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ABSTRACT Recent advances have shown that convolutional neural networks (CNNs) perform excellent
in the tasks of image classification and face recognition when the size of data sets is sufficiently large,
i.e., over hundreds of thousands training images. Nevertheless, when public data sets are not suitable
for training the model for new application scenarios, it is painful to obtain sufficient training examples,
especially when the samples have to be labeled manually. Besides, training and inference using CNNs
requires significant resources of energy, computation, and memory usage. Therefore, implanting deep CNN
models trained and executed on high performance GPU clusters to resource constrained devices, i.e., Internet
of Things (IoT) devices, which have permeated into every aspect of modern life, is not appropriate and
impractical. Compression technology is an important and popularly used tool to accelerate the training and
inference of the CNN models. In this paper, we aim for a step forward in this area: we propose a new
compressedCNNmodel termedCS-CNN for image classification by incorporating the theory of compressive
sensing at the input layer of the CNN models to both reduce the resources consumption (evaluated as
computation time in this paper) and a required number of training samples. According to our extensive
evaluations on the multiple public data sets for deep learning tasks, e.g., MINST and CIFAR-10, using
different metrics, we illustrate that the CS-CNN is able to speed up the process of training and inference by
a factor of magnitude. Meanwhile, it achieves higher classification accuracy compared with the traditional
large CNN models when the size of training database is small.

INDEX TERMS Convolutional neural network, compressive sensing, singular value decomposition, IoT,
image classification.

I. INTRODUCTION
The fast development of computational capability of the hard-
ware enables the portable embedded devices such as smart-
phones, tablet PC and smart wearables undertaking more
computationally intensive tasks, such as images or videos
processing. Image classification is one of the most popular
adopted image processing techniques in a wide variety of
vision-based applications [1], [58], [60]. Its major task is
to distinguish different objectives shown in the scene in the
images according to the different characteristics extracted

from the images. Image classification has broad applications
in different research and engineering fields, such as smart
city [2], entrance or monitoring security [3], [4], [59], and
information search [5]. It is one of the basic and most
challenging problem in the field of pattern recognition and
machine learning. Finding an intelligent, efficient and accu-
rate classification method is an urgent expectation.

Image classification mainly consists of two major compo-
nents, first is the extraction of image features, e.g., Scale-
Invariant Feature Transform(SIFT) [6] and Local Binary
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Pattern (LBP) [7], second is designing a robust classifi-
cation algorithms, such as Decision Tree, Support Vector
Machine(SVM) and Neural Networks. The recent success on
deep learning [8]–[17] promotes the development of various
classification tasks, including natural language process-
ing [8]–[10], speech recognition [11], [12], action recogni-
tion [13], [14], [57] or image classification [15]–[17]. Since
LeNet5 [18] was introduced in the early 1990’s, Convolution
Neural Networks (CNNs) based deep learning models have
gradually become one of the best choices for image classi-
fication [19]–[21] and face detection [22], [23]. Especially,
in recent years, CNNs have achieved state-of-art results in
many challenging classification tasks. He et al. [24] broke
the record on ImageNet 2015 classification benchmark with
their CNN model. Most notably, Wang et al. [25] achieved
state-of-the-art image classification performance by a CNN
using attention mechanism.

CNN is a feed-forward neutral network which extracts
features using multiple convolutional layers and makes infer-
ence using fully-connected layers with softmax [26]. CNN
provides reliable classification results and is able to accom-
modate the image translation, scale difference, rotation and
other forms of deformations. In a word, it has good gen-
eralization capability on noisy inputs. The success of the
CNN models on classification tasks is due to the follow-
ing factors: 1) the availability of extremely large training
sets with labelled groundtruth, e.g., ImageNet [27]; 2) the
high speed GPU clusters implementations for training large
number of parameters; 3) carefully designed regularization
strategies, such as dropout [28], improves the generation
capability.

However, the encouraging performance is achieved at
extremely high cost of resources on platform and requirement
of large amount of labelling effort when useful public datasets
are not available. As the number of parameters are huge in
CNN, it takes a while to execute the whole network even
for the relative simple inference (matrix multiplications and
convolutions). Therefore, it is difficult to guarantee real-
time response when running on embedded system. Besides,
huge amount of labelled data is essential for training a reli-
able CNN model, otherwise, the issue of over-fitting may
occur. However, collecting large dataset especially obtaining
the ground-truth is labour intensive for the new application
scenarios.

The state-of-the-art solution for accelerating the deep CNN
models is to slim the network structure while preserving
most of its accuracy by utilising some compression or matrix
factorization techniques. For example, the Region-based
Convolution Neural Network(R-CNN) [29] achieves excel-
lent performance on automatically extracting and classifying
on a natural image however its computation is prohibitive
for most of the low-cost platforms as it runs CNN model
on over thousands of image region proposals. To speed up
R-CNN, the Spatial pyramid pooling(SPP) [30] - net intro-
duces SPP layer to share and schedule the intensive comput-
ing of the network and its results to a factor of 24-102 times

faster execution time on inference (classifying an image)
than fast R-CNN. Fast R-CNN [31] proposes a region of
interest (ROI) pooling layer and maps each feature vector
into a sequence of fully connected layer to reduce the com-
putation needed for inference. It accelerates the inference
process of R-CNN and SPP-net. Ren et al. [32] introduces
a Region Proposal Network (RPN) that enables nearly cost-
free proposals by sharing full-image convolutional network.
RPN and Fast R-CNN are merged into Faster R-CNN by
sharing their convolutional features. It is an effective way
of improving the speed of inference. Another major stream
of reducing inference time is to slim the architecture of
the deep networks [33]–[35]. Iandola et al. [33] propose a
small CNN architecture called SqeezeNet to compress the
model. SqeezeNet has fewer paramaters but it does not have
significant impact on speeding up the process of inference.
Hinton et al. [34] transfer the knowledge from a large models
to a small one to train the small model easier. Zhang et al. [35]
build an efficient architecture called ShuffleNet which allows
more feature channels to encode more information. Besides
the method of changing the architecture of the network, some
papers compress the weights of the network. Han et al. [36]
present a compression method ‘‘deep compression’’ to speed
up the process by pruning the network, training quantization
and Huffman coding. Some work applies matrix decomposi-
tion layer-wise either on fully-connected layer [38] or con-
volution layer [39]. These approaches work on the existing
big deep networks trained on the publicly available datasets
which on one hand avoids the tedious retraining, however,
on the other hand, it is not applicable for new application
scenario where large number of training samples are needed
to collect and get labelled by the developers.

In this paper, we aim for a step forward to propose a
new architecture of CNN model by modifying the input
layer meanwhile slimming the width (number of nodes
in each layer) of the network. The theory of compressive
sensing [37] (CS) is introduced to reduce the dimensionality
of the input layer meanwhile extracting most informative
features (projections) using the Singular Value Decomposi-
tion (SVD) for generating the optimal projectionmatrix. CS is
implemented and computed using the tensor convolution
function embedded in tensorflow framework to reduce the
system cost introduced by CS. As the number of parameters
in input layer is dominant in the total parameters of the
whole network, the significant compression of input layer has
the potential to avoid the issue of over-fitting when training
samples are insufficient.

The contributions of this paper are as follows:
• We propose a new framework. It adds a convolutional
layer for compressing with fixed weights between the
input layer and the first convolution layer in order to
compress raw data and then the useful information are
extracted. Parameters of this layer are fixed and not
updated during training. It is an optimized CNN and
can run on many embedded vision systems and a wide
variety of IoT devices.
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• We generate the compression matrices in different ways
and compare which is the best way to produce it to
ensure higher accuracy. Then it will be the best way to
compress the original input.

• The accuracy of the proposed method is proved to be
almost identical with that of the original network [18],
meanwhile, the inference time of the proposed method
is remarkably less than that of the original network.
It is worth emphasizing that both the accuracy and the
inference time of the proposed method are completely
superior to that of the original network under the circum-
stance of insufficient data.

• Due to the exploitation of the SVD-based compression
strategy, the proposed method eliminates considerable
redundant information which is useless for classification
of the original images. Therefore, not only the inference
time is decreased significantly, but also the over-fitting
phenomenon can be avoided effectively.

The rest of the paper is organized as follows. Section II
introduces the background of compressive sensing. Section III
describes the datails of the architecture of the original net-
work and the proposed network. Then the experiment is per-
formed and the proposed network is evaluated in Section IV.
Finally, we conclude this research in Section V.

II. BACKGROUND OF COMPRESSIVE SENSING
As our approach incorporates compressive sensing into
the architecture of convolutional neural networks, to make
the paper self-contained, we provide a brief overview on
the basis of compressive sensing. Compressive sensing has
brought considerately successful applications in computer
vision [40]–[42], [59], [60], signal processing [43]–[45] and
other research areas.

The major benefit that we borrow from compressive sens-
ing is its strength on reducing the dimensionality of the orig-
inal signal while preserving most of its information. Given a
vector x ∈ Rn where its dimensionality n is huge, compressive
sensing can be applied if the sparse representation condition
holds. A signal is which is sparse in some transform domain
9 ∈ Rn×n can be expressed as,

x = 9θ (1)

where θ ∈ Rn is the sparse representation of x in the transform
basis 9. θ is sparse or compressible if it only contains few
dominant non-zero coefficients and rest of the coefficients are
all zeros (sparse) or close to zeros (compressible).

When the sparse condition holds, compressive sensing can
be applied to reduce the dimensionality of the original vector
x as with simple matrix multiplication,

y = 2x (2)

where 2 ∈ Rm×n is a projection matrix with m � n.
Therefore the dimensionality of the projection vector y ∈ Rm

is significantly smaller than the original signal x.
In compressive sensing, random matrices are usually used

as the projection matrix to reduce the dimensionality of the

original signal [46]. However, as the intensive discussion,
random projections are never optimal or stable due to the
randomness introduced therefore different methods on opti-
mising projection matrices have been proposed [47]–[50].
In this paper, we use Singular Value Decomposition(SVD)
to produce the random projection matrix [51]–[53].

Suppose D ∈ Rn×l is a matrix consists of many signal
observations as its columns, we can apply SVD to decompose
the data matrix to reveal projection matrix,

D = U6V T (3)

where U ∈ Rn×n and V ∈ Rl×l are unitary matrices and
6 ∈ Rn×l is a diagonal matrix whose elements on diagonal
are eigenvalues. Then the projectionmatrix2 is formed of the
m rows from the transpose of U corresponding to the first m
largest eigenvalues in 6.

III. COMPRESSIVE SENSING BASED CONVOLUTIONAL
NEURAL NETWORKS
In this section, we introduce our proposed innovative deep
learning framework, i.e., CS-CNN, basing on convolutional
neural networks (CNN).

A typical CNN consists of a input layer, multiple convo-
lutional layers, pooling layers, fully-connected layers and an
output layer. To reduce the model complexity while preserv-
ing most of the information, our proposed CS-CNN as shown
in Fig. 1 modifies the input layer of the typical CNN archi-
tecture by incorporating SVD-based compressive projections.
The details of the framework are described as follows.

A. PRELIMINARY OF CONVOLUTIONAL NEURAL
NETWORK
The input layer of CNN generally takes the original data
without any special processing therefore the number of nodes
in input layer is determined by the size of the input data,
e.g., the resolution of an image. The convolutional layers
are named by the convolution computation. They are also
regarded as the key to extract the most discriminate features
from the original data space. They generate feature maps by
convolutional kernels followed by nonlinear activation func-
tions, such as sigmoid function, tanh function and rectified
linear units (ReLu) function.

Suppose the input of the convolutional layer is X , then
the feature map generated by the convolutional layer can be
expressed as

Y = f (Conv(X ,W )+ b) (4)

where W is the convolutional kernel, b is the bias,
Conv(X ,W ) stands for convolution of X and W , f (·) is the
activation function. The layer following the convolutional
layer is the pooling layer. The convolved features are parti-
tioned into some sub-regions. Then in each sub-region, max-
imum pooling or averaging pooling is selected. The features
extracted by the alternation of several convolutional layers
and pooling layers can be utilized for classification through
fully connected layers. The output layer usually is a classifier,
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FIGURE 1. The structure of CS-CNN.

FIGURE 2. The pretreatment process of the original image.

such as softmax classifier and support vector machine (SVM)
classifier. The classifier transforms the output of the fully
connected layer into a probability distribution, each element
of the distribution is a scalar ranging from 0 to 1 and it
presents the probability of the input corresponding with the
class in the classifier. And the class related to the maximum
value of the probability is just the correct classification of the
input.

As described above, the CNN network essentially is a
mathematical model that transforms the input image X into
a new feature expression Y in the form of probability matrix
by passing through multiple layers.

Y = P(Lmin|X; (W , b)) (5)

in which L is the loss function of the network. The training
objective is to minimize the L of the network and the param-
eters of the network are updated layer by layer.

B. PROCESSING OF IMAGE
The original images usually have a mass of redundant infor-
mation which is useless for classification and may reduce
the performance of the CNN networks. So it is sensible to
employ the CS to extract the most useful information of the
original images before they are input into the CNN. The

image processing step of the CS method is introduced as
following.

First, the original image needs to be preprocessed before
being compressed. As shown in Fig. 2, the original image x
with the size ofH×L is divided intoMN sub-images and the
size of each sub-image ism×n, wherem = H/M , n = L/N .
Then the elements of each sub-image is arranged in order into
a long fragment with size of 1×mn andMN long fragments
can be obtained totally in this way. Combining theseMN long
fragments together to form aMN×mn image and transposing
it, we can form a new image x̃ with size of mm×MN , which
is just the image that will be applied to compress.

Secondly, the projection matrix 2 is generated by apply-
ing the SVD, which has been introduced in the Section II.
For this method, matrix D is built at first by combining k
(a positive integer) images x̃ by their columns without over-
lapping. Evidently, the dimensionality of D is mn × kMN .
Next, the SVD operation is implemented on D. For better
readability, we rewrite (3) as:

D = U3V T (6)

where T denotes matrix transpose, 3 ∈ Rmn×kMN is a diago-
nal matrix whose diagonal elements are singular values and
in decreasing order, U ∈ Rmn×mn and V ∈ RkMN×kMN are
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unitary matrices. Finally, the wanted projection matrix2 can
be constructed by extracting the first p rows of the transpose
of the unitarymatrixU , i.e., the rows corresponds to the first p
largest singular values in3. Obviously, the size of2 formed
in this way is p× mn.

Third, we compress the images with the projection
matrix 2 produced above. As shown in Fig. 3, the mn×MN
image x̃, transformed from the original image x, is com-
pressed by2 into a image noted as ywith the size of p×MN .
Based on the assumption that p � mn, it’s obvious that the
dimensionality of x̃ is reduced significantly.

FIGURE 3. The process of image compression.

Finally, the compressed image y is transformed into a new
image ỹ with p channels, which is prove to be easier for
the CNN to process. As illustrated in Fig. 4, the rows of y
are used to form the channels of ỹ. In detail, for example,
we divide the first row of y uniformly intoM vectors with the
size of 1 × N , then integrate these M vectors by row into a
M × N matrix, which is regarded as a channel of ỹ. After
several similar operations implementing on the other rows
of y, the new image ỹ with p channels can be obtained.

FIGURE 4. The process of transforming the compressed image y into the
image ỹ with p channels.

C. CS-CNN
To get the image ỹwith p channels, asmention above, we have
to transform the original image x into x̃, compress x̃ with 2,
and transform the compressed image y into ỹ. Undoubtedly,
all these processes need several complicated steps to achieve
and are time-consuming especially when the number of the
original image is large. To reduce the complexity signifi-
cantly, we replace the projection matrix 2 in CS with con-
volution filters. As shown in Fig. 5, p convolution filters
noted asWi, i = 1, 2, · · · , p are constructed by reshaping the
p×mn projection matrix2. The process of this construction
is identical with the process of transforming y into ỹ shown
in Fig. 4, so we don’t interpret it again. Once the convolution

FIGURE 5. The process of transforming the projection matrix into the
convolution filters.

filters are acquired, the image ỹ can be obtained directly
by executing a convolution on the original image x and the
convolution filters.

Through replacing the projection matrix with the convolu-
tion filters, we can call the mature program of convolution to
achieve the compression of images. What’s more, the process
of the images compression can be regard as a convolutional
layer without overlapping, so we can put it between the input
layer and the first convolutional layer of CNN to form a new
framework named as CS-CNN, whose performance will be
demonstrated to be superior to that of the troditional CNN in
the Section IV. It should be noted that the parameters of this
layer are fixed and not updated during training.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, we evaluate CS-CNN and compare its perfor-
mance with traditional CNN using two datasets: MNIST [54]
and CIFA-10 [55].We usemultiple evaluationmetrics includ-
ing classification accuracy, inference speed and the perfor-
mance with different sizes of training set.

A. MNIST
TheMNIST dataset is composed of 60,000 training examples
and 10,000 testing examples in total, spreading over hand
written digits 0-9. The size of each digit image is 28 × 28.
For comparison, we adopt LeNet-5 [18] as the benchmark
CNN model and we refer to it as LeNet-5-like in this paper.
We insert the SVD-based CS layer into the input layer to
form the CS-CNN. The detailed setup of the LeNet-5-like net-
work and the corresponding CS-CNN is shown in TABLE 1.
The term num in the table stands for the number of projec-
tions after operating SVD-based compressive sensing. We
use 10 images from each digit to learn the SVD projection
matrices to get the SVD matrix, then we divide each image
into 7×7 patches with the size of 4×4 to do SVD-based pro-
jection. To investigate its performance improvement, we also
include the naive image scale technique, i.e., averaging the
pixel values within a small squared area, which is termed as
Mean-CNN.

To evaluate the inference speed of CS-CNN, we test it on
the task of MNIST image classification and the test result
is shown in Fig. 6. From the Fig. 6, we can get that the
inference time of CS-CNN and Mean-CNN (num = 1, 2, 4)
is about 0.13s while that of the LeNet-5-like is about 0.70s.
In other word, our CS-CNN is similar to Mean-CNN and
has almost 6× inference time reduction. At the same time,
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TABLE 1. The structure of LeNet-5-like and CS-CNN.

FIGURE 6. The inference time of LeNet-5-like, CS-CNN and Mean-CNN.

FIGURE 7. The classification accuracy of LeNet-5-like, CS-CNN and
Mean-CNN.

the accuracy of these networks is simulated and the result is
shown in Fig. 7. It can be seen from Fig. 7 that with the num
increasing from 1 to 10, the accuracy of CS-CNN changes
from 0.961 to 0.976 accordingly, which is quite close to
the accuracy of the LeNet-5-like. What’s more, the accuracy

of the CS-CNN is better than that of Mean-CNN when the
num = 1, 2, 4. By connecting the simulation results shown
in Fig. 6 and Fig. 7, we can come to the conclusion that
our CS-CNN achieves significant reduction of inference time
with its accuracy quite close to that of the LeNet-5-like.

Furthermore, to verify the CS-CNN is superior to the
LeNet-5-like under the circumstance that the training set is
insufficient, we compare the performance of the LeNet-5-
like, CS-CNN and Mean-CNN in some small training sets.
The new small training sets for this experiment consist of 100,
200, 300, 500, 700, 1000, 1500, 2000, 3000, 5000, 7000,
10000 training examples respectively. Then we train the
LeNet-5-like, CS-CNN and Mean-CNN with the num = 4
with these training sets. And afterwards we evaluate their
performance in the classification accuracy on the testing set,
the result of which is shown in Fig. 8. Fig. 8 indicates that
the accuracy of the CS-CNN with num = 4 is higher than
that of the other two networks obviously. The accuracy of
the Mean-CNN with num = 4 is always almost the same
with or a little higher than that of the LeNet-5-like. The result
has demonstrated that the CS-CNN performs best among
these three methods in the situation that the training set

FIGURE 8. The classification accuracy in small training dataset.

13444 VOLUME 6, 2018



Y. Shen et al.: CS-CNN: Enabling Robust and Efficient CNNs Inference for IoT Applications

TABLE 2. The structure of LeNet-5-like and CS-CNN.

is insufficient. It can be explained with the reason that the
SVD matrix contains the main information of the images so
that the compressed image can preserve most useful informa-
tion while the scale of the image is decreased significantly.

B. CIFAR-10
The CIFAR-10 dataset consists of 50000 training examples
and 10000 testing examples in total, spread over 10 classes
of natural images. All the images in this dataset are RGB
images of size 32 × 32. For this dataset, we add the Local
Response Normalization(LRN) [56] after each convolutional
layer. The details of the architecture of the LeNet-5-like and
the corresponding CS-CNN are shown in TABLE 2. Different
from the operation in the MINIST dataset, We use 20 images
from each class to get the SVD matrix, then we divide each
image into 8 × 8 patches with the size of 4 × 4 to do SVD-
based projection and Mean-based projection.

Similarly, we compare our method CS-CNN with the
LeNet-5-like and the Mean-CNN on this dataset to evaluate
their performance in terms of the inference speed and the
classification accuracy, and the comparison results of per-
formance are shown in Fig. 9 and Fig. 10. The inference

FIGURE 9. The inference time of LeNet-5-like, CS-CNN and Mean-CNN.

FIGURE 10. The classification accuracy of LeNet-5-like, CS-CNN and
Mean-CNN.

time of CS-CNN shown in Fig. 9 is always about 32s within
the range that the num changes from 1 to 10, which is less
than 50% of the inference time of the LeNet-5-like 69s.
In addition, the inference time of the Mean-CNN is almost
equal to that of the CS-CNN when the num = 1, 2, 4, 8. The
variation tendency of the accuracy shown in Fig. 10 is also
consistent with that shown in Fig. 7. On the basis of the above
analysis, we can get a same conclusion as that given in the
subsection MINIST that the proposed method CS-CNN takes
less inference time than LeNet-5-like and keeps its accuracy
quite close to that of the LeNet-5-like at the same time.

Finally, parts of the training set are chosen to construct sev-
eral small training sets to evaluate the performance of LeNet-
5-like, CS-CNN, and Mean-CNN when the training set is
insufficient. The new training sets consist of 100, 200, 300,
500, 700, 1000, 1500, 2000, 3000, 5000, 7000, 10000 training
examples respectively. Then we train LeNet-5-like, CS-CNN
and Mean-CNN with the num = 8 with these training sets.
Fig. 11 has shown the simulation result. We can see from
Fig. 11 that the classification accuracy of CS-CNN with the
num = 8 is higher than the other two networks obviously.
This result also demonstrates that our CS-CNN performs
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FIGURE 11. The classification accuracy in small training dataset.

best with respect to LeNet-5-like and Mean-CNN when the
training set is insufficient.

V. CONCLUSION
In this paper, we propose a new deep learning framework,
CS-CNN, for images classification task under resource-
constrained conditions. We incorporate the theory of com-
pressive sensing in the input layer of CNN models to reduce
the high requirement on computation and amount of training
data. According to our evaluation on the two popularly used
dataset, i.e., MINST and CIFAR-10, we demonstrate that
CS-CNN is able to accelerate the training and inference
stages of CNN based image classification by an order of mag-
nitude meanwhile it achieves better classification accuracy
when the amount of training data is limited. Based on the
advantages mentioned above, it’s evidently that the proposed
CS-CNN can achieve remarkable overall performance and is
more appropriate and practical to be implanted to the resource
constrained devices such as various IoT devices.
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