local or global planning problem on multiple DDL sys-
tems. However, existing local and global reasoning algo-
rithms [27] for D3L are not usable, because there are some
differences between actions in DDL and services. For exam-
ple, except for preconditions and effects, inputs and outputs
also are needed for a service; some effects only describe
the world permanent state and can’t be altered, such as
addressAtCity(sdjzu,Jinan), but others present the tempo-
rary state and can be canceled by another service, such
as trainIsBooked(D404, Tom, 2017-11-15). Therefore, spe-
cial reasoning algorithms are needed for distributed service
composition problem. In this paper, we model each plan-
ning is a D3L-based reasoning problem, and design special
local and global planning algorithms to generate a service-
based path through improving classical AI graph planning
algorithm [10].

C. RUNTIME CONTEXT AND HUMAN SERVICE
In previous works, runtime context provided necessary infor-
mation for solving runtime self-adaptation problem, and
they can be used to determine abnormal running situations
and various adaptation requirements. In [17], the context
is composed by various domain objects, and status of all
objects can affect current running state of a business process.
In [13] and [23], process variables related to various depen-
dence scopes and process features are respectively put in the
context. Their values can affect the main process structure
changes. In most works [14]–[16] and [18], the execution
effects of each service in a business process are recorded in
the context. Through continuously comparing the physical
context with expected preconditions and effects of services,
UnPre and UnEff exceptions can be automatically deter-
mined. And the initial state of various adaptation require-
ments can be directly obtained from current context.

In order to support various adaptation strategies, ASAF
in our previous work utilized the context to record the run-
ning state, current available services, and execution histories
of a service-based process. The running state includes out-
put parameter facts and effects facts of completed services,
and they play an important role in determining abnormal
situation and the initial state of adaptation requirements.

VOLUME 6, 2018 14977



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 1. D3LSRAF at concept level.

Current available services can be used to define the problem
domain of planning for corresponding adaptation require-
ment. And execution histories can be used in a global adap-
tation to cancel the completed effects.

However, under distributed ontologies, the context may
include objects or state literals annotated by multiple domain
ontologies. And it can’t be consider in previous work. There-
fore, in this paper, we propose Distributed Service Run-
time Context concept to support context with distributed
semantics.

Furthermore, in practice, there are some tasks that can’t be
replaced by software services, such as taking taxi, checking
in hotel, etc. And these tasks generally can play an important
role during planning a complex service-based path. For exam-
ple, in a whole travel process, searching and booking train,
and calling a taxi are main services that can be obtained from
the Internet, but, taking taxi and taking train also are the key
human tasks in the travel. In order to guarantee the whole-
ness of the travel process, these human tasks also should be
choreographed together with those real services. From the
view of SOA [28], these tasks can be considered as services
(human services), and can be described by unified interface
description language just as services on Internet [29]. In this
paper, we consider a human service as a common software
service, and also use IOPE to describe its function.

III. D3LSRAF OVERVIEW
D3LSRAF is a service runtime self-adaptation framework,
and uses D3L-based replanning technology to self-adaptively
respond a service request on a distributed service knowledge
base. Fig. 1 shows an overview of D3LSRAF at concept level.
Distributed service knowledge base (DSKB) is the basis of

D3LSRAF, and it organizes services from different providers
into multiple service knowledge bases. Those services from
the same domain ontology are expressed as a service knowl-
edge base (SKB). And each SKB records not only static
description including semantics for IOPE and invocation
details at syntactic level, but also dynamic features about
known facts (individuals and their relations) and available
service instances (actions for planning). To eliminate seman-
tic conflicts among different SKBs, various bridge rules are
created before the framework runs, mainly including sub-
class and equivalence rules among concepts and predicates
in different domain ontologies. Rule reasoning is needed to
obtain new rules according to created rules when a new SKB
is added.

A request handled by D3LSRAF is composed of known
facts, desired parameters, and desired effects. Semantics
of these components are from multiple domain ontologies
in DSKB. When a request is received, D3LSRAF firstly
uses D3L-based global planning to search a path including

14978 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

services from multiple SKBs (global path for short) for this
request from DSKB; then, it executes the path according
known facts in the request and automaticallymonitors various
exceptions at runtime.

During the running, the path would encounter three run-
ning situations, andD3LSRAFwould adopt various strategies
to deal with them. The first is that no exception occurs.
Thus, D3LSRAF would response the user successfully, that
is, return the values for desired parameters and achieve the
desired effects. The second is that an exception at system level
occurs, such as process executor breaks down. D3LSRAF
would response the user with corresponding failure informa-
tion. The third running situation is that a service fails to run
because an exception that may be repaired occurs, such as the
preconditions not satisfied, unavailable etc. Thus, D3LSRAF
uses local replanning to repair the faulted service at runtime.
The local replanning firstly creates an adaptation request
for the repair according current distributed service runtime
context; then, it uses D3L-based local planning to rapidly
search a path only including services from single SKB (local
path for short) for the adaption request; next, it executes the
local path. If the local replanning succeeds, the running of
the original path doesn’t be affected; Otherwise, D3LSRAF
terminates all running services in the path, and adopts global
replanning to repair the whole path. The global replanning
firstly creates an adaptation request that can achieve the
desired parameters and effects of the main path according the
runtime context; secondly, it searches a global path through
exploring all possible paths for the original service request;
thirdly, it executes and monitors the global path. If the global
replanning succeeds, D3LSRAF would response the user
successfully. Otherwise, it would response the user with fault
information. Specially, all new paths during replanning also
run self-adaptively.
Distributed service runtime context provides key infor-

mation for the self-adaptively running of service requests.
It records running status, running histories of each request,
and current available services. The running state includes
known facts produced by completed service instances. These
facts are continuously updated and monitored during the run-
ning of these requests. Various exceptions can be immediately
thrown when the physical running state is inconsistent with
the expected state. Specially, semantics of these facts may be
from distributed domain ontologies because service instances
that produce them may be from different SKBs. The running
histories of a path record which fact is produced by which
service instance, and they are used in the global replanning to
cancel those redundant effects in current running state.

IV. DETAILS FOR D3LSRAF
A. PROBLEM MODELING
In D3LSRAF, various services are organized into SKBs
according to domain ontologies that they use, and their IOPE
functional properties are annotated. Considering the dynamic
respects of services, we model each a SKB as dynamic

description logic (DDL) system that combines description
logic and action theory, shown in Definition 1.
Definition 1 (Service Knowledge Base (SKB)): A service

knowledge base is a DDL system, and is expressed as a tuple
skb = 〈D,TP,Facts,Actions〉, where,
• D is a TBox of this DDL system, and includes semantic
concepts and their relation assertions;

• TP is a set of services, and their IOPE are annotated by
D;

• Facts is an ABox of this DDL system and includes
two types of known facts: parameter facts(IOFacts) and
predicate facts (PEFacts) [16], and these facts also are
annotated by D;

• Actions is an ActBox of this DDL system, and they can
be generated by services in TP according to different
assignments for input parameters. That is, there is a
many-to-one mapping from Actions to TP.

According to Definition 1, one domain ontology can be
used by multiple SKBs, but, one SKB only uses one domain
ontology. In practice, the cooperation between services from
different SKBs with different domain ontologies is diffi-
cult, because there are many semantic conflicts among these
domain ontologies. For example, skb1, skb2, skb3 are three
SKBs, an instance of concept Station in skb1 can’t be consid-
ered as the instance of Address in skb3, but, Station naturally
is a subclass of Address; concept Person in skb1 is not equal
to Passenger in skb2, but, both represent a human.

To achieve the reasoning between services from different
SKBs, we use D3L to describe distributed and heterogeneous
knowledge inmultiple SKBs. In D3L, various bridge rules are
the key to eliminate semantic conflicts among DDL systems.
Basic bridge rules among concepts, relations, actions, and
individuals in different DDL systems had been defined and
are used in reasoning [21]. However, there are two main
differences between a DDL system and a SKB. The first
is that all individuals and actions in the DDL systems are
known before a reasoning runs, however, Facts (correspond-
ing to individuals in DDL) and Actions (corresponding to
actions in DDL) components in SKBs are unknown before
a reasoning runs. In SKBs, the reasoning is used to plan a
service-based path according the cooperation relation among
services, and it mainly depends on the concepts and relations
in the component D of SKBs. The second is that equiva-
lence and equivalence with conditions relationship among
concepts and relations in different SKBs often are used
during the reasoning among SKBs. For an instance, per-
sonAtAddress(Person, Address) and personAtStation(Person,
Station) are relation predicates respectively in the SKB skb1
and skb2. Person in the two SKBs are equal concepts, and
Station in skb2 is the subclass of Address in skb1. If the
fact personAtStation(Person: Tom, Station:s1) in skb2 is true,
then it is reasonable that the fact personAtAddress(Person:
Tom, Address:s1) in skb1 also is true. Here, Tom and s1
respectively are instances of Person and Station. Meanwhile,
if personAtAddress(Person: Tom, Address:s1) in skb1 is true
and s1 is the instance of Station, and then we can assert that

VOLUME 6, 2018 14979



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

personAtStation(Person: Tom, Station:s1) is true in skb2.
That is, the literals of personAtAddress(Person, Address) are
equal to personAtStation(Person, Station) when its second
variable is an instance of Station except for the same param-
eter assignment. Considering the two differences above,
we improve old bridge rules to make them be used for the
reasoning among SKBs. The rules only specify the links
among concepts and relations in different SKBs, shown in
Definition 2.
Definition 2: Let KBi and KBj be two SKBs, satisfying

KBi.D 6= KBj.D, concept a ∈ KBi.D and b ∈ KBj.D, relation
c ∈ KBi.D and d ∈ KBi.D, and then a bridge rule from KBi
to KBj is one of the followings:

• KBi : a
⊆
→ KBj : b represents a is the subset of b, that

is, a can replace b at semantic level;
• KBi : a

⊇
→ KBj : b represents a is the superset of b, that

is, a can be replaced by b at semantic level;
• KBi : a

=
→ KBj : b represents a is the equivalent of b;

• KBi : c
⊆
→ KBj : d represents that if c is true in

KBi, and then d is true in KBj when they have the same
assignments;

• KBi : c
⊇
→ KBj : d represents that if d is true in

KBj, and then c is true in KBi when they have the same
assignments;

• KBi : c
=F
→ KBj : d represents c in KBi is true if and only

if d is true in KBj when they have the same assignments
and the conditionF is true, whereF is a limited condition
for semantics of variable values in c.

In the following, we call the first and fourth rules into
bridge rules; the second and fifth rules onto bridge rules; the
third and sixth rules equivalence bridge rule. For simplicity,

given two literals a, b, and a rule x, we use a
x

→ b to
represent that corresponding relation predicates a.pred and

b.pred satisfy a.pred
x

→ b.pred , and that a and b have the
same assignment.

In D3LSRAF, bridge rules are created by an offline
rule reasoning operation. The operation firstly adopt exist-
ing ontology alignment technologies [25], [26] to deter-
mine equivalence, into, onto rules according to equivalence
and subclass relations between concepts and predicates in
two SKBs; then adjust the reasoning results manually to
guarantee the correctness. When a new SKB is added, all
rules between the SKB and each existing SKB are cre-
ated according to the process above. Ultimately, all rules
are obtained between any two SKBs. The rule reasoning
operation is time-consuming and semi-automatically, there-
fore, it is completed before D3LSRAF responds service
requests.
Definition 3 (Distributed Service Knowledge Base

(DSKB)): A distributed service knowledge base is a D3L
system, and is expressed as a tuple dskb = 〈SKBs,BRs〉,
where,
• SKBs is a set of SKBs, and each SKB conforms to
Definition 1;

• BRs is aDTB of this D3L system, and includes all bridge
rules among SKBs.

Generally, a service request is expressed as a tuple:
rq = 〈In, Init,Out,Goal〉,where In represents known param-
eter facts, Init represents known predicate facts, Out repre-
sents desired output parameters, and Goal represents desired
effects. All facts and their semantics in the request are from
one SKB. Here, for convenience, we call the service request
Single Domain Service Request (Single-SR). However, if we
want to search a path from a DSKB, a service request
with distributed semantics is expected. Here, it is called
D3L-based Service Request (Definition 4).
Definition 4 (D3L-Based Service Request (D3L-SR)): Let

ds be a DSKB, a service request based on ds is a tuple
rq = 〈In,Out, Init,Goal〉, where,
• In is a distributed ABox, satisfying

In ⊆
⋃

∀skb∈ds.SKBs

skb.IOFacts. (1)

representing known parameter facts, and each param-
eter facts is a tuple 〈skb, semType, value〉 where the
components respectively represent the SKB providing
semantics, its semantic type, and its real value;

• Init is a distributed ABox, satisfying

Init ⊆
⋃

∀skb∈ds.SKBs

skb.PEFacts. (2)

representing known predicate facts, and each predicate
fact is a tuple 〈skb, pred, literal〉 where the components
respectively represent the SKB providing semantics,
corresponding predicate, and the literal that grounded by
parameter facts in In;

• Out is a desired output parameter set, and each parameter
is a tuple 〈skb, semType, paraname〉 where the compo-
nents respectively represent the SKB providing seman-
tics, its semantics, and unique ID;

• Goal represents desired goal state, and each element
is a tuple 〈skb, pred, literal〉, where the components
respectively represent the SKB providing semantics,
corresponding predicate, and the literal that grounded by
parameters In and Out.

According to Definition 4, if a DSKB only has one SKB,
all D3L-SR requests on the DSKB are Single-SR.

Given a D3L-SR rq = 〈In, Init,Out,Goal〉, if there is
a parameter fact set Out’ that can provide an assignment
for rq.Out, and then rq.Goal can be grounded by Out’ as
predicate facts Goal’. Thus, a new service request rq’ =
〈In, Init,Out’,Goal’〉 is called a concrete D3L-SR.

Given a Single-SR based on a SKB, considering known
parameter and predicate facts as an initial state, desired
outputs and effects as a goal, and the Actions in the SKB
as a problem domain, then searching a solution for the
request is converted into a classical AI planning problem
in the SKB. Thus, existing planning algorithms for ser-
vice composition can be used to obtain a solution [8]. The
solution is a service execution path that can be defined

14980 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

as a sequence 〈a11, · · · , a1n, · · · , ak1, · · · , akp〉 where each
element is an action set and called an execution step [8].
However, for a D3L-SR based on a DSKB, existing plan-
ning algorithms can’t be used, because they can’t consider
distributed domain ontologies and can’t solve the semantics
conflicts among SKBs. Here, we call this planning problem
D3L-based Service Planning Problem (Definition 5).
Definition 5 (D3L-Based Service Planning Problem

(D3L-SPlan)): Given a DSKB ds, and a D3L-SR rq,
A D3L-based service planning problem is to search an action
execution path p = 〈a11, · · · , a1n, · · · , ak1, · · · , akp〉 from
ds.SKBs, that can achieve rq with the help of ds.BRs.
In the following, we use a tuple dp = 〈ds, rq〉 to represent

a D3L-SPlan. An action execution path for a D3L-SPlan is
composed of service instances, and also is called service-
based path. Specially, the path is called local path if it only
includes services from one SKB, and is called global path if
it includes services from different SKBs.

When a global path runs, it may produce facts annotated
by different domain ontologies, because it may include ser-
vices from different SKBs. To support various runtime self-
adaptation, the service runtime context of a request will
record these facts and services producing them. To dis-
tinguish with service runtime context under single ontol-
ogy [16], we call this context Distributed Service Runtime
Context (Definition 6).
Definition 6 (Distributed Service Runtime Context

(DSRunContext)): Given a DSKB dskb, sr is a D3L-SR for
dskb, a distributed service runtime context for sr at moment t
is a tuple εsr(t) = 〈Ds,Fs,As,DF,CFs,AF〉, where,
• Ds is a set of domain ontologies in dskb, satisfying
Ds =

⋃
skb∈dskb.SKBs skb.D;

• Fs is a set of known facts currently, satisfying
Ds =

⋃
skb∈dskb.SKBs skb.Facts;

• As is a set of service instances, satisfying
Ds =

⋃
skb∈dskb.SKBs skb.Actions;

• DF is a many to one mapping DF : Fs → Ds, and
represents which facts in Fs are annotated by which
ontology in Ds;

• CFs is a set of revocable facts, satisfying CFs ⊆ Fs;
• AF is a many to one mapping AF : CFs → As, and
represents which facts are produced by which service
instances.

In D3LSRAF, DSRunContext will be monitored contin-
uously to determine abnormal running situations, and is
utilized to generate various adaptation requests for these
abnormal situations. Specially, the revocable facts are those
world-altering effect facts that can be canceled, such as train-
IsBooked(Tom, D404, 2017-01-02) etc. And it is specified
manually in the effect description of services, as in [16].

B. D3L-BASED LOCAL PLANNING
In D3LSRAF, the D3L-based local planning is used in
a local replanning strategy, and it can rapidly search an
adaptation path for a D3L-SR request. To raise plan-
ning efficiency, it should search the path from as few as

possible services. Here, we design a D3L-based local plan-
ning algorithm(LocalD3LPlanning), which can concurrently
search a local path for given request in each SKB. Once a path
is found from one of SKBs, the algorithm terminates. Given
a Single-SR based on a SKB, the searching in the SKB can
be achieved by existing planning approaches [8]. However,
requests in D3L-based local planning are D3L-SR. There-
fore, the algorithm needs to convert a D3L-SR request into a
Single-SR before the searching in a SKB runs. Bridge rules
play a key role during the conversion. Let kb be a SKB, BRs
be a set of bridge rules, rq be a D3L-SR, rq’ be a single-SR,
the conversion illustration from rq to rq’ in kb is shown in
the following:
• For ∀p ∈ rq.In, if ∃sem ∈ kb.D, satisfying

p.semType
⊆/=
→ sem, and then put 〈kb, sem, p.value〉 into

rq’.In;
• For ∀p ∈ rq.Init , if ∃pred ∈ kb.D, satisfy-

ing p.pred
⊆/=/=F
→ pred , and then put 〈kb, pred,

replace(p.literal, p.pred, pred)〉 into rq’.Init, where
replace() represents replacing p.pred in p.literal with
pred;

• For ∀p ∈ rq.Out , if ∃sem ∈ kb.D, satisfying

p.semType
⊇/=
→ sem, and then put 〈kb, sem, p.paraname〉

into rq’.Out;

• For ∀p ∈ rq.Goal, if ∃pred ∈ kb.D, p.pred
⊇/=
→ pred ,

and then put 〈kb, pred, replace(p.literal, p.pred, pred)〉
into rq’.Goal.

Here, a
x/y
→ b⇔ a

x
→ b ∨ a

y
→ b.

FIGURE 2. D3L-based local planning algorithm.

Algorithm 1(Fig. 2) shows details of D3L-based local plan-
ning. In each SKB, given D3L-SR firstly is converted into a
Single-SR according to the illustration above (row 03), and
then, based on the Single-SR, an IOPE-based graph planner
is invoked to search a local path (row 04). Once a path is
found, the algorithm would terminate and return the path
(rows 05-07). Otherwise, the algorithm would terminate
until all SKBs have been searched. Ultimately, null will be
returned. Specially, for all SKBs, the searching process runs
concurrently (row 02).

An example is shown here to describe execution pro-
cedure of Algorithm 1. Let skbs be a set of SKBs,

VOLUME 6, 2018 14981



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

BRs be a set of bridge rules, rq1 be a D3L-SR, then
dp1 =<< skbs,BRs >, rq1 > is a D3L-SPlan problem,
where,
skbs = {skb1, skb2}, here, skb1.TP = {TakeTaxi},

skb2.TP = {ProposeTrain, BookTrain, TakeTrain},
BRs = {skb2 : Person

=
→ skb1:Person, skb1:Vehicle

w
→

skb2:Train, skb1: vehicleCrossCity
w
→ skb2:trainCrossCity,

skb1:vehicleIsBooked
w
→ skb2:trainIsBooked, · · · },

rq1.In = {〈 skb1, Person, Tom〉,〈 skb1, City, JN〉, 〈 skb1,
City, TJ 〉, 〈 skb1, Date, d〉},
rq1.Init = {〈 skb1, personAtCity(Tom, JN)〉 } where the

component pred in each fact is omitted,
rq1.Out = {〈 skb1, Vehicle, v〉,〈 skb1, Address, s1〉},
rq1.Goal = {〈 skb1, vehicleFrom(v, s1)〉, 〈 skb1, vehicle-

CrossCity(v, JN, TJ)〉, 〈 skb1, vehicleIsBooked(Tom, v, d)〉}.
According to the algorithm above, the searching operations

carry out in skb1 and skb2 concurrently. When in skb1, rq1
doesn’t be converted because semantics of all parameters and
literals are from skb1. Thus, no solution for rq1 is found in
skb1. When in skb2, rq1 would be converted into rq1’:
rq1’.In={〈 skb2, Person, Tom〉, 〈 skb2, City, JN〉, 〈 skb2,

City, TJ〉, 〈 skb2, Date, d〉},
rq1’.Init={〈 skb2, personAtCity(Tom, JN)〉 },
rq1’.Out={〈 skb2, Train, v〉, 〈 skb2, Station, s1〉},
rq1’.Goal={〈skb2, trainFrom(v, s1)〉, 〈 skb2, train-

CrossCity(v, JN, TJ)〉, 〈 skb2, trainIsBooked(Tom, v, d)〉}.
Finally, a path 〈{ProposeTrain}, {BookTrain}〉 is returned

from skb2, and the algorithm terminates.
The advantage of LocalD3LPlanning is that it can concur-

rently search a local path frommultiple SKBs. And compared
with the searching at once from all services in all SKBs,
the planning time can greatly decrease because there are
fewer services in each SKB.

C. D3L-BASED GLOBAL PLANNING
LocalD3LPlanning only finds a local path. However, in some
cases, to achieve a D3L-SR, services from different SKBs are
needed to cooperate with each other. That is, a global path
is needed for a D3L-SPlan problem. Unfortunately, classical
service composition algorithm [10] only can be used when a
request is a Single-SR and all services are annotated by one
domain ontology. To obtain a global path, we improve the
classical algorithm to support the planning in a DSKB, and
the improved algorithm is called D3L-based global planning
algorithm (GlobalD3LPlanning). Fig. 3 shows the detailed
process of this algorithm.
GlobalD3LPlaning firstly constructs a planning graph

according to a DSKB, and then searches a global path for a
D3L-SR based on the graph. The graph would be extended
if no path is found, and the searching operation continues
until it levels off or its number of layers already reaches a
specified max value. Just like the IOPE-based graph plan-
ning algorithm [8], the graph in GlobalD3LPlanning also
includes two types of layers: state and action, and they are
alternated. A state layer is composed of facts, and they may

FIGURE 3. The detailed process of GlobalD3LPlaning algorithm.

be a known parameter (parameter fact), such as an address,
a train, etc. or a predicate literal (predicate fact), such as per-
sonAtAddress(Tom, sdjzu), addressAtCity(sdjzu, JiNan), etc.
These facts are generated by actions in the previous action
layer. The actions include two types: persistence action [10]
and service instance. A persistence action corresponds to a
fact in the previous state layer, and its precondition and effect
both are the fact. A service instance is an invocation for a
service where its input parameters are instantiated. When the
invocation really occurs, new facts would be produced in the
next state layer. Different with the classical planning graph,
the facts and actions may be from different SKBs. Specially,
each service instancemust be satisfied by facts in the previous
state layer according to BRs (Definition 7).
Definition 7 (State Layer Satisfying Service Instance): Let

S be a state layer, a be a service instance, BRs be a bridge rule
set, we say S satisfies a when and only when a.I and a.P are
included by S directly or through BRs:

S
satisfy
→ a⇔ ∀c∃l(c ∈ (a.I t a.P) ∧ l ∈ S)

∧{[(skbl = skbc)→ (l = c)]

∨

[
(skbl 6= skbc)→ (l

⊆/=/=F
→ c)

]
} (3)

Fig. 4 shows a planning graph in GlobalD3LPlanning,
where service instances in A0 can be satisfied by facts in
S0 according Definition 7. It is noticed that instances in
skb1 are satisfied by facts in skb1, and instances in skb2
are satisfied by skb2 and skb1. Here, bridge rules between
skb1 and skb2 are used when inputs and preconditions of
instances in skb2 are matched with facts in skb1. Similarly,
rules between skb2 and skb3 are used for matching facts in

14982 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 4. A planning graph in GlobalD3LSearch. Note. ri,j represents
bridge rules between skbi and skbj .

skb2 with inputs and preconditions of instances in skb3. And,
for i ≥ 1, Si is generated by service instances and persistence
actions in Ai−1.
In GlobalD3LPlanning, the planning graph would be

extended layer by layer, and after it is extended every time,
two new layers are added: one is an action layer; another
is a state layer. In each extending, the key operation in the
following is to determine whether or not the original D3L-SR
is satisfied by the last state layer (Definition 8).
Definition 8 (State Layer Satisfying D3L-SR): Let S be a

state layer, rq be a D3L-SR, BRs be a bridge rule set, and we
say S satisfies rq when and only when there is a subset S’ of
S and a mapping f : rq.Out ∪ rq.Goal → S’, satisfying the
four situations in the following:
• If x ∈ rq.out and skbx = skbf (x), then f (x) ∈
S’.ParaFacts ∧ x.semType = f (x).semType;

• If x ∈ rq.out and skbx 6= skbf (x), then f (x) ∈

S’.ParaFacts ∧ x.semType
⊇/=
→ f (x).semType;

• If x ∈ rq.Goal and skbx = skbf (x), then f (x) ∈
S’.PEFacts ∧ xgrounded = f (x);

• If x ∈ rq.Goal and skbx 6= skbf (x), then f (x) ∈

S’.PEFacts ∧ xgrounded
⊇/=/=F
→ f (x).

Here, skbx represents the skb where element x is; xgrounded
is a literal that are grounded by the mapping values of rq.Out.

We use S
satisfy
→ rq simply to denote rq is satisfied by S.

It is noticed that, if S
satisfy
→ rq, we can obtain a concrete

D3L-SR rq’ for rq: rq′ = 〈 rq.In,{f(x)| x∈ rq.Out}, rq.Init,
{f(x)| x∈ rq.Goal}〉. Specially, there may be multiple subsets
of S that conform to Definition 8. Thus concrete D3L-SR for
rq may have more than one, and Algorithm 2(Fig. 5) shows
the generation process of concrete D3L-SR for rq.
Firstly, the algorithm computes all assignments for rq.Out

(rows 02-05). Then it uses these assignments respectively to
instantiate rq.Goal, and multiple goal instances are produced
(rows 06). At last, it checks each goal instance whether or not
satisfied by S, and a concrete D3L-SR request is generated
when the goal instance is satisfied (rows 07-10).

Specially, finding semantically matching parameter facts
from S is a key operation in Algorithm 2. Here, for a parame-
ter fact p in S, and an output parameter g in rq.Out, we say p
matching g when one of two conditions in the following are
satisfied:
• p.semType ⊆ g.semType, when skbp = skbg;

• p.semType
⊆
→ g.semType, when skbp 6= skbg.

Once concrete D3L-SR requests are produced, the search-
ing for each request from current planning graph would be
carried out. GlobalD3LPlanning would be ended as long as
one solution is founded. Otherwise the graph would con-
tinue to be extended when it doesn’t level off and not reach
specified max layer number. GlobalD3LPlanning is shown
in Algorithm 3(Fig. 6).

Here, we illustrate GlobalD3LPlanning through an exam-
ple. Given a D3L-SPlan problem dp2= 〈 〈 SKBs, BRs〉, rq2〉,
where, a DKBS 〈 SKBs, BRs〉 is the samewith dp1 in previous
section, and rq2 is described in the following:
rq2.In = {〈 skb1, Person, Tom〉, 〈 skb1, City, JN〉, 〈 skb1,

City, TJ〉, 〈 skb1, Date, d〉, 〈 skb1, Address, sdjzu〉,〈 skb1,
Address, tju〉},
rq2.Init = {〈 skb1,personAtAddress(Tom, sdjzu)〉, 〈 skb1,

addressAtCity(sdjzu, JN) 〉, 〈skb1, addressAtCity(tju, TJ)〉},
rq2.Out = {〈skb1, Vehicle, v〉},
rq2.Goal = {〈skb1, vehicleCrossCity(v, JN, )〉, 〈skb1,

personAtAddress(Tom, tju)〉}.
According to Algorithm 3, state and action layers in a

planning graph for dp2 are shown in the following:
S0 = {〈skb1, Person, Tom〉, 〈skb1, City, JN〉, 〈skb1,

City, TJ〉, 〈skb1, Date, d〉, 〈skb1, Address, sdjzu〉, 〈skb1,
Address, tju〉},
A0 = {ProposeTrain(JN, TJ, d), · · · },
S1 = S0∪ {〈skb2, Train, t〉, 〈skb2, Station, s1〉,
〈skb2, Station, s2〉, 〈skb2, trainFrom(t, s1)〉, 〈skb2,
trainTo(t, s2)〉, 〈skb2, trainCrossCity(t, JN, TJ)〉, 〈skb2,
stationAtCity(s1, JN)〉, 〈skb2, stationAtCity(s2, TJ)〉, 〈skb2,
trainIsValid(t, d)〉, · · · },
A1 = A0cup {BookTrain(Tom, t, d), TakeTaxi(Tom, sdjzu,

s1, JN), · · · }∪persistenAction(S1),
S2 = S1∪ {〈skb2, trainIsBooked(Tom, t, d)〉, 〈skb1, person-

AtAddress(Tom, s1)〉, · · · },
A2 = A1∪ {TakeTrain(Tom, t, d, JN, TJ, s1, s2),· · · }∪

persistenAction(S2),
S3 = S2∪ {〈skb2,personAtStation(Tom, s2)〉,· · · },
A3 = A2∪ {TakeTaxi(Tom, s2, tju, TJ),· · · },
S4 = S3∪ {〈skb1,personAtAddress(Tom, tju)〉}.
At state layer S4, we can find an parameter fact
〈skb2, Train, t〉 that can instantiate the parameter 〈skb1,
Vehicle, v〉 in rq2.Out, and a concrete request that can be
satisfied by S4 is obtained: rq2’ = 〈rq2.In,rq2.Init, {〈skb2,
Train, t〉}, {〈skb2, trainCrossCity(t, JN, TJ)〉, 〈skb1, person-
AtAddress(Tom, tju)〉}〉. The rules are used from Si to Ai are
shown in the following:

From S0 to A0: skb1: City
=
→ skb2: City, skb1: Date

=
→

skb2: Date;
From S1 to A1: skb2: Station

⊆
→skb1:Address;

From S2 to A2: skb1: personAtAddress
=para2:Station
→ skb2:

personAtStation, where the condition para2:Station represents
the second variable value in the personAtAddress is an
instance of Station in skb2;

From S3 to A3: skb2: personAtStation
⊆
→skb1:

personAtAddress.

VOLUME 6, 2018 14983



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 5. Generate concrete D3L-SR requests algorithm.

FIGURE 6. D3L-based global planning algorithm.

At last, an execution path with 4 execution steps
is generated by a backward searching algorithm [8]:
〈{ProposeTrain(JN, TJ, d)}, {TakeTaxi(Tom, sdjzu, s1, JN),
BookTrain(Tom, t, d)}, {TakeTrain(Tom, t, d, JN, TJ, s1, s2)},
{TakeTaxi(Tom, s2, tju)}〉.

D. REPLANNING FOR RUNTIME SELF-ADAPTATION
In our previous work [16], we identified three local self-
exception exceptions that may occur when a service is
invoked: UnPre, UnExe, UnEff. UnPre occurs before invo-
cation, and represents preconditions of this service can’t

14984 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

be satisfied by current runtime context. UnExe occurs on
invocation, and means the service fails to run. UnEff occurs
after invocation, and indicates this service doesn’t obtain the
desired output parameters or effects. These exceptions have
different adaptation requests, and need different adaptation
strategies. The adaptation request for UnPre is to achieve
those unsatisfied preconditions according to current running
state; the request of UnExe is to achieve desired effects
and output parameters of this service according to its pre-
conditions; and the request of UnEff is to also achieve the
desired effects and output parameters according to current
runtime status. All requests can be handled by means of an
IOPE-based planner. We wrapped checking and handling
operations for the three exceptions and a service invocation
into a self-adaptation service activity (SSA).

Except for the three exceptions, a global self-adaptation
exception LocalAdaptFail alsowas identified, and it can catch
the running failures of SSA, and would be further handled by
a global adaptation strategy at path level. The strategy could
sequentially execute cancel and adaptation operations step
by step, until the goal was achieved or no effects could be
canceled.

In D3LSRAF, we also monitor and handle the four excep-
tions above: UnPre, UnExe, UnEff and LocalAdaptFail, and
improve previous adaptation mechanism through introducing
D3L-based planning algorithms above. The improvement can
guarantee that a D3L-SR request is received by D3LSRAF,
and that high response efficiency and response success rate
are obtained. Local replanning strategy at SSA level and
global replanning strategy at path level play an important role
for the improvement.

FIGURE 7. Concept view of local self-adaptation using local replanning
at SSA level.

1) Local Replanning at SSA Level
In D3LSRAF, SSA in our previous work also is used as a
self-adaptive invocation unit for a service, and it can automat-
ically monitor and handle UnPre, UnExe, and UnEff. These
exceptions can bemonitored by special procedures that are set
before, on and after service invocation. When an exception
occurs, a local replanning strategy is adopted to repair the
exception. The strategy utilizes LocalD3LPlanning algorithm
to rapidly generate an adaptation path and continues to self-
adaptively execute the path. A concept view about the local
strategy is shown in Fig. 7.

Fig. 8 shows the local self-adaptation exception check-
ing and handling logic in SSA. When a SSA is invoked,

FIGURE 8. Local self-adaptation exception checking and handling process
at SSA level.

there are four main operations (Check UnPre, Invoke service,
Check UnEff, Update UnEff) are executed orderly. And three
local exception monitoring points are respectively set in
Check UnPre, Invoke service, and Check UnEff operations.
If no exception occurs, the SSA can update effects of corre-
sponding service instance into current DSRunContext. Oth-
erwise, when an exception occurs, the Local replanning unit
can immediately catch and deal with it. In the unit, firstly,
an adaptation request is created according to current DSRun-
Context and exception; secondly, D3LLocalPlanning algo-
rithm is invoked to generate a local path for the request; at
last, the path is executed according the inputs and initial states
in the request, and meanwhile, the exceptions during its exe-
cution also is monitored and handled self-adaptively. During
the replanning, if no path is found inD3LLocalPlanning, or it
fails to run, a global exception LocalAdaptFail is thrown, that
is, the replanning fails to run. Otherwise, the replanning suc-
ceeds; and corresponding SSA will terminate when handled
exception is UnExe or UnEff, or the Invoke service operation
in the SSA continues to runwhen handled exception isUnPre.

TABLE 2. Adaptation requests and available services for local
self-adaptation on faulted service instance si.

Specially, all adaptation requests during local replanning
are generated according to current DSRunContext, and all
are D3L-SR requests. Given a service request sr, a ser-
vice instance si (corresponding to service s) that is run-
ning for achieving sr at moment t, then when one local
exception occurs, its adaptation request and available ser-
vices is created according to Table 2. These are the inputs
of the following D3LLocalPlanning algorithm. Meanwhile,
during the response process of these adaptation requests,
the DSRunContext of sr εsr also are updated.

VOLUME 6, 2018 14985



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 9. Concept view of global self-adaptation using global replanning
at path level.

2) Global Replanning at Path Level
When local exceptions can’t be handled at SSA, correspond-
ing SSA can throw LocalAdaptFail. And a global replan-
ning strategy using GlobalD3LPlanning would be adopted,
as shown in Fig. 9. With the help of GlobalD3LPlanning
algorithm, the algorithm tries to search all possible adaptation
paths for the original request among all SKBs. If the global
replanning strategy fails, then the original request can’t be
achieved.

FIGURE 10. The implementation of global replanning strategy at path
level. Note. cur is the execution step sequence number including faulted
service.

Fig. 10 shows the implementation logic of the global
replanning strategy. The global replanning includes two main
operations: cancel and adaptation. The two operations will
be successively executed in each execution step from the
execution step including faulted service to the first. In each
execution step, the cancel operation firstly is invoked to can-
cel those revocable effects [16] in the execution step; then,
the adaptation operation is used to search an adaptation path
for the final goal of the main path. Once an adaptation path
is found and executed successfully, the global replanning will
terminate with success and the main path runs successfully.
Otherwise, the two operations continue to successively run in
the next execution step. Specially, if no path is found in the
first execution step, or any cancel operation fails to run, then
the global replanning strategy fails to run and the main path
terminates with the failure GlobalAdaptFail.

During the global replanning, some redundant effects
may be produced. And they may affect the exploring of
new possible paths or may produce unnecessary cost. For
example, the effect trainIsBooked(Tom,D404,20170101) is
produced by BookTrain service. However, if the train is
unavailable, a flight should be picked during the replanning.

Thus, trainIsBooked(Tom,D404,20170101) is a redundant
effect and should be eliminated before a flight is booked.
Cancel operations in the global replanning can guarantee that
those redundant effects are canceled no matter whether the
global planning succeeds or not.

Furthermore, in a cancel or an adaptation operation, three
main modules are invoked orderly: Create cancel/adaptation
request, D3LGlobalPlanning, and Execution and Monitor.
Firstly, a D3L-SR request is created according to current
DSRunContext. Table 3 shows the requests for the two opera-
tions, where sr is the original request of the main path, εsr(t) is
the DSRunContext of sr at moment t, si is the faulted service
instance and s is the service related to si, cur is the exe-
cution step including si. Secondly, the D3LGlobalPlanning
algorithm is utilized to search a global path for the request.
At last, the path is executed self-adaptively.

TABLE 3. Requests for cancel and adaptation operations in an execution
step cur.

Specially, a new path in local and global replanning also is
composed of SSAs, and also includes local and global replan-
ning unit at path level. Therefore, when a self-adaptation
exception occurs during the path runs, local and global
replanning would work just like the handling process above.
This mechanism can guarantee that all possible paths are
attempted during the repair. Thus, high response success rate
can be provided. Meanwhile, the use of local replanning
can rapidly carry out the local self-adaption, and effectively
decrease the adaptation time.

V. PROTOTYPE IMPLEMENTATION OF D3LSRAF
According to the architecture of D3LSRAF in Fig. 1, a pro-
totype system of D3LSRAF (D3LSRAFS) mainly imple-
ments four core modules:DSKB management,D3LPlanners,
Execution andMonitor, Self-adaptation Management, shown
as Fig. 11. Here, DSKB management module is used to
organize semantic and syntactic information of available ser-
vices into various SKBs, and to create various bridge rules
among them; D3LPlanners module includes a local planner
for LocalD3LPlanning algorithm (Algorithm 1) and a global
planner for GlobalD3LPlanning algorithm (Algorithm 3),
and they can be invoked to respectively generate local and
global paths in a DSKB; Execution and Monitor module
can provide necessary running environment for these paths,
and automatically catch various self-adaptation exceptions

14986 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 11. The architecture of D3LSRAFS.

and invoke corresponding self-adaptation strategies; Self-
adaptationManagement module would implement operations
related to self-adaptation, including local and global replan-
ning strategies and DSRunContext management.

Obviously, the D3LPlanners module can be implemented
easily through packaging the two D3L-based algorithms into
two planners (LocalD3LPlanner and GlobalD3LPlanner).
Therefore, the following subsections will present the imple-
mentation details of those modules except D3LPlanners.

A. DSKB MANAGEMENT
DSKB management module provides basic information for
the running of other modules. Services are the core elements
in a DSKB. In practice, there are two main implementation
ways of services: SOAP-based and Restful. They have dif-
ferent interface description formats and semantic annotation
formats.

SOAP-based service is a traditional function-oriented web
service, and use WSDL (Web Service Definition Language)
specification to describe functional operation interface and
invocation details. All input/output parameters in operations
conform to XML format [30], and they are encapsulated
into SOAP (Simple Object Access Protocol) messages when
interacting with outside. RESTful services are resource-
oriented, and mainly describe resources, access method, and
access URI. The interaction with RESTful services is gener-
ally through HTTP Protocol.

RESTful services have two types, one is used to rep-
resent resources and doesn’t provide any functions, and
another can provide operations like SOAP-based services
through links between resources and is also called Web API.
The RESTful services in this paper just are the latter.
An API in RESTful service includes URI or parameter-
ized URI template, access HTTP method (GET, POST, PUT,
DELETE), and input/output parameters. Generally, these
APIs are described by common text document. This text has
no machine-understandable semantics. To find and compose
these APIs easily, some machine-understandable description
formats emerge, such as WADL [31], WSDL2.0 [32], and
more lightweight hRESTS [33] etc.

From the view of semantics, existing OWL-S [34],
WSMO [35], SAWSDL [36] etc. can be used to annotate
SOAP-based services. Meanwhile, the semantic annotation

for RESTful services also can be achieved by extending anno-
tation methods for SOAP-based services [37], [38]. In theory,
it is feasible to compose mixed type services together if we
use unified ontology annotation framework for two types of
services [38].

Therefore, it is easy to automatically or manually extract
IOPE of each service from their semantic and syntactic
description documents. According features of various ser-
vices in real world, in the DSKB management module,
we abstract 6 basic entities to create a DSKB: Param, Predi-
cate, Service, SKB, BridgeRule andDSKB. The first three are
used to collect semantic and syntactic details about services
with uniform formats; SKB and DSKB are consistent with
Definition 1 and 3; BridgeRule records bridge rules among
SKBs. All of them provide necessary information for replan-
ning operations in the following. Furthermore, the module
also provides the basic operations that can modify these enti-
ties. Fig. 12 describes the relationship among these entities.

FIGURE 12. Relationship among basic entities related to DSKB.

D3LSRAFS adopts multiple SKB databases and a
BridgeRule database to store information in a DSKB. Each
SKB database includes all services from one provider, and
the BridgeRule database includes all bridge rules between
any two SKBs. After a SKB is created, by means of ontol-
ogy alignment technologies, new bridge rules (Definition 2)
would be generated through comparing semantics in the new
SKB and old SKBs.

B. EXECUTION AND MONITOR
Execution and Monitor module mainly includes three sub-
modules: Convert into business process, Workflow Engine,
and Service Adapter. The Convert into business process can

VOLUME 6, 2018 14987



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

convert a service-based path into a standard executable busi-
ness process; the Workflow Engine is utilized to deploy, run,
and monitor the process; the Service Adapter is adopted to
physically invoke different types of services in a process.
It can be seen that the key for implementation of Execution
and Monitor module is to pick a suitable business process
definition language and a workflow engine.

Generally, WS-BPEL2.0 is used to describe SOAP-based
service processes. It conforms to OASIS standard and is
adopted widely in industrial world [39]. WS-BPEL2.0 sup-
ports common control flow structures, such as sequence
(element 〈sequence〉), parallel (element 〈flow〉) etc. And
definitions of data flow and invocation for web services
respectively are expressed by element 〈assign〉 and 〈invoke〉.
Meanwhile, WS-BPEL2.0 has mature exception handling
mechanism, and a user can set flexible exception handling
strategy in corresponding failure unit. A WS-BEPL2.0 busi-
ness process can run over an existing business process engine,
such as Apache ODE [40]. Unfortunately, it can’t support
RESTful services to date.

Some researches achieved RESTful service process
definition through extending existing BPEL language.
Reference [13] added some activities related to invoke
RESTful services in WS-BPEL2.0: 〈GET 〉, 〈PUT 〉,
〈DELETE〉, 〈POST 〉. This makes it possible to execute a
process with two types of services. However, few mature
business process engines can support such extending in
WS-BPEL2.0.

BPMN2.0 [41] also is a popular business specification,
and it can describe a business process including various
tasks, such as user task, script task etc. And it provides
well extending mechanism to add more types of tasks. Gen-
erally, an existing business engine for BPMN2.0 can sup-
port the extending about its definition to support specific
tasks. For example, the Activiti [42] adds a serviceTask in
BPMN2.0 to custom own business logic. Therefore, through
extending two serviceTasks respectively to invoke RESTful
and SOAP-based services, it is easy to support the service-
based process definition with RESTful and SOAP-based ser-
vices. Moreover, BPMN2.0 also provides exception mecha-
nism that can be used to monitor the exception at runtime.

In D3LSRAFS, we pick BPMN2.0 as the service-based
process definition language, and the Activiti as execu-
tion engine of BPMN2.0. Meanwhile, in order to support
D3LSRAF, we design special business process modeling
notation (BPMN) process specification for a service-based
path, and the specification mainly includes three aspects in
the following.

1) Services in the same execution step are invoked
between two parallel gateways.

2) Each service invocation includes three process activ-
ities: assemble inputs, invoke service, update out-
puts. Here, the invoke service activity is an extended
serviceTask in BPMN2.0, and it implements a SSA
(Fig. 8). That is, it not only includes invocation details
about a physical service, but also encapsulates local

replanning logic. Other two activities both are script-
Task. The assemble inputs activity can assemble input
parameters of the service according to known process
variables, and the update outputs activity will put out-
put parameters of the service in a process variable.
Specially, for those services without output parameters,
update outputs activity can be omitted.

3) In a process, two global error sub processes are
included respectively to handle LocalAdaptFail and
UnKnowFail at runtime. Here, UnKnowFail is used
to represent those exceptions except LocalAdaptFail
at process level. In the sub process for LocalAdapt-
Fail, an extended serviceTask is invoked to execute
global replanning, and is called GlobalAdaptService.
The AssignFail activity in theUnKnowFail sub process
is a scripTask, and is used to return an execution error
to the caller.

FIGURE 13. BPMN diagram for a service-based process.

Fig. 13 shows a BPMN process diagram for a service-
based path 〈{ProposeFlight1}, {BookFlight1,TakeTaxi1}〉.
Here, assign1 and assign2 respectively are assemble inputs
and update outputs activities; ProposeFlight1, BookFlight1,
TakeTaxi1 are invoke service activities; BookFlight1 and
TakeTaxi1 services have no output parameters.
Considering different types of services may exist in a

process, we develop two adapters that respectively are used
to invoke SOAP-based and RESTful services: RESTfulSer-
viceAdapter and SOAPServiceAdapter, and use extended ser-
viceTask to implement them. When a SOAP-based service is
invoked, its invoke service activity is replaced with SOAPSer-
viceAdapter, while for a RESTful service, the activity is
replaced with RESTfulServiceAdapter.
Fig. 14 shows a RESTful service invocation fragment. The

first scriptTask activity (rows 01-05) is used to assemble input
parameters for ProposeFlight1, and the second (rows 16-19)
is used to set output parameters of this service into corre-
sponding process variables. Rows 06-15 show an extended
serviceTask that invokes ProposeFlight1 service with
RESTfulServiceAdapter.

Fig. 15 shows a SOAP-based service invocation frag-
ment. For service BookFlight1, the adapter SOAPSer-
viceAdapter is adopted in corresponding serviceTask activity
(rows 02-03), and the value of property mode is replaced
by concrete operation name in this service, such as Book
(row 05). Other properties are the same with RESTfulSer-
viceAdapter (rows 06-09).

14988 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 14. A RESTful service invocation fragment.

FIGURE 15. A SOAP-based service invocation fragment.

Specially, we package all local replanning logics in a SSA
into each adapter. That is, adapters can automatically monitor
and handle local self-adaptation exceptions on corresponding
service according to current runtime context. When a local
replanning runs in a SSA, other activities paralleled with the
SSA in the process can’t be affected. If the local replanning
fails, then LocalAdaptFail is thrown from corresponding ser-
viceTask. And it will be handled by the error sub process for
LocalAdaptFail, meanwhile, other activities in the process
will terminate to run. If the sub process fails to run, then
UnknowFail is thrown, and an execution error is returned
through UnknowFail error sub process.
In addition, traditional timeout exception and retry strategy

are not considered in D3LSRAFS. And, they lie with the
underlying engine. If they fail to run, the engine can throw
corresponding failure, and D3LSRAFS regards the failure as
an UnExe.

C. SELF-ADAPTATION MANAGEMENT
Self-adaptation Management module implements the local
replanning logics in Fig. 8 and the global replanning log-
ics in Fig. 10. Meanwhile, various management operations

for DSRunContext also are implemented in this module,
including checking the satisfaction of preconditions, updating
execution effects and availability of services. All operations
in this module would be invoked by the Activiti engine
according to the running situation of a process.

Specially, in the replanning logics, the D3LPlanners and
Execution and Monitor modules also are invoked frequently
and new service-based business processes would be gener-
ated and run on the engine. These new processes also have
various self-exception handling logics and also can self-
adaptively run. Fig. 16 presents an illustration for the runtime
self-adaptation mechanism.

FIGURE 16. An illustration for the runtime self-adaptation mechanism in
D3LSRAF.

When ProposeFlight1 activity in process1 encounter an
exceptionUnExe, the adapter ofProposeFlight1firstly would
find a new path by means of LocalD3LPlanner, and then
convert it into a new BPMN process process2 with var-
ious self-adaptation units, at last, self-adaptively run pro-
cess2. If the LocalD3LPlanner doesn’t find any path for
the UnExe or process2 fails to run, and then the adapter of
ProposeFlight1 would throw an exception LocalAdaptFail.
Next, GlobalAdaptService activity in subprocess1 would
invoke GlobalD3LPlanner to find a path for the final goal
of process1, and then self-adaptively run the BPMN process
process3 corresponding to the path. If process3 succeeds to
run, then process1 also succeeds to run. Otherwise, process1
also fails to run. During the running of a business process,
all self-adaptation operations are automatically completed in
the Activiti engine. Therefore, if all exceptions are handled
successfully at runtime, the user doesn’t feel the occurrence
of any exception.

VI. EXPERIMENT EVALUATIONS
A. CASE STUDY AND ENVIRONMENT
Currently, there are no standard test measures for service
runtime self-adaptation framework. Here, we design three
measures from practicability: Effectiveness, Efficiency,
Response success rate.

VOLUME 6, 2018 14989



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

• Effectiveness: it is the most basic measure for a ser-
vice runtime self-adaptation framework. Given a service
request, the framework should plan an initial path for the
request and execute the path. If the initial path fails to
run, corresponding exception should be caught immedi-
ately and be automatically handled at runtime by means
of all available services.

• Efficiency: It represents the speed that a framework
responses a service request. And it includes the time
planning an initial path, the time running the path,
and the time replanning for self-adaptation. Obviously,
the fewer time would make the better interaction expe-
rience for a user.

• Response success rate: given some service requests,
a good framework should succeed to run more requests
even if various exceptions occur at runtime.

TABLE 4. Services in the test case.

To evaluate our framework, we create 24 basic services
from travel and accommodation domains according to real
services on Internet, where 6 human service interfaces are
created to make various services be linked into a whole
service-based path. Table 4 shows all services in our experi-
ments, and their names imply their functions. It includes 14
RESTful
services, 6 human services (‘‘#’’ in upper-right corner),
4 SOAP-based services (‘‘*’’ in upper-right corner). Based
on the 24 services, we create 6 SKBs (SKB1, SKB2,· · · ,
SKB6) and respectively use 6 domain ontologies: D1,· · · ,
D6 to annotate service semantics. Here, two DSKBs are
designed, and the first DSKB SB1 is composed of the first
five SKBs and 102 bridge rules among D1,· · · , D5, and 24
services in Table 4 respectively are put in corresponding
SKB according to the domain that they belong; the second
DSKB SB2 is compose of SKB6 where the 24 services
all are. Specially, if a DSKB only includes one SKB, and
then the two D3LPlanning algorithms (Algorithm 1 & 3)
based on the DSKB are equal to common graph planning
algorithm without D3L-based reasoning (commonGPlan).
Therefore, in the following experiments, we will simulate
the service self-adaptation framework without D3L-based
reasoning (SRAFSnoD3L) through making all requests run
under SB2.

We also design 5 service requests and create 5 self-
adaptation exceptions respectively for the running of these
requests. The detailed illustrations are shown in Table 5.

The running environment of D3LSRAFS includes an appli-
cation server Tomcat8.0, a SOAP-based service engine Axis2,
a workflow engine Activiti 5.22, and a database engine
MySQL5.1. All software are installed on DELL 7040MT
(3.41GHz×2, 8GRAM, Win10).

B. EFFECTIVENESS
To evaluate the effectiveness of D3LSRAFS, based on SB1,
we run the five requests in Table 4 respectively under two
situations. In the first situation s1, there is no exception at run-
time; and in the second situation s2, corresponding exception
(the last column in Table 4) occurs at runtime. In the experi-
ment, we find that all requests succeed to run under the two
situations. And all paths generated by planners in D3LSRAF
are successfully converted into an executable BPMN pro-
cesses with about 500ms, and these BPMN processes are
automatically deployed and executed on the Activiti engine.
When an exception occurs at runtime, it is caught and handled
successfully with the help of the workflow engine. More
details are shown in Table 6.
From the table above, we can see that the local replan-

ning strategy is firstly used when an exception occurs over
a service. The strategy uses LocalD3LPlannning in local
replanning to find an adaptation path for each exception in
the first three requests, and then succeeds to run the path by
means of the workflow engine. However, the local replanning
strategy fails to run for exceptions in sr4 and sr5, because
no adaptation path is found in these strategies. Thus, Local-
AdaptFail is thrown when sr4 or sr5 run with exception; and
then GlobalD3LPlannning in global replanning strategy is
used to find an adaptation path for for sr4 or sr5.

Specially, during the global replanning for the exception
in sr4 or sr5, a cancel path is found and executed before
an adaptation path, because some known effects need to be
canceled before a new path is tried. For example, in sr4,
the effect trainIsBooked for the person is canceled by the
cancel path before a flight is picked in another path. This
is reasonable in real world, because the ticket should be
canceled when a train encounters a breakdown.

C. EFFICIENCY
To compare the efficiency of D3LSRAF with SRAFSnoD3L,
we run the five requests respectively using SB1 and SB2.
For each request, we record the total response time (Total-
Time), the time planning an initial path (PlanTime), and the
time replanning for self-adaptation (ReplanTime), as shown
in Table 7.
From the view ofTotalTime, comparedwith SRAFSnoD3L,

D3LSRAFS can more rapidly respond each service request
no matter whether an exception occurs or not (Fig. 17). The
advantage becomes greater when the desired path includes
more services, especially when some exception occurs at run-
time. It is noticed that the total response time of D3LSRAFS
is about 5s less than SRAFSnoD3L when the exception
occurs in sr4 or sr5.

14990 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

TABLE 5. Request details including expected initial paths and predefined exceptions.

TABLE 6. Running details for various requests.

TABLE 7. Running time details for various requests(ms). Column L
represents Local, and G represents Global.

FIGURE 17. Comparison of TotalTime between D3LSRAFS and
SRAFSnoD3L.

The response time for a service request mainly is com-
posed of the time producing an initial service-based path,
the time converting a path to a BPMN process and the time
running the BPMN process. In our experiment, two frame-
works spend almost the same time on the conversion and

running for the same service request. Thus, the planning
time becomes a key factor to affect the total time of two
frameworks.

When a request runs normally, a planning algorithm is
invoked only once, and it can generate a path for the
request. D3LGlobalPlanning and commonGPlan respec-
tively are used in D3LSRAF and SRAFSnoD3L. They both
firstly create a planning graph and then search a path
from the graph. However, the scale of the planning graph
in D3LGlobalPlanning is smaller than in commonGPlan,
becauseD3LGlobalPlanning searches available actions from
each SKB according bridge rules but not searching from all
services just like in commonGPlan. This can avoid redundant
actions and facts to be added in the graph. For example,
there are services related to train in a SKB skb, and Sta-
tion is used to annotate an address for train stop. However,
in commonGPlan, Address is used to annotate the train stop.
Thus, the aim for train stop is ignored. Assume that ser-
vice ProposeStationTransit in skb has two input parameters:
depart station and arrive station. When D3LGlobalPlanning
generates new actions from skb, the instances of Station in
skb can be used to assign the two parameters. However,
commonGPlan can use any two common instances ofAddress
for the assignment, which may be not real stations. Thus,
redundant actions are generated, and this result in redundant
facts in the next state layer.

Fig. 18 and Fig. 19 shows the comparison for num-
ber of facts and actions between D3LGlobalPlanning and
commonGPlan. It can be seen that, for each request,
more facts and actions are generated in commonGPlan
than D3LGlobalPlanning. Ultimately, less time is spent

VOLUME 6, 2018 14991



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 18. Comparison of facts in planning graphs between
D3LGlobalPlanning and commonGPlan.

FIGURE 19. Comparison of actions in planning graphs between
D3LGlobalPlanning and commonGPlan.

FIGURE 20. Comparison of PlanTime between D3LGlobalPlanning and
commonGPlan.

in D3LGlobalPlanning than commonGPlan for a service
request (Fig. 20).

Different with normal running situation, when a request
runs abnormally, a planning algorithm is invoked more than
once. The first is to generate an initial path, and others are
used in local and global replanning. Obviously, more excep-
tions at runtime, more invocations are needed. According
to the description above, D3LSRAF spends less time in the
initial path generation than SRAFSnoD3L. For each excep-
tion at runtime, D3LSRAF would adopt D3LLocalPlanning
for a local adaptation request. When no path is found,
D3LGlobalPlanning would be adopted for a global adap-
tation request. D3LLocalPlanning can search a path con-
currently from each SKB. Once a path is obtained, the
searching terminates. Compared with D3LGlobalPlanning,

the searching space of D3LLocalPlanning is smaller. There-
fore, for an adaptation request, less plan time is spent
in D3LLocalPlanning than D3LGlobalPlanning. However,
SRAFSnoD3L always adopts commonGPlan to search a path
for local and global adaptation requests. Therefore, in each
local replanning operation, SRAFSnoD3L would always
spend more time than D3LSRAFS. Fig. 21 shows the local
replanning time for the requests in Table 5.

FIGURE 21. Comparison of Local replanning time between D3LSRAFS and
SRAFSnoD3L.

Specially, in sr4 and sr5, D3LSRAFS determines
the running failure of a local replanning with tens of
milliseconds, however, SRAFSnoD3L costs thousands of
milliseconds. Even if we replace the D3LLocalPlanning
with D3LGlobalPlanning in the local replanning strategy
of our framework (green line in Fig. 21), the determination
time is about 1000 milliseconds, and also far less than
SRAFSnoD3L. Obviously, for a service request, the times
to invoke the planner are more, the time difference between
two frameworks is greater, just like in sr4 and sr5. There-
fore, through the runtime self-adaptation mechanism at two
levels, D3LSRAF can substantially decreases the response
time for various service requests no matter whether they
succeed or not (Fig. 17).

D. RESPONSE SUCCESS RATE EVALUATION
Given a service request, its single run is called a request
running instance. Assume that n is the number of request
running instances, m is the number of those instances that
are responded successfully, then the response success rate
r=m/n. Obviously, the rate is higher, and the quality of the
self-adaptation system is better. In D3LSRAF, bridge rules
can improve the response success rate, because they can
effectively eliminate the semantic conflicts among multiple
SKBs to make their services cooperate with each other.

To prove this, we design 45 request running instances.
And each instance will encounter at least on one local self-
adaptation exception at runtime. Fig. 22 shows the number of
predetermined exceptions in these instances, and the number
of exceptions that are expected to be handled successfully
under SB1. It is noticed that the ideal response success rate
is 73.33%.
In SB1, we design 5 sets of bridge rules, and respectively

create 5 running situations run1,· · · ,run5. In each situations,

14992 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

FIGURE 22. Number of exceptions in various running situations.

TABLE 8. Bridge rules in various runnning situations.

only a set of bridge rules works. Table 8 shows available
bridge rules in each running situation. In run1, no bridge
rule is adopted for the five SKBs. In run2, bridge rules
between SKB1 and SKB2 are adopted. And, from run2 to
run5, available bridge rules become more and more.

The response success rates in the five situations are shown
in Fig. 23. It can be seen that the response success rate
becomes higher as the number of bridge rules increase.

FIGURE 23. Adaptation success rate comparison among various runs.

Specially, in run5, all bridge rules are adopted, and the
response success rate of D3LSRAF reaches ideal 73.33%.
During the running, 63 exceptions are caught, including
45 local self-adaptation exceptions and 18 LocalAdaptFail
global exceptions. And there are 6 LocalAdaptFail exceptions
that are handled successfully. Other self-adaptation details,
including invocation frequency of the planner (PlanFreq),
number of adaptation processes (APNum), number of excep-
tions caught (ExcNum), number of successful request running
instances, are recorded in Fig. 24. D3LSRAF automatically
and successfully repair 33 of 45 process instances. It invokes
the planner 71 times and generates 41 adaptation processes
at runtime, where 8 adaptation processes in global self-
adaptation strategies are used to cancel completed effects
for repairing the main process further. Meanwhile, during
repairing each exception, the planner is invoked 1 times least
and 3 times most.

FIGURE 24. Self-adaptation running details in run5.

Furthermore, we also record the running status and total
response time under various running situations for all service
requests in Table 5, shown in Table 9. Specially, during
the running, these requests also encounter those predefined
exceptions when their expected initial paths can be generated.

The sr1 and sr2 both run successfully by means of local
replanning strategies under all running situations. And more
bridge rules would lead to more total response time. For sr1,
total response time under run5 is 148ms more than run1.
And for sr2, this difference is 344ms. This is because, dur-
ing the response, bridge rules can be utilized to convert a
D3L-SR into a Single-SR in D3LLocalPlanning, or to create
planning graph in D3LGlobalPlanning when an initial path
is generated.

The sr3 fails to search an initial path, and only spends 8s
in run1. This is because that the request can’t be achieved
by services from a SKB, and that no bridge rule can be used
to explore cooperation among services from multiple SKBs.
However, in other situations, bridge rules between SKB1
and SKB2 are utilized to support this exploration. Therefore,
sr3 runs successfully under from run2 to run5. And UnPre
exception over TakeTrain is solved by a local replanning
strategy. The maximum difference of total time when sr3 runs
successfully is 196ms.

Just as sr3, sr4 also can’t search an initial path under run1,
and less time is spent. In other situations, an initial path is
found with the help of bridge rules among SKB1 and SKB2.
However, UnExe over TakeTrain occurs at runtime, and it
doesn’t be solved by local and global replanning strategies
under run2. In run3, run4, and run5, the global replanning
strategy succeeds to run by means of bridge rules related to
SKB3, and sr4 runs successfully. The maximum difference of
total time when sr4 runs successfully is 735ms.

Compared with other requests, an initial path of sr5
includes more services from multiple SKBs. In run1, run2,
and run3, no initial path is found. However, as bridge rules
becomes more, the searching space becomes greater and total
response time becomes more. In run4, an initial path is found,
and it encounters UnExe over CheckInInn. The exception
doesn’t be solved by local and global replanning strate-
gies, and sr5 fails to run ultimately. In run5, sr5 succeeds
to run because the global replanning strategy succeeds by
means of bridge rules related to SKB5. Specially, in run4,
D3LGlobalPlanning in the global replanning strategy can
spend a lot of time to determine that no adaptation path can
be searched until the planning graph reaches a max level.

VOLUME 6, 2018 14993



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

TABLE 9. Running status and total response time of various service requests in Table 5 under five running situations in Table 8.

However, in run5, before the planning graph reaches a max
level, D3LGlobalPlanning has found an adaptation path.
Therefore, less time is spent in run5 than run4.
From the illustration above, it can be seen that bridge rules

can remarkably improve the response success rate of service
requests, and that total response time can increase slightly as
more bridge rules are utilized. However, when a request is
responded successfully, the time of growth, that affected by
bridge rules, doesn’t exceed 1s. Comparing with real service
invocation time, this can be accepted in practice.

VII. CONCLUSION
In this paper, we model services from the same domain
ontologies as a SKB, and multiple SKBs and bridge rules
among them construct a DSKB. Based on DSKB, we pro-
pose a D3L-based service runtime self-adaptation framework
(D3LSRAF). The framework adopts a local replanning strat-
egy to repair UnPre, UnExe, UnEff exceptions at SSA level,
and a global replanning strategy to repair the LocalAdaptFail
at path level. In the local replanning, the D3L-based local
planning algorithm is utilized to rapidly generate a local path
through concurrently searching a path from each SKB. In the
global replanning, the D3L-based global planning algorithm
is used to explore all possible paths for the original business
goal, and generate a global path ultimately. The global plan-
ning algorithm improves classical graph planning algorithm
through constructing a planning graph including bridge rules.
The cooperation of the two strategies can guarantee that
the framework responses a business goal with high response
efficiency and response success rate.

Based on the Activiti engine and BPMN2.0 language,
we developed a prototype system for D3LSRAF. The system
not only provides essential self-adaptively running environ-
ment for aD3L-SR, but also is compatible with multiple types
of services. Through extending serviceTask in BPMN2.0,
we design two service invocation adapters and a global
adaptation activity. The adapters are utilized to respectively
invoke RESTful APIs and SOAP-based services, and they
also include the local replanning logics for UnPre, UnExe,
and UnEff exceptions. And the global adaptation activity
encapsulates the global replanning logic, and it is invoked
when LocalAdaptFail exception occurs.
A series of experiments in previous section show that

D3LSRAF can more quickly response various D3L-SR
requests even if some exceptions occur at runtime, and can
guarantee higher response success rate, compared with other
self-adaptation approaches.

The aim of D3LSRAF is to achieve the function require-
ment in a business goal. However, in practice, other require-
ments, such as timing, QoS constraints [43]–[46], and higher
self-adaptation efficiency, also are desired when a self-
adaptation carries on. Meanwhile, bridge rules in D3LSRAF
are created manually before a request is responded, and this
is time-consuming work. Therefore, in the further, we will
extend our framework considering self-adaptation under tim-
ing and QoS constraints, higher self-adaptation efficiency,
and automatic bridge rule generation method.

ACKNOWLEDGMENT
Xianghui Wang thanks her colleagues from Shandong
Jianzhu University for their comments.

REFERENCES
[1] N. Dragoni et al., ‘‘Microservices: Yesterday, today, and tomorrow,’’ in

Present and Ulterior Software Engineering. Cham, Switzerland: Springer,
2017, pp. 195–216.

[2] Y. Alotaibi and F. Liu, ‘‘Survey of business process management: Chal-
lenges and solutions,’’ Enterprise Inf. Syst., vol. 11, no. 8, pp. 1–35, 2016.

[3] F. Caron and J. Vanthienen, Exploring Business Process Modelling
Paradigms and Design-Time to Run-Time Transitions. New York, NY,
USA: Taylor & Francis, 2016.

[4] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu,
‘‘Web services composition: A decade’s overview,’’ Inf. Sci., vol. 280,
pp. 218–238, Oct. 2014.

[5] A. L. Lemos, F. Daniel, and B. Benatallah, ‘‘Web service composition:
A survey of techniques and tools,’’ ACM Comput. Surv., vol. 48, no. 3,
2015, Art. no. 33.

[6] I. Paik, W. Chen, and M. N. Huhns, ‘‘A scalable architecture for automatic
service composition,’’ IEEE Trans. Serv. Comput., vol. 7, no. 1, pp. 82–95,
Jan./Mar. 2014.

[7] J. Bronsted, K. M. Hansen, and M. Ingstrup, ‘‘Service composition issues
in pervasive computing,’’ IEEEPervasive Comput., vol. 9, no. 1, pp. 62–70,
Jan. 2010.

[8] X. Wang and Z. Feng, ‘‘Semantic Web service composition considering
iope matching,’’ J. Tianjin Univ., vol. 50, no. 9, pp. 984–996, 2017.

[9] A. P. Barros and M. Dumas, ‘‘The rise of Web service ecosystems,’’ IT
Prof., vol. 8, no. 5, pp. 31–37, Sep. 2006.

[10] M. J. Hadley, Web Application Description Language (WADL). London,
U.K.: Pearson, 2012, ch. 10.

[11] Y. Liu, Y. Fan, K. Huang, and W. Tan, ‘‘Failure analysis and toler-
ance strategies in Web service ecosystems,’’ Concurrency Comput. Pract.
Experim., vol. 27, no. 5, pp. 1355–1374, 2015.

[12] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik, ‘‘Dynamic adap-
tation of fragment-based and context-aware business processes,’’ in Proc.
IEEE Int. Conf. Web Services, Jun. 2012, pp. 33–41.

[13] G. H. Alférez, V. Pelechano, R. Mazo, C. Salinesi, and D. Diaz, ‘‘Dynamic
adaptation of service compositions with variability models,’’ J. Syst. Softw.,
vol. 91, no. 5, pp. 24–47, 2014.

[14] A. Marrella, M. Mecella, and A. Russo, ‘‘Featuring automatic adaptivity
through workflow enactment and planning,’’ in Proc. Int. Conf. Collabo-
rative Comput., Netw., Appl. Worksharing, Oct. 2011, pp. 372–381.

[15] A. Marrella and M. Mecella, Continuous Planning for Solving Business
Process Adaptivity. Berlin, Germany: Springer, 2011.

14994 VOLUME 6, 2018



X. Wang et al.: D3L-Based Service Runtime Self-Adaptation Using Replanning

[16] X. Wang, Z. Feng, K. Huang, and W. Tan, ‘‘An automatic self-adaptation
framework for service-based process based on exception handling,’’ Con-
currency Comput. Pract. Exper., vol. 29, no. 5, p. e3984, 2017.

[17] A. Bucchiarone, A. Marconi, M. Pistore, P. Traverso, P. Bertoli, and
R. Kazhamiakin, ‘‘Domain objects for continuous context-aware adapta-
tion of service-based systems,’’ in Proc. IEEE Int. Conf. Web Services,
Jun./Jul. 2013, pp. 571–578.

[18] M. Kuzu and N. K. Cicekli, ‘‘Dynamic planning approach to automated
Web service composition,’’ Appl. Intell., vol. 36, no. 1, pp. 1–28, 2012.

[19] Z. Shi, M. Dong, Y. Jiang, and H. Zhang, ‘‘A logical foundation for the
semantic Web,’’ Sci. China Ser. F, Inf. Sci., vol. 48, no. 2, pp. 161–178,
2005.

[20] L. Chang, Z.-Z. Shi, L.-R. Qiu, and F. Lin, ‘‘A tableau decision algo-
rithm for dynamic description logic,’’ Chin. J. Comput., vol. 31, no. 31,
pp. 896–909, 2008.

[21] Y. Jiang, Z. Shi, Y. Tang, and J. Wang, ‘‘A distributed dynamic description
logic,’’ J. Comput. Res. Develop., vol. 43, no. 9, pp. 1603–1608, 2006.

[22] X. F. Zhao, D. P. Tian, Y. H. Shi, and Z. Z. Shi, ‘‘Knowledge propagation
and reasoning induced by bridge rule chains in D3L,’’ Chin. J. Comput.,
vol. 37, no. 12, pp. 2421–2426, 2014.

[23] N. R. T. P. van Beest, E. Kaldeli, P. Bulanov, J. C. Wortmann, and
A. Lazovik, ‘‘Automated runtime repair of business processes,’’ Inf. Syst.,
vol. 39, pp. 45–79, Jan. 2014.

[24] C. Liang, J. Liu, T. L. Gu, and Z. Z. Shi, ‘‘Semantic Web service com-
position based on dynamic description logics,’’ Chin. J. Comput., vol. 36,
no. 12, pp. 2468–2478, 2013.

[25] X. Hu, Z. Feng, S. Chen, K. Huang, J. Li, and M. Zhou, ‘‘Accurate
identification of ontology alignments at different granularity levels,’’ IEEE
Access, vol. 5, pp. 105–120, 2017.

[26] M. Maree and M. Belkhatir, ‘‘Addressing semantic heterogeneity through
multiple knowledge base assisted merging of domain-specific ontologies,’’
Knowl.-Based Syst., vol. 73, pp. 199–211, Jan. 2015.

[27] Z. Wang, H. Hu, L. Chen, and Z. Shi, ‘‘Parallel computation techniques for
dynamic description logics reasoning,’’ J. Comput. Res. Develop., vol. 48,
no. 12, pp. 2317–2325, 2011.

[28] N. Bieberstein, R. G. Laird, K. Jones, and T. Mitra, Executing SOA:
A Practical Guide for the Service-Oriented Architect. Indianapolis, IN,
USA: IBM Press, 2008.

[29] K. Huang, J. Yao, J. Zhang, and Z. Feng, ‘‘Human-as-a-service: Growth
in human service ecosystem,’’ in Proc. IEEE Int. Conf. Services Comput.,
Jun./Jul. 2016, pp. 90–97.

[30] C. Barreto et al.,Web Services Business Process Execution Language Ver-
sion 2.0, document wsbpel-specification-draft-01, WS-BPEL TC OASIS,
2007.

[31] M. J. Hadley, Web Application Description Language (WADL).
Santa Clara, CA, USA: Sun Microsystems, Inc., 2006.

[32] D. Booth and K. L. Canyang,Web Services Description Language (WSDL)
Version 2.0 Part 0: Primer, document REC-wsdl20-primer-20070626,
W3C Rec., 2007.

[33] J. Kopecký, K. Gomadam, and T. Vitvar, ‘‘hRESTS: An HTML microfor-
mat for describing RESTful Web services,’’ in Proc. IEEE/WIC/ACM Int.
Conf. Web Intell. Intell. Agent Technol. (WI-IAT), Dec. 2009, pp. 619–625.

[34] D. Martin et al., ‘‘OWL-S: Semantic markup for Web services,’’ in Proc.
Int. Semantic Web Work. Symp. (SWWS), 2004, pp. 1–38.

[35] J. Domingue, D. Roman, and M. Stollberg, ‘‘Web service modeling ontol-
ogy (WSMO): An ontology for semantic Web services,’’ in Proc. W3C
Workshop Frameworks Semantics Web Services, 2005, pp. 9–10.

[36] J. Kopecký, T. Vitvar, C. Bournez, and J. Farrell, ‘‘SAWSDL: Semantic
annotations forWSDL andXML schema,’’ IEEE Internet Comput., vol. 11,
no. 6, pp. 60–67, Nov. 2007.

[37] C. Lira and P. Caetano, REST-Based Semantic Annotation of Web Services.
Cham, Switzerland: Springer, 2016, pp. 269–279.

[38] D. Roman, J. Kopecký, T. Vitvar, J. Domingue, and D. Fensel, ‘‘WSMO-
lite and hRESTS: Lightweight semantic annotations for Web services and
RESTful APIs,’’ Web Semantics Sci. Services Agents World Wide Web,
vol. 31, pp. 39–58, Mar. 2015.

[39] D. Jordan et al., Web Services Business Process Execution Language
(WSBPEL) 2.0, OASIS Standard wsbpel-v2.0-OS, 2007.

[40] S. F. Apache. Apache Ode (Orchestration Director Engine). Accessed:
Dec. 12, 2017. [Online]. Available: http://ode.apache.org

[41] S. A. White et al., BPMN 2.0 Handbook: Methods, Concepts, Case Studies
and Standards in Business Process Modeling Notation, 2nd ed. Lighthouse
Point, FL, USA: Future Strategies Inc., 2011.

[42] Z. Laliwala and I. Mansuri, Activiti 5.x Business Process Management,
Beginner’s Guide. Birmingham, U.K.: Packt Publishing, 2014.

[43] K. Huang, Y. Fan, and W. Tan, ‘‘Recommendation in an evolving service
ecosystem based on network prediction,’’ IEEE Trans. Autom. Sci. Eng.,
vol. 11, no. 3, pp. 906–920, Jul. 2014.

[44] P. Potena, ‘‘Optimization of adaptation plans for a service-oriented archi-
tecture with cost, reliability, availability and performance tradeoff,’’ J. Syst.
Softw., vol. 86, no. 3, pp. 624–648, 2013.

[45] M.-O. Cordier, R. Micalizio, S. Robin, and L. Roze, ‘‘Adapting Web
services to maintain qos even when faults occur,’’ in Proc. IEEE Int. Conf.
Web Services, Jun./Jul. 2013, pp. 403–410.

[46] P. Xiong, Y. Fan, and M. Zhou, ‘‘Web service configuration under multiple
quality-of-service attributes,’’ IEEE Trans. Autom. Sci. Eng., vol. 6, no. 2,
pp. 311–321, Apr. 2009.

XIANGHUI WANG (M’12) received the B.S.
and M.S. degrees from the School of Computer
Science and Technology, Shandong University,
China, in 2002 and 2005, respectively. She is cur-
rently pursuing the Ph.D. degreewith the School of
Computer Science and Technology, Tianjin Uni-
versity, China. She is also an Assistant Profes-
sor with the School of Computer Science and
Technology, Shandong Jianzhu University, China.
Her research interests include knowledge engi-

neering and service computing. She is a member of ACM.

ZHIYONG FENG (M’10) received the Ph.D.
degree from Tianjin University. He is currently a
Full Professor with the School of Computer Sci-
ence and Technology, Tianjin University, China.
He has authored one book, over 130 articles, and
39 patents. His research interests include knowl-
edge engineering, service computing, and security
software engineering. He is a member of the IEEE
Computer Society and the ACM.

KEMAN HUANG (M’14) received dual B.S.
degrees from the Department of Automation and
School of Economics and Management from
Tsinghua University, China, in 2009, and the
Ph.D. degree from the Department of Automation,
Tsinghua University, China, in 2014, respectively.
He was an Assistant Professor with the School of
Computer Science and Technology, Tianjin Uni-
versity, from 2014 to 2016. He is currently a
Research Scientist with the Sloan School of Man-

agement, MIT, USA. He has authored or co-authored over 40 journal
and conference proceedings papers. His research interests include service
ecosystem, cyber security behavior, and semantic web. He received the
Best Paper Runner-up Award from IEEE SCC 2016 and the Best Student
Paper Award from IEEE ICWS 2014 and ICSS 2013. He was on the
program committees of many conferences and the publicly Chair of IEEE
ICWS/SCC/MS/BIGDATA Congress 2016. He is a member of ACM.

VOLUME 6, 2018 14995


	INTRODUCTION
	RELATED WORKS
	SERVICE RUNTIME SELF-ADAPTATION USING REPLANNING
	D3L AND SEMANTIC SERVICE COMPOSITION
	RUNTIME CONTEXT AND HUMAN SERVICE

	D3LSRAF OVERVIEW
	DETAILS FOR D3LSRAF
	PROBLEM MODELING
	D3L-BASED LOCAL PLANNING
	D3L-BASED GLOBAL PLANNING
	REPLANNING FOR RUNTIME SELF-ADAPTATION
	Local Replanning at SSA Level
	Global Replanning at Path Level


	PROTOTYPE IMPLEMENTATION OF D3LSRAF
	DSKB MANAGEMENT
	EXECUTION AND MONITOR
	SELF-ADAPTATION MANAGEMENT

	EXPERIMENT EVALUATIONS
	CASE STUDY AND ENVIRONMENT
	EFFECTIVENESS
	EFFICIENCY
	RESPONSE SUCCESS RATE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	XIANGHUI WANG
	ZHIYONG FENG
	KEMAN HUANG


