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ABSTRACT As a new kind of heating technology, microwave heating could replace traditional heating
methods, because it has the advantages of high efficiency, no secondary pollution, and rapid heating. But
the microwave heating process, which involves complex coupling between time-varying electromagnetic
field and thermal field, is extremely complicated. At this point, the heated medium may produce local
overheating.Worse, it may cause unexpected safety accidents, such as burning and even explosion. However,
the temperature variation during the period of microwave heating could barely be obtained. In order to
solve the problem of local overheating, this paper proposes a deep learning algorithm based on multi-
dimensional data to construct an anomaly detection model for detecting local overheating. The algorithm
consists of convolutional neural networks (CNNs) and unsupervised learning method named isolation forest
algorithm (IFA). First, CNNs is utilized to extract features of the data collected from aWXD15S microwave
heating system. Then, IFA detects the local overheating. Compared with the algorithm with common model,
experiment results show that the proposed algorithm owns better measurement performance and higher
precision.

INDEX TERMS Microwave heating, local overheating, convolutional neural networks, isolation forest.

I. INTRODUCTION
Microwave heating is essentially based on the characteristics
of microwave energy.Microwavewith high energy, is capable
of penetrating medium directly, which makes the molecules
in the medium generate certain physical or chemical
reactions [1]. Thus, temperature rises from the inside to the
outside of the medium. As a new type of heating technology,
microwave heating is widely applied in many fields, such
as drying, minerals processing and waste disposal. Com-
pared with traditional heating methods, it has the advan-
tages of high efficiency, no secondary pollution and rapid
heating [21], [23].

However, high-power microwave heating is a complex
process, because there exist time-varying electromagnetic
field and temperature field during the heating. Moreover,
these two fields are strongly coupled [4], [22]. Meanwhile,

when microwave heating is in progress, with temperature
increasing, the dielectric coefficient and the thermal con-
ductivity of medium heated are change significantly, which
causes asymmetrical distribution of electromagnetic field.
Thus, temperature distribution is uneven. Therefore, local
overheating occurs frequently and it leads to unexpected
safety accidents, for example, burning and even explo-
sion [2], [3]. This problem has become major drawback for
industrial applications of microwave heating.

To solve the problem mentioned above, firstly, power dis-
tribution should be obtained, then, temperature distribution
could be controlled, finally, local overheating is settled and
avoided. Lambert’s law is one of common approaches to
acquire the power distribution in practical industrial applica-
tions, such as material heating and drying process. However,
it ignores the influence of the temperature directly related
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FIGURE 1. The experiment environment of the WXD15S microwave
heating system.

to the dielectric constant, which influences the accuracy of
power distribution. So, the control of temperature distribution
and local overheating is affected. From the aspect of data,
this paper proposes a deep learning algorithm based on multi-
dimensional data to construct an anomaly detection model
for detecting local overheating. The data is collected from
a WXD15S microwave heating system. Compared with the
algorithm with common model, experiment results indicate
that the proposed algorithm owns better measurement perfor-
mance and higher precision.

FIGURE 2. The plane diagram of the microwave heating system.

II. MATERIAL
A. EXPERIMENTAL ENVIRONMENT FOR DATA
ACQUISITION
TheWXD15Smicrowave heating system (Figure 1) is mainly
divided into fivemicrowave power sources (the power of each
source is from 0KW to 3KW), detecting module measuring
temperature and power with fiber sensors and power meters,
waveguides, multimode resonant cavity with conveyor belt
and PC. The cavity is made up of three continuous chambers
(Figure 2) and each chamber uses an optical fiber tempera-
ture sensor which is inserted in the medium for temperature
measurement.

The heated medium is water whose permittivity is rela-
tively sensitive to temperature change [14]. The procedure
(Figure 3) of the WXD15S microwave heating system is:
firstly, when the system is closed, with the conveyor belt,

FIGURE 3. The procedure of experiment.

TABLE 1. The information of one set data.

the heated medium in a glassware is placed to each chamber.
Secondly, the power generated from the microwave power
sources is launched into the resonant cavity by waveguides
as soon as the system is open. Simultaneously, the medium is
being heated. Thirdly, the detecting module collects the data
of power, temperature and heating time. Fourthly, with the
data, PC runs the proposed algorithm and computes result.
Finally, The system and other equipment are turned off.

B. DATA DESCRIPTION
Besides the information of temperature and power, other ele-
ments of themulti-dimensional data are acquired. Table 1 rep-
resents the information of one set data in detail.
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C. DATA PREPROCESSING AND FEATURE EXTRACTION
In order to improve the quality of data mining, more informa-
tion statistics and feature engineering are applied to process
the raw data to enrich the data features.

FIGURE 4. Process of data stream analysis.

In the context of detecting local overheating, feature
extraction means transforming the processed data into depth
features that can be used for the anomaly detection model to
evaluate the anomaly message. Otherwise, feature extraction
is a kind of effective expression for the original data and it can
clearly convey the deep relationship of the data. Therefore,
feature extraction in data mining is particularly prominent.
This paper focuses on the combination of Auto-encoder and
CNNs to achieve feature extraction. Figure 4 shows the pro-
cess of data stream analysis.

D. SOFTWARE CONDITION
In this article, Anaconda software based on Python is used to
build the anomaly detection model. In addition, the learning
packages utilized to establish deep learning algorithms are
keras, nolearn and scikit-learn.

III. METHODS
A. CNNs FOR EXTRACTING FEATURES FROM
MULTIVARIATE TIME SERIES DATA
CNNs, recurrent neural networks (RNNs) and deep belief net-
work (DBN) are deep learning algorithms which are widely
applied in the field of voice-analysis and image recogni-
tion [6], [7], [10], [24], [25], [30]–[32]. For RNNs, there are
many parameters to be trained and the process of training
theses parameters are time-consuming. In addition, RNNs is
hardly able to complete feature extraction [26], [27]. As for
DBN, it is a kind of generation model [28] which means the
classification accuracy is relatively low. However, compared
with RNNs and DBN, CNNs with weights sharing, has few

parameters trained and it takes less time to train parameters.
Besides, the classification accuracy of CNNs is higher. More
importantly, CNNs can fulfill feature extraction. Therefore,
CNNs combing Auto-encoder is considered to extract fea-
tures frommultivariate time series data ofmicrowave heating.
To train the CNNs, denoising Auto-encoder, an unsupervised
learning method, is applied. In the meantime, in order to
capture a distributed representation of its leading factors of
variation, denoising Auto-encoder transforms the informa-
tion of the input signal, but without the linearity assump-
tion of Principal Component Analysis (PCA) [29]. Then.
the anomaly detection model could be built. Finally, local
overheating is detected. .

FIGURE 5. The structure of CNNs.

1) THE STRUCTURE OF CNNs
CNNs is a multilayer neural network, and each layer consists
of a number of independent neurons [9]. Figure 5 shows the
structure of CNNs. CNNs is mainly made up of convolutions
with two layers (C1 and C3) and pooling with two layers
(S2 and S4) [10]. In the process of feature extraction, firstly,
the input data of microwave heating is convolved with m
filters and m biases. Thus, m mapping data is generated in
the C1 layer after convolution. Then the data is weighted,
summed and added with biases through neurons. The pro-
cessed data is conveyed to a Sigmoid function to obtain the
S2 layer. Secondly, the S2 layer is filtered to get the C3 layer.
Thirdly, with the same transformation trend, the S4 layer is
generated from the C3 layer. Fourthly, the vector connected
by the data of S4 layer is imported into the traditional neural
network to gain the output. Finally, the output is applied in a
error function to adjust weights and biases of the network.

The CNNs convolves the input signal with the kernel func-
tion [15], [16], and then from an activation function to obtain
an output mapping [11], [17], [33]–[35]. In CNNs, the filters
(the size is 2× 1) with a stride of 2 down samples along time-
axis are designed to process the data from the microwave
heating system.

Equation (1) indicates the jth feature of each output in the
lth layer xlj.

Xl
j = f

(∑
i∈Mj

xl−1i ∗ k
l
ij + bj

)
(1)
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whereMj is the jth combination of selected input feature, klij is
the convolution kernel in the lth layer used for the connection
between the ith input feature and the jth output feature, bj is
thejth bias of the output feature and f(·) is a activation function
and f (x) = 1

1+e−x or f (x) = tanh (x) = ex−e−x
ex+e−x .

Equation (2) calculates the sensitivity δlj of the jth feature
in lth layer.

δlj = δ
l+1
j Wl+1

j of′
(
ul
)
= β l+1j up

(
δl+1j

)
of′
(
ul
)

(2)

Where up(·) represents an up-sampling operation,Wl+1
j is the

weight of the jth feature in lth layer, ul = Wlxl−1 + bl and o
indicates multiplication.

The partial derivative ∂E
∂bj

of error cost function E for the
bias b is obtained from Equation (3).

En
=

1
2

∑c

k−1

(
tnk − ynk

)2
∂E
∂bj
=

∑
u,v

(δlj)u,v

(3)

where tnk and y
n
k are the label and the output of the kth sample

in the nth dimension. c is the sample dimension and (u, v)
represents the position of the elements in the matrix.

The partial derivative ∂E
∂klij

of error cost function for the

convolution kernel k is expressed in Equation (4).

∂E

∂klij
=

∑
u,v

(δlj)u,v(p
l−1
i )uv (4)

where (pl−1i )uv is the patch of convolution between xl−1i
and kij.

In the pooling layer, when feature mapping is generated,
the pooling layer converges the continuous mapping feature
of the convolution layer [18], [19], [36]–[38]. In this case,
the layer could reduce the number of features and the size
of the feature space. Thus, the number of parameters in the
network could be reduced. Besides, the pooling layer could
control the generation of the fitting. The max-pooling and the
average-pooling are the two most common pooling ways. For
each output feature xj of the pooled layer, the xj is obtained
as follows:

The jth feature of each output in pooled layer is obtained
in Equation (5).

xlj = f(βdown
(
xl−1j

)
+ bij) (5)

Where down represents down-sampling and β is a scalar
parameter

Calculating the sensitivity of each layer:

δlj = f
′
(
ulj
)
o conv2

(
δl+1j , rot180

(
kl+1j

)′
,full′

)
(6)

Where conv2(·) is a convolution function and rot represents
the rotation of the parameters.

In pooling layer, The partial derivative ∂E
∂bj

of error cost
function E for the bias b is indicated in Equation (7).

∂E
∂bj
=

∑
u,v

(δlj)u,v (7)

In general, a simple CNNs is composed of a number of net-
work layers connected. With a differentiable function, each
layer of the network generates an activation value as the input
of the next layer which pools the output of the previous layer.
Thus, a complete framework of feature learning is formed.
In order to deal with larger scale time-series data, in this
paper, a network for the alternate structure of convolution
layer and pool layer is designed.

2) AUTO-ENCODER
The CNNs mentioned in the previous section is based on the
supervised training process of tagged data [20]. It is usually
necessary to connect a classifier at the end of the CNNs.
Through the tagged data, the whole network could use the
gradient-based learning method for global training, and the
parameters could be corrected layer by layer. In this paper,
the data collected from each node during the microwave
heating process is unlabeled. Therefore, an Auto-encoder
is connected to the final layer of the CNNs to modify the
network parameters by the back-propagation algorithm.

FIGURE 6. The Auto-encode procedure.

Auto-encoder is a neural network that tries to replicate
the input signal. When an encoder handles the data, the cor-
responding code, which is a kind of input representation,
is generated. To adjust the encoder and decoder parameters,
the weights of the network are trained by the method of Back
Propagation algorithm. Thus, the information between the
code and the original input data is similar. Therefore, the code
could express the original input data. Figure 6 shows the
Auto-encoder procedure. x is a data set of microwave heating.
y is encoded by x and z is decoded by y. L(x, z) is a error
function connected with x and z.

y is represented as:

y = s(Wx+ b) (8)

where s is an Sigmoid function, x = (x1, x2, x3, x4, x5, . . .),
W is weight and b is bias.

The hidden layer y reconstructs a signal z of the same shape
as x with a decoder. z is shown as:

z = s(W′y+ b′) (9)

where W′ and b′ are weight and bias, respectively.
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L(x, z) is indicated as:

L (x, z) = ‖x− z‖2 (10)

The cost function J (W, b) of Auto-encoder is defined in
Equation (11).

J (W, b) = A+ B

A =
1
m

∑m

i=1
J
(
W, b;x(I), y(i)

)
B =

λ

2

∑nl−1

l=1

∑sl

i=1

∑sl+1

j=1

(
W(l)

ji

)2 (11)

Where A is a mean square error term and B a regularization
part (also called weight attenuation term) reducing the mag-
nitude of the weights and prevent over-fitting.

Partial derivatives function is defined as:

∂

∂W(l)
ij

J (W, b) =

1
m

∑m

i=1

∂

∂W(l)
ij

J(W, b; x(i),y(i))

+λW(l)
ij

(12)
∂

∂b(l)i
J (W, b) =

1
m

∑m

i=1

∂

∂b(l)i
J(W, b; x(i),y(i)) (13)

W(l)
ij and b(l)i are iterated:

W(l)
ij = W(l)

ij − α
∂

∂W(l)
ij

J (W, b) (14)

b(l)i = b(l)i − α
∂

∂b(l)i
J (W, b) (15)

where α represents the learning rate.
When the iteration is finished, feature extraction could be

completed. Thus, IFA is used to detect the local overheating
based on feature extraction.

B. IFA FOR DETECTING LOCAL OVERHEATING
With the idea of stochastic forest, IFA, which is applied in
the attack detection of network security, traffic anomalies
and other analysis, could accomplish anomaly detection and
outlier-based mining [12], [13]. Moreover, this algorithm
could effectively and quickly process multi-dimensional and
massive data. The procedure of IFA is:
Step 1: a data set with N samples and M dimensions

(Figure 5) is extracted from the data of microwave heating
with CNNs mentioned in Part III. A.
Step 2: ψ training samples are gained by uniformly sam-

pling from N samples.
Step 3: a feature is randomly selected from the ψ training

samples. Then, a value is randomly chosen from the feature
and theψ training samples are classified into two classes with
binary partition based on the value.
Step 4: each class is continuously classified with Step

3 until that the class in the data is hardly divided or the depth
of binary tree reaches log2(ψ) [12].
Step 5: a binary tree is built based on ψ training samples.

In experiment, 500 binary trees are set to build according
to Step 2- Step 5. Thus, prediction process could be con-
ducted via inserting the test data into each of the binary trees.
Then, the test datamoves along the corresponding conditional
branch until it reaches the leaf node. For each test data,
the length hi (i = 1, 2, . . . , 500) of the ith path test data
travels is recorded.

The mean length of the path E (hi) is defined as:

E (h (x)) =
1
L

∑L

i=1
hi(x) (16)

where L = 1, 2, . . . 500.
The abnormal scores S(n) for each test data is expressed

as:

S (n) = 2
E(hi)
c(n) ,S (n) ε[0, 1] (17)

c (n) = 2H (n− 1)− (2(n− 1)/n) (18)

H (·) = ln (·)+ ξ (19)

where c(n) is the mean length of binary tree, n is the number
of samples and ξ = 0.5772156649 is Euler constant.
If S(n) is close to 0, the data is normal. But, if S(n) is close

to 1, the data is abnormal, which means local overheating is
detected.

IV. EXPERIMENTS AND DISCUSSION
In order to minimize the reconstruction error (RE) between
the original data and the features extracted, and adjust the
network weights during the training depth learning model,
it is necessary to normalize the original data before it is trans-
ferred into the depth learning model. Equation (20) shows
normalization process.

X∗ =
X−min
max−min

(20)

where, in a column of data set, x, min and max indicate
arbitrary value, minimum value and maximum value. X∗ is
the normalized result.

FIGURE 7. The number of iterations of the model.

When the power of fivemicrowave sources is 700W, 800W
and 900W, figure 7 represents the results of RE. With the
increase of iteration number, RE gradually tends to zero
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FIGURE 8. The result of local overheating detection when the power is
700W: (a) Without CNNs; (b) With CNNs; (c) Temperature field distribution
of samples.

which means the extracted features basically express the
original data.

When the power is set to 700W, 800W and 900W, three
test data sets are gained. Figure 8-10 present the results of
local heating detection with CNNs and without CNNs based
on the test data sets. The red points are abnormal. Meanwhile,
the white points are normal.

FIGURE 9. The result of local overheating detection when the power is
800W: (a) Without CNNs; (b) With CNNs; (c) Temperature field distribution
of samples.

Area Under Curve (AUC) is used to estimate the algo-
rithm accuracy. Table 2 indicates the calculation result
of AUC.

From table 2, when the power is 700W, without and with
CNNs, most of the abnormal points in the testing data set
are basically detected and the corresponding AUC values are
relatively small and close. As the power is increasing, without
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FIGURE 10. The result of local overheating detection when the power is
900W: (a) Without CNNs; (b) With CNNs; (c) Temperature field distribution
of samples.

CNNs, the AUC value is reducing. However, with CNNs,
the AUC value is increasing.

Therefore, experiment results show that the proposed
algorithm owns better measurement performance and higher
precision, which means the data collected from microwave
heating is analyzed and local overheating could be detected.

TABLE 2. The calculation result of AUC.

V. FUTURE RESEARCH
Future research should focus on adjusting the network of
CNNs to improve the measurement accuracy and applying
the proposed algorithm to assist the construction of con-
trol strategy in microwave heating system. More detection
equipment, such humidity sensor, should be installed in the
system to collect stable and substantial data. In addition, a
method for temperature field measurement duringmicrowave
heating could be considered, because common temperature
measurement methods are inappropriate in the environment
of microwave. Thus, according to the results of tempera-
ture field measurement and CNNs, the power of microwave
sources may be controlled immediately and the problem of
local overheating is solved effectively.
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