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ABSTRACT Regression testing aims at testing a system under test (SUT) in the presence of changes. As a
SUT changes, the number of test cases increases to handle the modifications, and ultimately, it becomes
practically impossible to execute all of them within limited testing budget. Test suite reduction (TSR)
approaches are widely used to improve the regression testing costs by selecting representative test suite
without compromising effectiveness, such as fault-detection capability, within allowed time budget. The
aim of this systematic review is to identify state-of-the-art TSR approaches categories, assess the quality of
experiments reported on this subject, and provide a set of guidelines for conducting future experiments in
this area of research. After applying a two-facet study selection procedure, we finalized 113 most relevant
studies from an initial pool of 4230 papers published in the field of TSR between 1993 and 2016. The
TSR approaches are broadly classified into four main categories based on the literature including greedy,
clustering, search, and hybrid approaches. It is noted that majority of the experiments in TSR do not follow
any specific guidelines for planning, conducting, and reporting the experiments, which may pose validity
threats related to their results. Thus, we recommend conducting experiments that are better designed for the
future. In this direction, an initial set of recommendations is provided that are useful for performing well-
designed experiments in the field of TSR. Furthermore, we provide a number of future research directions
based on current trends in this field of research.

INDEX TERMS Software testing, regression testing, test suite reduction, experiments, guidelines.

I. INTRODUCTION
Software testing is the most prominent quality assurance
activity that ensures the delivery of a quality software sys-
tem by exposing maximum number of defects [1]. Software
system continuously evolves due to several changes such
as system functionality, business demands, and technology,
which may have adversely affected the existing components
of a System under Test (SUT) [2], [3]. Consequently, it is
necessary to retest the SUT by executing newly generated
test cases along with previously developed test cases. As a
result, the size of test suite significantly increases by accom-
modating all changes in a software system, which may not be
executed within allocated testing budget.

Regression testing is intended for checking the altered
behavior of a SUT and ensuring that changes have not
adversely affected the SUT quality [4]. Similarly, regression
testing is meant to reduce testing effort by avoiding retesting
of the entire SUT. Motivated by this, researchers have pro-
posed three main test optimization techniques, which aim to
provide better cost-effective solution for regression testing.
Yoo and Harman [5] broadly discussed these test optimiza-
tion techniques: (i) test case selection: identifies a subset
of existing test cases that can be effective to test modified
portions of the SUT; (ii) test case prioritization: determines
an ordering of test cases to enhance certain objectives such
as fault detection rate [6]; and (iii) test suite reduction:
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identifies and permanently eliminates redundant test cases
based on a certain criteria, such as maximum coverage of
features or source code of the SUT, to produce minimal repre-
sentative suite. Both test selection and reduction techniques
target to minimize the size of test suite. However, test case
selection techniques focus only on selecting such test cases,
which covers the modified portions of the SUT rather than
eliminating them from original test suite [5].

To ensure the quality of SUT, three key activities related to
each test case need to be performed [7]: (i) creating appro-
priate test data, (ii) determining the expected output, and
(iii) evaluating the test execution results. Ultimately, it helps
the tester in exposing maximum possible defects from SUT,
which leads to ensure the quality of the SUT.However, above-
mentioned test cases related activities significantly increase
the testing effort and cost especially if a specialized test
execution environment (also referred as test-bed) is required
for rigorous and transparent testing of a software system. Test
Suite Reduction (TSR) techniques significantly reduce the
testing time since they effectively decrease various test case
related costs, such as test execution, test data management,
and test storage, by producing minimal-size representative
suite. The representative suite is essential to reduce the testing
cost in the case when a single test case requires high human
effort and data preparation. Consequently, TSR approaches
improve the cost-effectiveness of regression testing and have
a profound impact on the required testing effort. Moreover,
researchers have mentioned that removal of redundant test
cases does not greatly affect the overall SUT quality [8], [9].

In the literature, two systematic reviews have been con-
ducted in the area of regression testing: (i) test case selec-
tion [10] and (ii) test case prioritization [3]. However,
literature has not seen a systematic review that provides an
up-to-date view of state of the research in the field of TSR.
Therefore, it is timely to conduct a systematic review on
TSR due to growing body of knowledge focusing on optimal
TSR problem. Furthermore, to the best of our knowledge,
no published work has focused on finding various classes of
TSR approaches, and assessing the quality of experiments
conducted in the area of TSR. Thus, we have conducted
a systematic review to select relevant TSR approaches for
classification based on the types of employed algorithms and
underlying common viewpoints for TSR. Since majority of
the work on TSR have been evaluated empirically, we have
assessed the experiment quality based on the defined quality
assessment criteria. Moreover, we have suggested a set of
recommendations useful for systematically conducting and
evaluating the future experiments on TSR.

The main objective of this organized review is to classify
proposed TSR approaches and improve the body of credible
evidence by assessing the quality of experiments conducted
in the field of TSR. To achieve this objective, 4,230 potential
papers were analyzed. Finally, 113 studies published in peer
reviewed journals and conferences were selected for this
methodical review. Four main classes of TSR approaches
were identified including greedy-based, clustering-based,

search-based, and hybrid approaches according to the types
of algorithms employed. The results of this review indicate
that for the most part, research on TSR has concentrated
on greedy-based approaches (69%, 65/95) for solving the
single-objective optimization problem, such as determining a
reduced suite having maximum SUT coverage, using one or
more forms of greedy algorithms. Notice that 95 represent the
total number of selected TSR approaches, while 65 represent
the number of greedy-based approaches. Correspondingly,
it is noted that search-based TSR approaches are becoming
of greater interest (20%, 19/95) in recent years owing to
several successful results reported in the literature [11]–[14].
Search-based approaches principally focus on solving single-
objective optimization problems by generally targeting a
global optimal solution. Furthermore, it appears that the
clustering-based approaches (3%, 3/95) targeted at solving
single-objective optimization problems using different clus-
tering and sampling algorithms. Likewise, it is observed that
hybrid approaches (8%, 8/95) focus on providing better cost-
effective solutions by integrating the strengths of other TSR
approaches using one or more algorithm types. Nonetheless,
it is also evident that most reported experiments in TSR are
deficient in following any specific guidelines for planning,
conducting, and reporting experiments; thus posing valid-
ity threats associated with their outcome. Finally, a set of
recommendations are suggested, which would be useful for
conducting well-designed experiments pertaining to TSR.

This paper is organized as follows. Section II describes
background and related work. Section III provides the
research method applied to perform this systematic review,
while TSR approaches including similarities and differences
among various classifications are presented in Section IV.
Section V reports on the evaluation of experimental quality
related to TSR as well as guidelines for conducting a well-
designed experiment. Section VI discusses the overall results
of this methodical review and SectionVII outlines the validity
threats. Section VIII provides conclusion and suggest poten-
tial research directions in the field of TSR.

II. BACKGROUND AND RELATED WORK
This section provides an overview of regression testing and
optimal TSR problem. It also discusses the related work
conducted in the field of regression testing with a special
emphasis on TSR techniques.

A. REGRESSION TESTING AND OPTIMAL TSR PROBLEM
Regression testing is extensively conducted by the tester to
detect maximum possible defects as resulted by the modifi-
cations in a SUT. The main objective of regression testing is
to ensure that modifications have not adversely affected the
behavior of existing component(s) of SUT [15].

In the literature, significant numbers of approaches have
been proposed to reduce high cost of regression testing. The
approaches are broadly categorized into three main tech-
niques including test suite reduction, test case selection, and
test suite prioritization. Since our focus is on TSR, therefore,
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an interested reader may consult the work provided in [5] for
more information about test case selection and prioritization
techniques. TSR approaches focus on finding the smallest
representative suite by retaining fault-detection capability of
the original test suite [16], [17]. The TSR problem is defined
by Harrold et al. [18] as follows:

Given: A universal test suite T = {tc1, tc2 . . . , tcm}.
A set of test requirements R = {R1,R2, . . . ,Rn}
that must be covered to provide the desired test
coverage of the program under test.
Subsets of T = {T1,T2 . . . ,Tn}, where each
test set (Ti) is associated with each test require-
ment (Ri), such that any one of the test case(s)
tcj of Ti can satisfy Ri.

Objective: Find the reduced suite (representative suite) con-
taining minimal number of test cases from T that
satisfies each Ri at least once.

To determine an optimal TSR, researchers recommended
computing the smallest possible Reduced Suite (RS) along
with preserving their fault-detection capability similar to
the original test suite [19]. Generally speaking, optimal
TSR can only be achieved if the RS contains minimal number
of test cases. The optimal TSR problem is known to be
NP-hard problem [20] and is equivalent to minimum set
cover [21]. Notice that there is an exponential time relation-
ship between computing a minimum size RS and TSR prob-
lem size [20]. Current TSR strategies grounded on various
types of heuristics to produce approximate solutions within
practical computational time [18], [22]–[24].

B. RELATED WORK
There are many systematic reviews, mapping studies, and
surveys have been performed in the area of regression test-
ing. Engström et al. [10] conducted a systematic literature
review on Regression Test Selection (RTS) techniques. They
evaluated 28 RTS techniques and reported that no technique
is superior as it is based on different varying factors. In con-
trast, Catal and Mishra [3] performed a systematic mapping
study on Test Case Prioritization (TCP) techniques. The
authors systematically found 120 papers on TCP approaches.
They reported that coverage-based TCP approach dominat-
ing the field of TCP, and significant proportion of selected
papers (64%, 77/120) used industrial projects based dataset.
In contrast, Qiu et al. [15] conducted a thorogh systematic
mapping study on regression testing. However, the authors
only focused on web services rather than traditional soft-
ware systems. In total, they selected 30 papers focusing on
web service regression testing. They reported that TSR tech-
niques have attained less attention of researchers compared to
RTS and TCP techniques in the area of web service regression
testing as only two studies have focused on web service
based TSR.

Prior work [5], [25] has considered different view-
points related to TSR compared to our systematic review.
Elberzhager et al. [25] performed a mapping study to
determine different areas that are useful in reducing the

testing effort. They selected 144 papers and classified into
five diverse areas including defect estimation approaches,
test input reduction approaches, test automation, test strat-
egy, and quality assurance techniques before testing, which
are based on different mechanisms to reduce testing effort.
However, majority of test input reduction approaches
mentioned were RTS and TCP approaches. In contrast,
Yoo and Harman [5] conducted an extensive survey that
formally described and broadly reported regression test-
ing techniques including RTS, TCP, and TSR. In addition,
the authors also analyzed trends and issues related to regres-
sion testing techniques. However, the survey lacks in cat-
egorizing underlying TSR strategies and methods, which
could be beneficial in improving the body of knowledge in
the field of TSR. Furthermore, the survey did not critically
evaluate the quality of experiments for TSR. Our work
differs from Yoo and Harman’s [5] study in three ways:
(i) Yoo and Harman’s [5] conducted a traditional
survey, while our paper is a systematic review,
(ii) Yoo and Harman’s [5] considered papers published
until 2009, whereas we have investigated papers published
between 1993 to 2016, and (iii) Yoo and Harman’s [5]
considered 35 papers related to TSR, whereas we have
systematically selected a comprehensive set of 113 papers.
Our systematic review thoroughly covers shared viewpoints
of proposed TSR strategies, and also critically evaluates the
quality of conducted experiments. We also highlight potential
future research directions for further study.

III. RESEARCH METHOD
This section explains the research method applied in the
current systematic review. The research questions are pre-
sented in Section A, the study selection process is discussed
in Section B, and data extraction and synthesis process are
reported in Section C.

A. RESEARCH QUESTIONS
The main purpose of this systematic review is to summarize
and investigate state-of-the-art work in TSR from various
aspects, including proposed approaches and reported experi-
ments. With this goal in mind, we have formulated two main
research questions.
RQ1: What type of TSR approaches have been proposed in

existing literature and how they can be classified?
This research question intends to categorize investigations

undertaken so far regarding TSR approaches. The following
sub-research questions should distinguish the most important
characteristics of TSR approaches:

1) RQ1.1: What are the various classifications of TSR
approaches?

2) RQ1.2: What are the commonalities and differences
among approaches for each classification?

RQ2: What is the overall quality of reported TSR experi-
ments in the domain of regression testing?

This research question is meant to measure the quality of
experiments carried out on TSR by synthesizing the results
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obtained in the reported experiments according to the defined
quality assessment criteria.

The present systematic review is conducted by following
the guidelines suggested in [26]. After exhaustively applying
the study selection strategy, 113 studies were finalized to
answer the formulated research questions.

B. STUDY SELECTION STRATEGY
To warrant the completeness of relevant study selection, three
main steps were taken: (i) selecting the sources of informa-
tion, (ii) identifying the search keywords, and (iii) including
and excluding studies according to the defined inclusion and
exclusion criteria.

1) SOURCES OF INFORMATION
To guarantee this systematic review is comprehensive, the fol-
lowing electronic source repositories were used to collect the
potential studies:
• IEEE Xplore (<ieeexplore.ieee.org>)
• Web of Science (<www.isiknowledge.com>)
• Springer link (<www.link.springer.com>)
• Compendex (<www.engineeringvillage2.org>)
• ACM Digital Library (<www.dl.acm.org>)
• ScienceDirect (<www.sciencedirect.com>)
• Inspec (<www.theiet.org/publishing/inspec>)

The used source repositories contain nearly all important
workshops, symposiums, journals, and conference proceed-
ings within the software engineering domain, as confirmed
by [27]. We performed manual filtering to exclude duplicates
among potential studies.

2) SEARCH KEYWORDS
The study selection process was initiated by executing the
devised search string on the identified source repositories.
To systematically define the search string, three steps were
taken: (i) identifying the main search keywords according to
the formulated research questions, (ii) identifying the syn-
onyms and alternative words to the main search keywords,
and (iii) creating the search string by integrating the identified
keywords, synonyms, and alternative words using Boolean
AND, OR operators.

Based on the main work objectives of classifying the TSR
approaches and evaluating the quality of experiments on TSR,
the following major search keywords were used: regression
testing, test suite reduction, and experiment.

Upon having attempted some strings in search query for-
mulation, it appears that ‘‘regression testing’’ would return
numerous studies with no relevance. For this reason, ‘‘regres-
sion’’ was linked with ‘‘test’’ via a Boolean AND operator
to obtain a relevant set of studies. To ensure that no rele-
vant studies were omitted, the word ‘‘reduction’’was applied
along with substitutes like ‘‘filtering’’ and ‘‘minimisation.’’
Subsequently, in searching the domain, the word ‘‘approach’’
was connected with alternatives like ‘‘algorithm,’’
‘‘heuristic,’’ and ‘‘technique’’ via the Boolean OR opera-
tor. Similarly, the term ‘‘experiment’’ was utilized with its

alternatives ‘‘empirical study’’ and ‘‘experimental study,’’
and these were joined with the main expression ‘‘regression
test suite reduction’’ using the Boolean OR operator. Finally,
the devised string was searched in all titles, abstracts, and
keywords in each selected source repository. The formulated
search string is given as:

{((‘regression’ AND ‘test’) AND (‘case’ OR
‘suite’) AND (reduction OR minimisationOR fil-
tering) OR (approachOR heuristic ORalgorithm
OR technique) OR (experiment OR empirical
study OR experimental study)) < in title, abstract,
and keywords >}

To ascertain that the most relevant studies were selected
for review, the start year was set to 1990 and the final year
to 2016. However, the earliest study chosen for this review
was published in 1993 [18]. Furthermore, only papers written
in English were selected.

3) STUDY SELECTION ACCORDING TO INCLUSION AND
EXCLUSION CRITERIA
Since this systematic review is geared toward TSR, the inclu-
sion and exclusion criteria for choosing the appropriate stud-
ies are based on various TSR related aspects, i.e., proposed
TSR approaches and reported experiments aimed at deter-
mining the efficacy of proposed TSR approaches. In this
section, the devised inclusion and exclusion criteria are
discussed.

First, the defined search string was executed on all selected
source repositories and 4,230 potential studies were found.
After manually removing the duplicates from different repos-
itories, 2510 studies were left. To select the most relevant
studies, a two stage study selection procedure was applied
carried out by three participating researchers. Initially, a ran-
dom set of studies were given to the participating researchers
to establish a common understanding. In the first selection
stage, the studies found were randomly separated into three
equal sets and handed to the three participating researchers
who checked titles and abstracts. If a researcher was not
confident about a given study, it was retained for the second
study selection phase. In the first selection stage, studies were
excluded based on titles and abstracts by applying the given
exclusion criteria:
• Titles or abstracts that do not include ‘test suite reduc-
tion’ or other related keywords such as ‘test suite min-
imisation’ or ‘test suite filtering’.

• Titles or abstracts that do not include targeted aspects
related to test suite reduction (i.e., proposed TSR
approaches and reported experiments on TSR).

Subsequent to applying the inclusion and exclusion criteria
in the first stage, 156 studies were located. In the second
phase, the selected studies were once again split into three
sets and randomly assigned to the three researchers who
checked the contents of the allocated studies to ensure that
studies reporting the targeted aspects related to TSR. If a
researcher was unsure whether to include or exclude a study,
consultation with other researcher(s) followed. In the second
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TABLE 1. Type of data collected for the formulated research questions.

selection stage, studies were excluded by checking the con-
tents of each study according to the following exclusion
criteria:
• Studies that do not report test suite reduction.
• Focus was only directed towards studies that were
published in peer-reviewed conferences, workshops,
symposium, or journals. The posters and extended
abstracts were excluded due to lack of technical
details.

4) DEMOGRAPHIC DATA AND OVERVIEW
Finally, we selected 113 studies, of which 95 reported TSR
approaches and 18 referred to experiments conducted in
the field of TSR. The earliest selected study was pub-
lished in 1993, and the latest study was published in 2016
(see Appendix).

C. DATA EXTRACTION AND SYNTHESIS
To collect the data from the final selected studies, a Microsoft
Excel sheet specifically designed for data extraction pur-
poses was utilized. Two sets of information were gathered
from each study: (i) standard information including study’s
title, authors’ names, complete reference, a brief summary,
characterization of TSR aspects (i.e., TSR approach and
experiment), publication type (e.g., conference, workshop,
symposium, or journal), researcher’s name and comments;
and (ii) summarized information according to the formulated
research questions (see Table 1).

Next, the final chosen studies were equally dis-
tributed among three participating researchers. Each of the
researchers read through the assigned set, extracted the rel-
evant data, and indicated this information on the designed
Microsoft Excel sheet. In case of any ambiguity, the partici-
pating researchers made decisions through mutual consensus
by calling a wrap-up meeting.

FIGURE 1. Conceptual diagram of Test Suite Reduction (TSR) approaches.
A TSR approach determines representative suite by employing
one or more algorithms from one or more Algorithm class using
one or more heuristics from Heuristic.

IV. TYPES OF TEST SUITE REDUCTION (TSR)
APPROACHES (RQ1)
This section presents current state-of-the-art TSR approaches
along with similarities and differences among various classi-
fications, which is based on different underlying concepts and
algorithms.

A. CLASSIFICATION OF TSR APPROACHES (RQ1.1)
Based on this systematic review, we classified TSR
approaches into four main categories based on the type
of employed algorithm(s) (see Fig. 1): Greedy, Clustering,
Search, and Hybrid.

The following definitions served to define the classifica-
tion of TSR approaches:
TS = {tc1, tc2, . . . , tcnts} is an original test suite that is to

be reduced and ‘nts’ is the number of test cases in TS.
RS = {tc1, tc2, . . . , tcnrs} is a subset of TS and ‘nrs’ is the

number of representative test cases in RS, where nrs < nts.
Heuristic = {h1, h2, . . . , hnh} is a set of heuristics used to

guide test suite reduction and ‘nh’ is the number of heuristics
in Heuristic.
Cost= {cost1, cost2, . . ., costncost} is a set of costmeasures

and ‘ncost’ is the number of cost measures in Cost, such as
cost of a TSR algorithm and execution time of the RS.
Effect= {effect1, effect2, . . . , effectneffect} is a set of effec-

tiveness measures and ‘neffect’ is the number of effectiveness
measures in Effect, e.g., test time reduction percentage, test
suite reduction percentage, and test coverage percentage.
AlgorithmClass = {class1, class2, . . . , classnac} is a set

of classifying algorithms employed for TSR and ‘nac’ is the
number of classifying algorithms in AlgorithmClass.
CostF (TestSuite, costi) is a function that returns the cost of

a test suite (TestSuite) based on a cost measure (costi) from
Cost.
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EffectF(TestSuite, effect i) is a function that returns the
effectiveness of a test suite (TestSuite) based on an effective-
ness measure (effecti) from Effect.

1) TSR APPROACHES
Generally, a TSR approach obtains Reduced Suite (RS)
by employing one or more algorithms from one or
more AlgorithmClass using one or more heuristics from
Heuristic (Fig. 1) with the aim of achieving (1)
and (IV-A.1).∑n cos t

i=1
CostF(RS, cos ti)≤

∑n cos t

i=1
CostF(TS, cos ti),

(1)

where (n cos t ≥ 1) ∧ (RS ∧ TS 6= 0)∑neffect

i=1
EffectF(RS, effecti)≤

∑neffect

i=1
EffectF(TS, effecti),

(2)

where (neffect ≥ 1) ∧ (RS ∧ TS 6= 0)
The following sub-sections present the classification of

TSR approaches.

a: GREEDY-BASED APPROACH
Coverage = {coverage1, coverage2, . . . , coveragencoverage}
is a set of coverage criteria, where ‘ncoverage’ is the number
of coverage criteria. Notice that Coverage is a subset of the
Effect set.
Coverage(TS, Criterion) is a function that returns the cov-

erage percentage based on a criterion (Criterion) from the
Coverage set as achieved by TS.
A test case can satisfy one or more elements of Criterion

(e.g., in the case of control flow-based coverage, the criterion
element can be a statement, branch, or path), a binary relation
matrix Satisfy(TestSuite, Criterion) for the set of Criterion c,
and TestSuite TS can be defined as:

Satisfy(TS,Criterion)

= {(tc, c)|tc satisfyc, tc ∈ TS ∧ c ∈ Criterion}[
1, if tc satisfy c
0, otherwise

]
(3)

where rows represent the test cases (tc) and columns sig-
nify the Criterion (c) of a binary relation matrix.

A greedy-based approach employs an algorithm from
classi from AlgorithmClass that uses one or more heuristics
from Heuristic, which are greedy-based heuristics, to obtain
RS such that conditions (4) and (5) hold [18]:

nrs < nts (4)∑ncoverage

i=1
Coverage(RS, coveragei)

≤

∑ncoverage

i=1
Coverage(TS, coveragei),

where n coverage ≥ 1 (5)

Greedy-based approaches usually employ a greedy algo-
rithm (or variants of greedy algorithm) to find a solution.

A greedy algorithm runs the following steps to obtain
RS [28]:
Step 1:

∀tci · tci ∈ TS ∧ i ∈ N+,

i ≤ nts : Selection(tci) = Satisfy(TS,Criterion) (6)

where the function Selection(tci) returns the best candidate
test case (tci) based on the maximum covered entries of
a binary matrix Satisfy(TS, Criterion). In the case of a tie
between test cases (i.e., covering same number of entries of a
binary matrix), apply random test selection strategy.
Step 2:Mark the corresponding covered entries of the test

case (tci) in Satisfy (TS, Criterion) as 0 (i.e., satisfied), and
add the test case (tci) in the RS and removes tci from TS as
denoted in (7).

RS = (RS ∪ tci) and TS = (tci\TS) (7)

Step 3: Check whether all the entries in Satisfy(TS, Crite-
rion) are marked as 0, TS = φ, and nrs < nts. If no, move to
Step 1, otherwise return the RS.
Greedy algorithm provides a local optimal solution by

following theCurrent Best strategy to determine the RS with-
out considering the global optimal solution. In all iterations,
a greedy algorithm selects a test case that has high SUT cover-
age until the desired coverage is attained [18], [29]. However,
it has been observed that the greedy algorithm determines
a minimal-cardinality suite at the cost of some or marginal
compromise in fault-detection capability [30].

b: CLUSTERING-BASED APPROACH
SubsetTS = {subset1, subset2, . . . , subsetnsubset} is a set of
TS subsets, where ‘nsubset’ is the number of TS subsets.
SimilarityMeasure = {sm1, sm2, . . . , smnsm} is a set of sim-

ilarity measures, where ‘nsm’ is the number of similarity
measures.
Similarity (SimilarityMeasure, tc1, tc2) is a function that

takes a SimilarityMeasure and two test cases (tc1 and tc2) as
input and returns a value representing the similarity of the
given test cases. It should be noted that the similarity between
test cases is calculated based on cost and/or effectiveness
measures.
DissimilarityMeasure= {dsm1, dsm2, . . . , dsmndsm} is a set

of dissimilarity measures, where ‘ndsm’ is the number of
dissimilarity measures.
Dis similarity (DissimilarityMeasure, subset1, subset2) is

a function that takes a DissimilarityMeasure and two subsets
(subset1 and subset2) as input and returns a value representing
the dissimilarity between the given subsets of the test cases.
The dissimilarity between test case subsets is calculated
based on cost and/or effectiveness measures.

A clustering-based approach functions in the following
way to obtain the RS [31]:
Step 1: Employ an algorithm from classi from Algorithm-

Class, where classi is a class of cluster-based algorithms to
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obtain SubsetTS such that for each subsetk in SubsetTS (8):

∀i, j ∧ i 6= j : Similarity(sm1, tci, tcj) ≥ SimThreshold (8)

where sm1 is the 1st similarity measure and i, j ranges from
1 to k , while SimThreshold is a value below which two test
cases are considered significantly different.

Moreover, for each subsetk in SubsetTS as defined in (9):

∀i, j ∧ i 6= j : Dissimilarity(dsm1, subseti, subsetj) (9)

where dsml is the 1st dissimilarity measure and i, j ranges
from 1 to nsubset, whileDisThreshold is a value below which
two test cases are considered significantly similar.
Step 2: Obtain RS by sampling x test cases from each

subsetk by employing sampling algorithms and mark subsetk
as satisfied such that nrs < nts.
Step 3: Check whether SubsetTS is marked as satisfied.

If no, move to Step 2, otherwise return RS.
Suppose there is a subset TS = {S1, S2, . . . , Sk}, where

each Si is a subset of TS resulting from cluster analysis, each
test case in Si is similar to each other, and similarity is mea-
sured based on similarity metrics such as Jaccard index [32]
or Levenshtein [33]. Each Si differs from other Sj, where
i 6= j. The difference is measured based on dissimilarity
metrics such as Euclidean distance [31]. Finally, the RS is
obtained by sampling test cases from each Si, for instance
one-per-cluster sampling [34].

c: SEARCH-BASED APPROACH
For TS there are set of potential solutions S =

{S1, S2, S3, . . . , Sk}, where k is the total number of potential
solutions and can be measured as 2K − 1. The size of each Si
(i.e., the number of test cases) ranges from 1 to n.
Fitness(solution) is a function that returns the fitness of

a solution, where fitness is calculated based on cost and/or
effectiveness measures.

A search-based approach finds the RS from S (where
S ∈ TS) using a search algorithm such that following con-
ditions hold as mentioned in (10) to (13):

∀i : Fitness(RS) > Fitness(si), i ranges from 1 to k (10)

CostF(RS, costj) ≤ CostF(TS, costj) (11)

EffectF(RS, effectj) ≤ EffectF(TS, effectj) (12)

nrs < nts (13)

To obtain RS, a search-based approach operates as
follows [35]:
Step 1: Initialize RS as empty (i.e., RS = φ)
Step 2: ∀si, TS, apply the fitness function based on cost

and/or effectiveness measures as mentioned in (14) and (15):

CostF(RS, cos ti) =
∑k

i=1

∑n

i=1
CostF(si, cos ti)

≤

∑n cos t

i=1
CostF(TS, cos ti) (14)

EffectF(RS, effecti) =
∑k

i=1

∑n

i=1
EffectF(si, effecti)

≤

∑neffectt

i=1
EffectF(TS, effecti) (15)

Step 3:Compare the attained cost (costi) ofRS and TS using
the cost measure (i.e., CostF) mentioned in (16):

(CostF(RS, cos ti) ≤ CostF(TS, cos ti)) (16)

and/or the obtained effectiveness (effecti) of RS and TS
using the effectiveness measure (i.e., EffectF) defined in (17)

(EffectF(RS, effecti) ≤ EffectF(TS, effecti)) (17)

Step 4: Obtain RS by checking (18) and (19).

k∑
i=1

(Fitness(RS) > Fitness(si)) (18)

(nrs < nts) (19)

In the search-based approach there is a set of potential
solutions, where each solution must be capable of being rep-
resented such that it is usable in the search algorithm. Then,
RS is determined by applying the devised fitness function
based on the cost and/or effectiveness measures [36], [37].
Notice that similar to clustering-based approaches, search-
based approaches also employ SimilarityMeasure to
determine the similarity score between pairs of test cases.
Consequently, search-based approaches generate a RS having
diverse set of test cases based on the defined cost and/or
effectiveness objective(s) and similarity score.

d: HYBRID APPROACH
As shown in Fig. 1, a hybrid approach employs one or more
types of TSR algorithm. Hybrid approach is further classified
into Intra and Inter hybrid techniques:

1) Intra Hybrid Techniques: employ more than one algo-
rithm from classi from AlgorithmClass for test suite
reduction.

2) Inter Hybrid Techniques: employ more than one class
of AlgorithmClass.

e: CONCLUDING REMARKS
Concerning the discussion given about RQ1.1, it can be
concluded that a TSR approach mainly differs from other
approaches (i.e., greedy-based, clustering-based, search-
based, and hybrid) in terms of the type of algorithms
applied to obtain a reduced test suite with some or marginal
compromise in testing effectiveness, more importantly fault-
detection capability. In this review, four main algorithm
classes have been identified: (i) greedy-based algorithms,
(ii) deterministic algorithms (i.e., Integer Linear Program-
ming), (iii) clustering-based algorithms (clustering and sam-
pling), and (iv) search-based algorithms. It has also been
observed that a number of approaches (i.e., hybrid) are uti-
lized in an attempt to combine various algorithms for TSR.

2) COMMONALITIES AND DIFFERENCES AMONG TSR
APPROACHES (RQ1.2)
The following sub-sections present the main perspectives that
help to understand the commonalities and differences for each
classification of TSR approaches.
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FIGURE 2. Conceptual diagram of greedy-based approach.

TABLE 2. Variants of greedy-based heuristics.

a: GREEDY-BASED APPROACH
Greedy-based approach can be categorized from three per-
spectives: (i) Coverage Source, (ii) Coverage Type, and (iii)
Technique Type employed for TSR. The classification is
depicted in Fig. 2.

1) Coverage Source: Three sources of coverage identi-
fied are: (i) Source Code-based, (ii) Model-based (e.g.,
graph theory and model checker), and (iii) Execution
Profile-based. Notice that execution profile-based cov-
erage is obtained by executing the entire test suite.
Table 2 provides a list of various heuristics that used
these coverage sources.

2) Coverage Type: Two types of coverage recognized are:
(i) static and (ii) dynamic. Notice that dynamic cover-
age is achieved from SUT execution. The source code
and model-based TSR heuristics use static coverage
criteria, while execution profile-based TSR heuristics
use dynamic coverage criteria. However, two source
code-based TSR approaches (S40; S48) have been
found, which employ dynamic coverage criteria to
obtain the RS. Table 3 lists a range of coverage criteria
utilized in greedy-based approaches.

3) Technique Type: Two types of techniques identi-
fied are: (i) approximate and (ii) exact. Approximate

TABLE 3. Coverage type and criteria used by greedy-based heuristics.

techniques exploit different variants of greedy algo-
rithms in order to perform approximation, which is
closer to an optimal solution. In contrast, exact tech-
niques (e.g., Integer Linear Programming) determine
a global optimal solution at the cost of long execu-
tion time compared to approximate techniques [17].
Table 4 provides a list of these techniques employed
by greedy-based approaches.
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TABLE 4. Types of technique used in greedy-based approaches.

Source code greedy-based heuristics (39%, 37/95) have
remained an intense research topic over the past few
decades (Table 2). Researchers have proposed a number of
greedy-based TSR approaches that primarily consider source
code-level structural coverage. Most of the work on code
greedy-based TSR heuristics (24%, 23/95) is aimed at solv-
ing single-objective optimization problems using different
variants of greedy algorithm, such as additional greedy algo-
rithm (S10) and delayed greedy algorithm (S32). Single-
objective optimization focuses either on effectiveness (i.e., to
obtain minimal RS size) or cost (i.e., to improve the fault
detection capability loss), but not both. However, as required
by real-world problems researchers need to incorporate
multi-objective optimization by taking into account multiple
alternatives to find an optimal tradeoff between cost and
effectiveness as focused by multi-objective optimization. For
instance, a test engineer might employ a multi-objective
optimization based TSR approach to find the minimum RS
size that achieves maximal SUT coverage with the least test
execution cost (S70).

Some model-based heuristics (S2; S17; S45) incorpo-
rate the subsumption concept for TSR, meaning that if
any basic concept (e.g., statement) in a super concept
(e.g., path) is covered by a test suite, then all basic con-
cepts in that super concept must also be covered by the
same test suite. Ultimately, subsumption concept signifi-
cantly reduces the size of test suite without compromising
on their fault detection ability. In contrast, some work has
focused on proposing execution profile-based approaches
(S23; S38; S51; S56; S83), which are based on dynamic
coverage criteria. However, all proposed execution profile-
based approaches focused on single-objective optimization
problem.

Greedy-based heuristics (S15; S19; S54; S78; S97) use
a binary matrix as an input to perform TSR. For exam-
ple, a source code-coverage heuristic for single-objective
optimization uses a component-path matrix (S19) and test-
requirements matrix (S54). Alternatively, in the source
code-coverage heuristic for multi-objective optimization a
purpose-test incidence matrix is utilized (S15). Furthermore,
the greedy algorithm-based approach for single-objective
optimization calls for a test-mutants matrix (S97) and the
greedy algorithm-based approach for multi-objective opti-
mization uses a test-requirements matrix (S78).

Greedy-based approach greatly depends on the coverage
criteria (Table 3), which can be generally classified into:
(i) static and (ii) dynamic criteria. Both coverage criteria
act as test redundancy metrics to assist the greedy-based
approach in determining redundancy among test cases. The
static coverage criteria can be further categorized into two
sub-criteria: (i) data-flow based and (ii) control-flow based.
Researchers are presently focusing on different dynamic
coverage criteria due to diversity in applications. Although
dynamic criteria require automatic compilation; however,
they never guarantee about complete coverage of the SUT.

A greedy-based approach employs two types of tech-
niques including, approximate and exact, to find a minimal-
cardinality suite (Table 4). Approximate techniques employ
various types of greedy algorithms (22%, 21/95) to deter-
mine minimal size reduced suite. However, approximate
techniques never guarantee about computing global optimal
solution. In contrast, exact (deterministic) techniques ensure
global optimal solution for TSR problem [17]. To the best of
our knowledge, only two exact techniques (S31; S82) have
been proposed in greedy-based class, which are based on
Integer Linear Programming (ILP) and a bi-criteria model to
ensure minimal-cardinality suite at the cost of long execution
time. Consequently, a tradeoff between test suite size and
algorithm runtime is required to provide more cost-effective
solution for optimal TSR problem [17].

According to the above discussion, it can be deduced
that most greedy-based approaches attempt to achieve
one or more coverage criteria to determine a minimal set
of test cases by employing approximate techniques using
variants of greedy algorithms or exact techniques. However,
the proposed approaches differ in relation to the coverage
source, coverage type, and technique type applied to obtain
a reduced test suite.

b: CLUSTERING-BASED APPROACH
Clustering-based approach is hereby grouped in accor-
dance with two criteria: (i) clustering algorithm type and
(ii) sampling algorithm type (Fig. 3).

Table 5 lists which techniques employ what types of clus-
tering algorithm, whereas Table 6 names various kinds of
sampling algorithm used by state-of-the-art clustering-based
approach.

It is evident that existing clustering-based TSR approaches
employ supervised clustering algorithms to group test cases
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FIGURE 3. Conceptual diagram of clustering-based approach.

TABLE 5. Types of clustering algorithms used by clustering-based
approaches.

TABLE 6. Types of sampling algorithms used by clustering-based
approaches.

based on the determined similarity/dissimilarity [38], where
the majority of approaches (S41; S95) use hierarchical
clustering algorithms (Table 5). Afterward, clustering-based
approaches employ different dynamic sampling algorithms
(S64; S95) to select the representative test cases (Table 6).

In conclusion, all clustering-based approaches work in
a similar way (as mentioned in Section IV(A)); however,
the approaches mainly differ from each other in terms of
algorithm used for clustering and sampling.

c: SEARCH-BASED APPROACH
Search-based approach can be classified based on single-
objective ormulti-objective optimization algorithms, as shown
in Fig. 4.

Table 7 tabulates different variants of search-based
algorithms.

It is observed that majority of search algorithms
(79%, 15/19) concentrate on solving single-objective opti-
mization problems (Table 7). In contrast, other search
algorithms (S70; S90; S103; S110) are meant to solve

FIGURE 4. Conceptual diagram of search-based approach.

TABLE 7. Variants of search-based algorithms.

multi-objective TSR problems by establishing an acceptable
tradeoff between the mentioned cost and effectiveness mea-
sures. Moreover, single-objective search algorithms provide
either local or global types of solutions. Local optimization
presents an optimal solution with respect to the neighboring
set of solutions, while global optimization determines an
optimal solution by considering all possible solutions. Global
optimization is more effective but requires greater computa-
tional effort than local optimization [35]. Therefore, the type
of solution (i.e., local vs. global) depends on the available
computational resources. In contrast, multi-objective search
algorithms can be grouped into two main classes: (i) Pareto
optimization and (ii) Non-Pareto optimization. Pareto opti-
mization gives a set of conflicting optimal solutions by
replacing an individual dominating candidate solution with
an individual population [39]. In contrast, Non-Pareto opti-
mization provides a set of non-conflicting optimal solutions
from all possible solutions [13]. Interested readers may refer
to [40] formore details onmulti-objective optimization-based
classes.

In conclusion, all search-based approaches for TSR func-
tion similarly, as conferred in Section IV(A), with the prin-
cipal differences lying in the search objectives (i.e., single
objective vs. multi objective) as well as type of solution
(i.e., local vs. global).

d: HYBRID-BASED APPROACH
Table 8 lists various hybrid techniques reported in the litera-
ture. It is clear that researchers have mostly used a greedy-
based approach (5%, 5/95) to propose hybrid techniques,
whereby greedy algorithm-based heuristics have been widely
employed to determine the RS. Moreover, researchers have
concentrated on all possible combinations of main TSR
approach categories (i.e., search, greedy, and clustering) to
propose hybrid techniques.
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TABLE 8. Variants of hybrid-based techniques.

e: DISCUSSION
In line with the discussion on various classifications in
prior sub-sections, it can be deduced that four main
TSR approaches (i.e., greedy, search, clustering, and hybrid)
have been proposed during the past twenty-four years.

Focus has mainly been directed toward proposing greedy-
based TSR approaches (69%, 65/95). This is mainly due
to the common belief that achieving 100% SUT coverage
via different coverage requirement(s) can expose a maxi-
mum number of defects [7]. Conversely, search-based TSR
algorithms are now gaining more attention (20%, 19/95)
following the introduction of the Search-based Soft-
ware Engineering (SBSE) notion by Harman and Jones
[36]. A possible reason is that search algorithms have
shown significant benefits [34], [41], [42] and researchers
are interested in studying the applicability of search
algorithms in the context of TSR [35]. Moreover,
the remaining TSR approach categories including hybrid
(8%, 8/95) and clustering (3%, 3/95) have received less
consideration with regards to performing TSR.

V. QUALITY OF REPORTED EXPERIMENTS IN TSR (RQ2)
Experimentation plays a vital role in providing insights about
the quality of a software product. Kitchenham et al. [43]
emphasized on reporting guidelines, which are useful to all
types of empirical studies. Motivated by this, researchers
have proposed several reporting guidelines for experi-
ments [43]–[45]. However, to the best of our knowledge, there
is no ‘‘de-facto standard’’ or ‘‘unified guidelines’’, which can
be used to systematically conduct and report the outcome of
an experiment related to TSR.

A number of experiments have been conducted to deter-
mine the cost-effectiveness of TSR approaches (S14; S26;
S39; S43; S47; S52; S55; S57; S59; S63; S79; S94) or to
judge the impact of TSR on fault-detection capability loss
(S3; S6; S11; S16; S30; S66). Thus, it is important to eval-
uate the quality of experiments reported in the literature.

TABLE 9. Overview of quality assessment criteria.

Moreover, the ultimate objective is to derive an initial set of
recommendations useful for conducting and evaluating the
future experiments on TSR. Therefore, we have adopted a
systematic methodology to achieve these objectives. First of
all, we have identified a set of quality assessment criteria
for evaluating experiments. Next, we have investigated the
quality of selected studies based on the defined quality assess-
ment criteria. After that, we have provided overall trends
of TSR experiments. Finally, we have presented a set of
recommendation that can help in improving the quality of
TSR related future experiments.

A. QUALITY ASSESSMENT CRITERIA
To assess the quality of published experiments on TSR, a set
of criteria focusing three main experiment phases includ-
ing, experiment scoping, planning, and results analysis and
interpretation, is identified according to the principles of a
well-designed software engineering experiment provided by
Wohlin et al. [46]. Table 9 provides an overview of quality
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TABLE 10. Quality assessment score attained by the selected studies.

assement criteria, which ultimately helps in evaluating the
quality of experiments reported in the literature related
to TSR.

B. QUALITY ASSESSMENT SCORE
Based on the defined quality assessment criteria (Table 9),
we have evaluated the quality of reported TSR experiments.
Table 10 presents the quality assessment results for the
selected studies.

C. TRENDS OF TSR EXPERIMENTS
Researchers have conducted a significant number of studies
in the field of TSR. In total, 18 studies were selected, of which
12 focused on determining the cost-effectiveness of TSR
approaches (S14; S26; S39; S43; S47; S52; S55; S57; S59;
S63; S79; S94) and six aimed at judging the impact of TSR on
fault-detection capability loss (S3; S6; S11; S16; S30; S66).
Fig. 5 shows the number of studies conducted on a yearly
basis starting from 1994, whenWong et al. [47] performed the
first ever empirical study after the introduction of two TSR
heuristics (S1; S2) in order to measure the fault-detection
loss. The publication trends on TSR experiments indicate that
researchers have mainly focused on conducting comparative
studies. It is mainly due to the fact that significant num-
bers of TSR approaches have been proposed. Consequently,
researchers were interested to determine best TSR approach
from other compared approaches.

The following sub-sections present the quality assessment
results of reported TSR experiments according to the defined
quality assessment criteria (Section V(A)), which covers

FIGURE 5. Number of studies conducted per year.

FIGURE 6. Number of studies satisfying quality assessment criteria. The
number on bar represent the number of performed experiments (studies)
that satisfy the defined quality assessment criteria (QAC). For example,
2 studies out of 18 fulfill the QAC3.

three main phases of an experiment: (i) project scoping,
(ii) planning, and (iii) analysis and interpretation.

1) EXPERIMENT SCOPING
In current state-of-the-art TSR experiments, none of the
selected study used Goal/Question/Metric to explicitly
define the scope (QAC1) of the experiment (see Fig. 6).
Wohlin et al. [46] termed experiment scope as the ‘‘defini-
tion of the experiment’’, which should be explicitly defined
to provide clear and unambiguous definition regarding the
experiment objective. In contrast, nine studies (S3; S6; S11;
S16; S52; S55; S59; S66; S94) reported the context (QAC2).
Moreover, six studies (33%, 6/18) implicitly (partly) dis-
cussed the online context of the experiments using two bench-
mark programs including Siemens programs [48] and Space
programs [49]. Four studies applied Siemens programs (S11;
S16; S55; S66) and three used Space programs (S3; S6; S59)
for evaluation purposes.

The selected studies implicitly address the specific context
of experiments. For example, 12 studies (S14; S26; S39; S43;
S47; S52; S55; S57; S59; S63; S79; S94) focus on finding
the best TSR approach to determine the Reduced Suite (RS),
while six studies (S3; S6; S11; S16; S30; S66) empha-
size on evaluating the impact of TSR on Fault Detection
Capacity (FDC).
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We found nine studies (50%, 9/18) that lack in discussing
the hypothesis (QAC3), which poses external validity threats
related to their results. Only two studies (11%, 2/18) for-
mally define the hypothesis (S16; S43), whereas nine studies
(50%, 9/18) partly define the hypothesis (S3; S6; S11; S16;
S43; S30; S47; S66; S94).

Among all, six studies (33%, 6/18) reported different inde-
pendent and dependent variables (QAC4)with no bias toward
any TSR approach (S11; S43; S47; S59; S66; S94). To mea-
sure the cost-effectiveness of conducted studies, researchers
have employed a number of cost and effectiveness mea-
sures. For example, four studies (22%, 4/18) considered
only one effectiveness measure such as Percentage of Test
Suite Reduction (PTSR) (S14; S26; S55; S79). Additionally,
14 studies (78%, 14/18) used two effectivenessmeasures (i.e.,
PTSR and FDC). Similarly, 19 studies used different types
of coverage criteria as a measure of effectiveness. It was
observed that the conducted studies in TSR mostly employ
greedy-based approach, but only one study (S79) consider
search-based approach. Furthermore, 14 studies (74%) used
mutation score to measure the FDC-based effectiveness
of TSR approaches. In contrast, we found six cost mea-
sures. Three studies (17%, 3/18) lack in using any cost
measure (S39; S52; S57), while the remaining 15 stud-
ies used only one cost measure. The most prominent cost
measure in 10 studies (56%, 10/18) was Fault Detection
Loss (FDL). Moreover, four studies employed a single cost
measures, including test suite size (S16), Percentage of
increase in Expense of Fault Localization (PEFL) (S59),
Ratio of Greedy Choice (RGC) (S63), and test overlapping
ratio (S14). Additionally, two studies (11%, 2/18) applied
algorithm running time as a cost measure to compare the
performance of greedy-based and search-based approaches
(S55; S79). Alternatively, all selected studies considered dif-
ferent scalability measures such as size of System under
Test (SUT) and number of test cases. We found 13 studies
(72%, 13/18) that reported different scalability measures,
while four studies (22%, 4/18) failed to report SUT size
(S26; S39; S43; S79).

Only three studies (17%, 3/18) mentioned standard experi-
mental design (QAC5) in TSR (S11; S16; S43). For instance,
the most commonly used standard design was one factor with
two treatments.

2) EXPERIMENT ANALYSIS AND INTERPRETATION
A significant number of studies (44%, 8/18) lack in consid-
ering any comparison baseline (QAC6) technique. We found
five studies (28%, 5/18) which used random techniques as
a comparison baseline (S16; S26; S30; S39; S52), and three
studies (17%, 3/18) used RS size a baseline technique (S55;
S57; S79). Additionally, three studies (S14; S16; S79) applied
unique comparison baseline techniques, including mutation
adequacy ratio (S16), test overlapping ratio (S14), and algo-
rithm running time (S79). Furthermore, one study (S43)
employed greedy algorithm as a comparison baseline
technique.

Among all, 10 studies (56%, 10/18) failed to report any
class of descriptive statistics (QAC7). In total, five studies
mentioned the central tendency including, mean and median
(S16; S11; S94; S43; S47), four referred to measures of dis-
persion including, standard deviation (S43; S57; S66; S94),
and three studies mentioned dependency measures such as
Spearman, Kendall, Pearson’s r-correlation, and square of
correlation (S3; S66; S11).

We found, six studies (S3; S11; S16; S43; S66; S94)
that discussed the results of hypothesis testing (QAC8) such
as using one sample parametric t-test (S43). In contrast,
four studies (22%, 4/18) performed a statistical significance
test such as F-test, t-test, paired t-test, ANOVA, and Bon-
ferroni test (S16; S43; S47; S94). Moreover, four studies
reported practical significance test (S16; S43; S47; S94),
while 13 studies other than (S6; S16; S30; S94; S39) reported
scalability analysis (QAC9) results.

Seven studies (39%, 7/18) discussed validity threats
(QAC10) including, internal and external validity threats,
whereas only one study (S43) reported conclusion validity
threats. Conversely, three studies (17%, 3/18) reported con-
struct validity threats (S11; S59; S94).

It is evident from Fig. 6 that experiment scope and planning
activities (QAC1 to QAC5) have received less attention from
researchers compared to experiment analysis and interpreta-
tion activities (QAC6 to QAC10). Certainly, lack of consider-
ing experiment scope and planning activities can negatively
impact on the experiment’s results. Moreover, researchers
have given varying attentions to the experiment analysis
and interpretation activities. In particular, scalability analy-
sis (QAC9) attained highest focus from researchers compared
to other activities of experiment analysis and interpretation.
However, significant number of studies lack in achieving
satisfactory quality assessment score due to non-availability
of a ‘‘de-facto standard’’ or ‘‘unified guidelines’’, which can
be used to systematically conduct and report the outcome of
a TSR experiment. Therefore, a specialized set of recommen-
dations is required to help in improving the quality of future
experiments in the field of TSR.

D. RECOMMENDATIONS FOR CONDUCTING RELIABLE
EXPERIMENTS IN TSR
This section presents the recommendations based on the
overall trends of TSR experiments, which would be useful
in improving the quality of future experiments. First of all,
we briefly discuss the basic experiment principles adopted
from [46], which are universal for experiments in any field
and may be tailored according to each discipline.
(i) Hypothesis: In theory, the fundamental conviction is

that a relationship exists between cause and effect
constructs, which is also known as a hypothesis.
By experimenting, it is possible to test the hypothesis
to determine if there actually is a connection between
cause and effect via experiment operation [46]. In the
current TSR context, this distinctive principle can be
defined as follows:
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‘‘By applying a TSR Approach belonging to either
a Search, Greedy, Clustering, or Hybrid-based
approach one can achieve similar/same effec-
tiveness (i.e., Effect(RS)≤Effect(TS)) with smaller
cost (i.e., Cost(RS) < Cost(TS))’’

To test such hypothesis, an experiment needs to be
conducted. Below, typical experiment terminology is
defined to facilitate discussion in subsequent sections.

(ii) Variables: In an experiment, there are two types of
variables: (i) independent and (ii) dependent. The inde-
pendent variables are the ones which are manipu-
lated and whose effects are observed on dependent
variables [46]. In our context, an example of typical
independent variables may be TSR approaches: e.g.,
search-based, greedy-based, and their effectiveness in
terms of number of test cases in the RS along with
coverage achieved with RS.

(iii) Factors and treatments: In experiments, one or more
independent variables are typically changed with fixed
intervals (called factors) while the rest are kept fixed to
study their effect on the dependent variables. A treat-
ment is one instance of factors [46]. In the current
perspective, a TSR Approach is a factor and search-
based is a treatment.

(iv) Objects and subjects: A treatment is applied to com-
binations of Objects and Subjects. In our context, for
instance, a system to be tested (e.g., a Java program)
is an object. Subjects are people applying treatments
to objects. In our TSR situation there are no explicit
subjects since the proposed algorithms perform TSR
automatically.

1) EXPERIMENT SCOPING
Experiment scoping is the first activity in an experimental
process, which focuses on defining the goals of an experi-
ment.

Recommendation 1:Agood quality experiment in TSR
must explicitly define the scope of the experiment using
Goal/Question/Metric (GQM) template.

As proposed by Wohlin et al. [46], a Goal/Question/Metric
(GQM) template should be followed to define the goal of an
experiment as defined in [50].

Analyze < Object(s) of study >
for the purpose of < Purpose >
with respect to their < Quality focus >
from the point of the view of the < Perspective >
in the context of < Context >
The objective of a typical experiment in our context can be

formulated as follows:
Analyze < A set of Java Programs >
for the purpose of < Comparing TSR Approaches >
with respect to their < Cost and Effectiveness >
from the point of the view of the < Testers >
in the context of < an Industrial setting >

2) EXPERIMENT PLANNING
Upon defining the experiment scope using a GQM tem-
plate, the next activity in the experimental process, namely
experiment planning is initiated. It consists of a number
of planning steps to achieve the defined experiment scope.
Moreover, it serves as a road map to monitor the experiment’s
progress.

Recommendation 2: A well-designed experiment in
TSR must clearly specify the context along with the
objects of the experiment.

Context selection is the first stage in experiment planning,
whereby clarifying the context (i.e., industrial or academic
settings) in which the experiment will be executed plays
an important role. Ideally, an experiment must be executed
with real-world ‘objects’ in an actual setting to generalize
the results, but in practice it is not possible due to time
and resource limitations. Wohlin et al. [46] has mentioned
four dimensions of context selection: (1) offline vs. online,
(2) student vs. professional, (3) specific vs. general, and
(4) toy vs. real problems. It should be noted that real-world
problems actually come from the industry (i.e., industrial
application). In contrast, toy problems are artificial problems
devised by researchers to evaluate the efficacy of proposed
TSR approaches.

From a TSR approach standpoint (as mentioned in
Section IV), humans do not normally perform the exper-
iments, for which reason dimension 2 of context selec-
tion is not relevant in our case. However, the context of
the experiment for TSR approaches can be classified into
the other three dimensions. Note that lack in explicitly
reporting the experimental context poses external validity
threats.

Recommendation 3: A well-designed experiment in
TSR must clearly specify the hypotheses to facilitate
hypothesis testing.

To facilitate statistical tests, it is essential to formally state
the hypotheses. Researchers have suggested to specifying the
following two hypotheses:

Null Hypothesis (H0): It is assumed that there are no
significant differences in the experiment settings and the aim
is rejection of the hypothesis with as high significance as
possible. In the present context of TSR, an example of a null
hypothesis is:

H0: There is no significant difference between search-
based (Search) and greedy-based (Greedy) TSR
approaches in terms of achieving high statement cov-
erage with RS (20):

Ho : µEffect (Search) = µEffect (Greedy) (20)

where µ is the average and Effect( ) is the effective-
ness (discussed in Section IV(A)). Alternative Hypoth-
esis (H1): This is an alternate to the null hypothesis,
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whereby it is known beforehand that one approach is
superior to another (21):

H1 : µEffect (Search) < µEffect (Greedy) (21)

Appropriate statistical tests are chosen according to
the hypotheses. Testing these hypotheses may involve
different risks such as Type-I-error and Type-II-error.
For further details regarding these errors, please
consult [51].

Recommendation 4: A well-designed experiment in
TSR must use percentage of test suite reduction (PTSR)
with at least one other effectiveness measure such as per-
centage of coverage achieved (PCOV) or fault detection
capability (FDC).

To judge the effectiveness of TSR approaches, a number of
effectiveness variables (or measures) have been applied in
experiments.
• Percentage of Test Suite Reduction (PTSR): In any TSR
approach, the key purpose is to obtain a RS from TS.
This means that the effectiveness of a TSR approach can
be measured based on the size of RS or by simply calcu-
lating a percentage of reduction [47], [52] as mentioned
in (22).

PTSR = (1−
Size(RS)
Size(TS)

)× 100 (22)

where Size is a function that returns the number of test
cases in a test suite and PTSR is the percentage of test
suite reduction. The purpose is to obtain a higher PTSR
with a TSR approach, which ultimately has a significant
impact on effectiveness. It is worth mentioning that measur-
ing PTSR alone is not sufficient and it must be combined
with other measures, such as coverage and fault detection.
This is mainly due to the fact that by having an empty set
ofRS, it is possible to achieve 100% reduction using the above
formula.
• Percentage of Test Time Reduction (PTTR): Similarly,
the effectiveness of a TSR approach can be measured
based on the computational time taken by RS or by
simply calculating percentage of test time reduction [53]
mentioned in (23).

PTTR = (1−
Time(RS)
Time(TS)

)× 100 (23)

where Time is a function that returns the total computational
time taken by test cases in a test suite and the objective is to
get a higher PTTR with a TSR approach.
• Percentage of Coverage Achieved (PCOV): One typical
measure pertaining to TSR is to achieve higher cov-
erage with RS. The type of coverage varies depending
on the technique, such as code coverage and model
coverage, as discussed in greedy-based approaches
Section 3.2.1. This measure is combined with PTSR
with the aim of achieving higher Coverage with fewer

test cases in the RS. The objective can be defined
in (24):

PCOV = (
number of elements covered by RS

total number of elements covered by TS
)× 100

(24)

Overall, the goal is to attain higher PTSR and PCOV
with a TSR approach. When comparing two TSR approaches
(A1 (e.g., search-based) and A2 (e.g., greedy-based)), a par-
ticular approach A1 is considered better than A2 if:

PTSR(A1)<PTSR(A2) and PCOV (A1)>PCOV (A2) (25)

The significance of the results can be determined from
significance tests.

Likewise, greedy algorithms use effectiveness measures
(i.e., PCOV and Time) to determine the best test case (tci) to
this point by applying the ratio of greedy choice (RGC) [53],
refer to (26):

RGC(tci) = (
PCOV (tci)
Time(tci)

) (26)

• Fault Detection Capability (FDC): Another criterion of
measuring the effectiveness of a TSR approach is related
to the Fault Detection Capability (FDC) of RS [47].
FDC is defined in (27).

FDC = (
number of faults detected by RS

total number of faults detected by TS
) (27)

Based on our example, it can be said that A1 is better
than A2 if:

PTSR(A1) < PTSR(A2) and FDC(A1) > FDC(A2) (28)

Recommendation 5: A well-designed experiment in
TSR must use percentage of test suite reduction (PTSR)
with at least one other effectiveness measure, and at least
one cost measure.

Many cost measures have been used in selected studies,
which consequently help in evaluating the efficiency of TSR
approaches. In the following, we present the most frequently
employed cost measures.
• Cost of TSR algorithm: An algorithm performing TSR
requires a certain amount of time to find the RS.
When comparing two different TSR approaches, such
as search-based and greedy-based, it is essential to use a
cost criterion that is analogous to both approaches being
compared. For instance, in a search-based approach a
search algorithm is normally run for a certain number of
generations. Thus, if the number of generations serves
as a cost criterion, the search-based approach cannot be
compared with the greedy-based since there is no con-
cept of ‘‘generations’’ in the greedy-based approaches.
Instead, using time as a cost criterion could be among the
comparable criteria across the TSR approaches. How-
ever, the time taken by TSR approaches to find RS must
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be measured in a unified way for all approaches, such as
using the same machine to reduce any bias in the results.
The time TSR requires is measurable in terms of CPU
cycles or clock time. Although clock time is not clearly
analogous in all various hardware designs, it is conve-
nient in deciding whether a method is, in reality, appli-
cable. CPU cycles are a valid measure for comparing
various techniques and different hardware architectures
too. However, when comparing two approaches from the
same TSR category (e.g., search-based), different cost
measures can be used. For instance, in case of search-
based approaches, the number of generations may be
one of the comparable criteria across the two search-
based techniques. Interested readers may consult [54]
for more information on comparing two search-based
approaches.

• Cost of executing test cases in RS: Although the num-
ber of test cases in RS can provide a rough measure
of cost to execute test cases since the number of test
cases in RS will be less than TS and thus will take less
time to execute than TS. However, when comparing two
distinctive approaches, two different RS sets may be
produced and thus, simply comparing them on the basis
of number of test cases in RS is not an accurate measure.
An explanation may be that test execution time for each
test case is not uniform and therefore, the time to execute
a RS with fewer test cases is potentially greater than the
time taken to execute RS with more test cases.

• Fault Detection Loss (FDL): A typical cost measure of a
TSR approach is to determine the Fault Detection Loss
(FDL) of RS [47], and defined by (29).

FDL = (
number of faults missed by RS

total number of faults detected by TS
) (29)

Similarly, the other cost measure is based on TS exe-
cution information. For example, greedy-based fault
localization heuristics determine the possible faulty
portion(s) of a SUT using the execution information
of TS. PEFL is the percentage of increased expense of
fault localization [11], and defined by (30).

PEFL= (
rank of faulty statement

total number of executable statements
) (30)

Diverse cost and effectiveness measures used in different
approach pairs are summarized in Table 11.

Recommendation 6: A well-designed experiment in
TSRmust include scalabilitymeasures to assess whether
the proposed TSR is applicable to a wide range of prob-
lems.

Evaluating the way in which a TSR method’s cost effec-
tiveness progresses with the rise in TSR problem intricacy
is known as scalability assessment. One or more SUT size
measures are implicated, besides their link to the researched
TSR approaches’ effectiveness or cost. Instances of measures

TABLE 11. Cost and effectiveness measures for different pairs of
approaches.

with potential for improvement can be SUT size with regards
to code lines or search space dimension pertaining to the array
and amount of input-parameters. After that scaling impact is
studied on diverse effectiveness and cost measures to deduce
whether the TSR remains cost-effectivewith increasing, more
complex SUT.

Recommendation 7: A well-designed experiment in
TSRmust explicitly specify the experimental design and
a justification for using it.

An experiment must be planned and designed carefully to
minimize validity threats as much as possible. There are
several standard experiment designs proposed in the litera-
ture; however, this paper maps a few designs related to TSR.
An interested reader may consult the work provided in [46]
for additional designs, and the current mapping is extensible
to other designs. Table 12 provides a list of the most regularly
used experiment designs and their mapping as pertinent to
TSR, with examples.

In Table 12, H0 and H1 represent null hypothesis and
alternative hypothesis, respectively; µSearchFDC denotes the
expected mean value of Fault Detection Capability (FDC)
of the search-based approach and µGreedyFDC indicates
the expected mean value of FDC for the greed-based
approach. So µSearchFDC = µGreedyFDC signifies that the
projected FDC mean values using search-based and greedy-
based approaches are the same; µClusteringPTSR represents the
expected mean value of Percentage of Test Suite Reduc-
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TABLE 12. Typical experiment designs and their mapping to test suite
reduction.

tion (PTSR) for the clustering-based approach;µiFDC denotes
the expected mean value of FDC for any TSR approach
employed such as greedy, search, or clustering). Likewise,
µjPTSR indicates the expected mean value of the PTSR of
any TSR approach; µiFDC 6= µjFDC shows that the expected
mean value of FDC of at least one pair (i, j) is not the same,
where i and j belong to a TSR approach; τi = τj = 0 and
βi = βj = 0 signify that employing a similar single search
algorithm (i.e., τ or β) with two different fitness functions
(i.e., i and j) ascertains the same result. In contrast, (τβ)ij = 0
indicates that employing both search algorithms using all
fitness functions produces the same result.

3) EXPERIMENT ANALYSIS AND INTERPRETATION
Analysis and interpretation are among the important activities
in the experiment process, which facilitate analysis and evalu-
ation of data collected after experiment scoping and planning
activities. Consequently, analysis activity assists researchers
in deducing meaningful conclusions about the conducted
experiment.

Recommendation 8: A well-designed experiment in
TSR must compare the proposed TSR approach with at
least one simple alternative baseline, such as Random
technique.

A TSR approach can only be evaluated by comparing it with a
carefully selected and meaningful baseline, otherwise it is not
possible to judge if the proposed TSR approach is better than
any existing one. Since absolutely evaluating TSR methods
might be tricky, it is significant to at least indicate that the
issue cannot be dealt with in an easier way. Essentially, each
study ought to employ at least one comparison baseline in
evaluating TSR approaches, while the bare minimum should
be some contrast against Random [55]. Even though the SUT
being assessed might be straightforward and small, and a
TSR approach functioning well might not be very relevant.
Thus, Random might facilitate fundamental confirmation
that a simple algorithm might not be able to deal with the
TSR issue and a more intricate method may be required.
Various straightforward TSR techniques the likes of Random
are also recommended to act as a comparison baseline.

Following baseline approach selection, plausibly efficient
implementation should be considered so that effectiveness
and cost can be compared. Credentials, downloadable tool
URLs, a source code, or at least a good account of the
implementation needs to be available.

Recommendation 9: A well-designed experiment in
TSR must report descriptive statistics for cost, effective-
ness, and scalability measures.

It is better for cost, together with effectiveness, and perhaps
scalability to be stated, such as in the form of descriptive
statistics followed by analysis. Observing the standard devi-
ation could be indicative of the uncertainty level with respect
to the effectiveness and cost related with TSR approaches.

Descriptive statistics typically provide initial insight into
results, for instance, comparing mean values of the num-
ber of test cases in RS achieved by two different TSR
approaches. Descriptive statistics normally come into play
prior to hypothesis testing to determine if the differences
between two or more approaches are statistically significant
or not. Descriptive statistics are classified into three main
classes and are summarized in Table 13 along with examples
related to TSR.

Recommendation 10: A well-designed experiment in
TSRmust report hypothesis testing results together with
a justification of test selection.

Statistical testing is meant to identify if any discrepancies
in TSR approaches regarding basic cost and effectiveness
inclinations occur by chance or, in fact, follow any specific
movement. Statistical hypothesis testing is valuable partic-
ularly in relation to search-based TSR approaches, which
always interrelate with certain random disparity in terms
of effectiveness and cost [41]. Since statistical testing com-
prises typical practice, it will not be detailed more here but
for further reading D. J. Sheskin’s [51] book may be of
interest.
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TABLE 13. Commonly used descriptive statistics and examples in test
suite reduction.

Statistical hypothesis testing may serve for reject-
ing or accepting hypotheses associated with TSR approach
cost effectiveness analysis as well as comparison baselines.
Statistical test selection is dependent upon the objective spec-
ified. It is customary in different fields to choose particular
statistical tests and justify them according to the compared
samples’ data distributions so as to avert incorrectly making
deductions from analysis. The statistical tests are frequently
categorized as either parametric or non-parametric [51]. Par-
ticular parametric tests are valid, such as a t-test, if a sample
has a specific distribution, for instance, normal. Otherwise,
non-parametric statistical tests are applied when it is not
possible to make any adequate assumptions regarding sample
distribution. Data normality may be established via suitable
statistical tests, such as the Shapiro-WilkW test [51]. Notions
pertaining to appropriate test selection will not be discussed
here in further detail and are available in standard texts.

Table 14, provides a mapping that links analysis situations
to the types of appropriate statistical tests (for simplicity,
two samples are assumed, that is, two TSR approaches are
compared). The mapping has been explained with examples.

Table 15 indicates that search-based approaches are
randomized andmust be runmore than once to reduce the ran-
dom variation in the results, since each runmay produce vary-
ing results. Nonetheless, greedy/clustering-based approaches
may produce the same results regardless of whether they
are run more than once. In this case, one-sample tests were
carried out because the values for cost/effectiveness measures
will be the same.

Recommendation 11: A well-designed experiment in
TSR must report the results of scalability analysis.

Scalability helps in assessing whether a TSR approach is
applicable to either bigger or more intricate SUTs while at
the same time it is economical and adequately effective. If an
experiment is meant to demonstrate how scalable a TSR
approach is, suitable complexity and size measures ought to
be visibly characterized. A minimum of two measures will
be concerned: one related to size, which is scaled up via
consecutive SUTs, and second, another measure of analogous
performance (effectiveness and cost). As such, the impact of

TABLE 14. Mapping of test suite reduction approaches to statistical tests.

scaling up a certain measure may be detailed with respect
to a statistical relationship (recollect the inevitable random
variation). For instance, it is possible to examine a number of
different sized SUTs with respect to code lines, after which
appraise if a TSR approach is able to attain a particular
coverage degree at tolerable cost for bigger SUTs and assess
the way this expenditure progresses in relation to SUT size.
Problems may consequently be posed by a positive exponen-
tial cost-size relationship, since the method’s pertinence to
large-scale test models and systems would be undermined.
Likewise, scalability matters would also arise if effectiveness,
for instance in terms of coverage attained, greatly decreases
as a function of SUT size [41].

Concerning scalability investigation, it is necessary to
distinguish the link among SUT size variables and the
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TABLE 15. Distribution of test suite reduction approach classification.

effectiveness and cost measures of the TSR approach. These
sorts of methods are normally investigated via regression
analysis. Nonetheless, since the SUTs being studied are prac-
tically most likely few, this type of analysis is expected to
be qualitative; basically, it would merely found on discerning
scatter plots within the space of size and cost effectiveness.

Recommendation 12: A well-designed experiment in
TSR must report threats to validity as well as how these
threats have been dealt within the experiment.

Any experimental study should consider the validity threats
starting from experiment scoping to result analysis. The fol-
lowing types of threats should be debated.
• Construct validity threats: Cost, SUT size and effec-
tiveness measures need to be suitable and justified,
in line with the given investigation’s circumstance and
objectives. Measures are not likely to be faultless since
it is not usually easy to gauge the above-mentioned
elements. Nonetheless, it is feasible in reality to com-
pare the scalability and cost-effectiveness of substitute
TSR approaches’ cost effectiveness and scalability via
numerous corresponding effectiveness, cost and SUT
size measures.

• Internal validity threats: If the performance of a TSR
approach is better than another with respect to effective-
ness or cost, is it because of something other than the
TSR approach? Some possibilities may be: (i) parameter
of one or more TSR approaches is poorly defined and (ii)
biasness in choosing such SUTs which possess specific
features favoring a particular TSR approach.

• Conclusion validity threats: Search-based approach
necessitates ensuring that random variation gets ade-
quately justified because Search Based Software Testing
(SBST) techniques apply Meta-Heuristic Search (MHS)
algorithms, which yields result randomness, an intrinsic
aspect of meta-heuristic methods. Essentially, enough
independent runs need to be carried out to acquire suffi-
cient observations and to permit statistical comparisons.

There should be a vigilant selection of statistical test pro-
cedures keeping in view hypothesis technique such as one-
tailed or two-tailed, and data gathered (effectiveness and cost

distributions) to ensure that the correct statistical test is uti-
lized. Otherwise, particular requisite characteristics of a cer-
tain statistical test may be unintentionally debased, resulting
in erroneous conclusions. For instance, a common assump-
tion while applying statistical tests is that data is normally
distributed.

Are there any virtually noteworthy differences? In retro-
spective, the extent of variation must be reported, something
recognized as effect size, and which helps determine useful
result significance.
• External validity threats: External validity threats are a
complex problem. The outcomes may be generalized if
the SUTs which are selected as the sample represents
the target application domain. Furthermore, if the con-
sidered faults employed to evaluate the test effective-
ness are characteristics of real faults. Search-based TSR
related experiments should preferably also be carried out
on numerous target type SUTs, but all study endeavors
face time and resource restrictions. The notion should
in any case be circumspectly addressed and the question
of why the generalized observation outcome should be
answered in a reliable way.

VI. OVERALL RESULTS AND DISCUSSION
The objective of this systematic review is to classify Test
Suite Reduction (TSR) approaches and evaluate the quality
of TSR experiments based on the defined quality assess-
ment criteria. The TSR approaches are grouped into four
main categories: greedy, search, clustering, and hybrid. These
approaches mainly differ from each other in terms of type
of algorithms used. Greedy-based approaches mostly use
greedy algorithms, clustering-based approaches use differ-
ent clustering and sampling algorithms, and search-based
approaches employ various search algorithms. Similarly,
hybrid approaches utilize one or more algorithm types to
provide superior cost-effective solutions by integrating the
strengths of other approaches.

Table 15 shows the distribution of TSR approaches.
Among 95 approaches, 69% fall under the greedy-based
category, which in turn uses three main sources of cov-
erage including, source code, model, and execution pro-
file. From these, 37 heuristics use source code coverage,
23 employ model coverage, and 5 use execution-profile cov-
erage to obtain the Reduced Suite (RS). Moreover, majority
of greedy-based approaches (66%, 63/95) employ various
types of greedy algorithms. There are only two greedy-
based approaches (i.e., S31, S82) that use exact techniques to
determine global optimal solution. Conversely, search-based
approaches are gaining attention of researchers to optimally
solve the test-size problem. We have identified 19 studies
(20%, 19/95) on search-based approaches. However, less
attention has been given to hybrid (8%, 8/95) and clustering-
based approaches (3%, 3/95). The existing TSR approaches
(80%, 76/95) are mainly aimed at solving the single-objective
optimization problem. In contrast, some TSR approaches
(20%, 19/95) including greedy-based (14 approaches) and

11834 VOLUME 6, 2018



S. U. Rehman Khan et al.: Systematic Review on TSR: Approaches, Experiment’s Quality Evaluation, and Guidelines

TABLE 16. Distribution of experiment scoping and planning steps in the
reported experiments.

TABLE 17. Distribution of experiment results and analysis steps in the
reported experiments.

search-based (5 approaches) focus on solving the multi-
objective optimization issue. To solve the practical prob-
lems related to TSR, researchers ought to concentrate on
multi-objective optimization problem-based TSR approaches
to ultimately facilitate the decision making process for test
engineers.

Based on the assessments in Section V(C), it can be con-
cluded that very few experiments in TSR follow the defined
quality assessment criteria, which is why the reliability of the
evidence cannot be evaluated. The distribution of experiment
scoping and planning steps in reported experiments is pro-
vided in Table 16. Similarly, the distribution of experiment
results and analysis steps in reported experiment is listed
in Table 17. The results clearly indicate that experiments
conducted in TSR fail to abide by the proposed recommen-
dations. Thus, further experiments should be conducted that
follow the suggested recommendations. As a result, the body
of credible evidence in TSR literature would improve and
researchers would be ensured about TSR usefulness in obtain-
ing the RS for various real-world problems.

VII. VALIDITY THREATS
To assure result accuracy and acceptability from this system-
atic review, the four followingmain types of threats to validity
were taken into consideration.

A. CONSTRUCT VALIDITY
The objective of the conducted systematic literature review is
to obtain a complete set of relevant studies. To achieve this,
an unbiased study selection strategy was carried out. Search
repositories were chosen to ensure the completeness of study
selection, especially with respect to the software engineering
and computer science domains. Alternatively, the develop-

ment of inappropriate search strings may potentially result in
incomplete selection of relevant studies. To tackle this threat,
the search string was iteratively refined so as to make sure
that no relevant study was omitted.

B. CONCLUSION VALIDITY
We have conducted a systematic review, discussed and jus-
tified our devised review protocol, which helps in achieving
the stated objectives of this review. Consequently, it supports
other researchers to replicate the literature review.

Three researchers took part in the study selection pro-
cess. Of course it is possible to miss some relevant studies,
but this has a minor effect on the general classification of
TSR approaches.

C. INTERNAL VALIDITY
The inclusion and exclusion criteria of studies have been
discussed from various TSR perspectives. For the selection of
related studies, three researchers participated in the selection
process. However, some relevant studies could be overlooked
due to different levels of understanding of the participating
researchers. An attempt has beenmade to avoid such situation
by two means. First, a pilot study was conducted to ensure
the same level of understanding among researchers. Second,
follow-up meetings for consensus were held. An additional
threat can be inaccuracy in the data extraction process, some-
thing that can negatively impact the classification and assess-
ment of experiments related to TSR. AMicrosoft Excel sheet
was designed to help the researchers in accurately extracting
the required data items. Moreover, follow-up meetings were
held to remove anomalies from the extracted data items.

D. EXTERNAL VALIDITY
Keeping in view the types of employed algorithms as well as
optimization problems, TSR approaches were grouped into
four main categories. This classification may serve for further
research because it is founded upon a thorough literature
review. So as to ensure the completeness of the relevant stud-
ies, all selected studies together with their related references
were reviewed.

A specialized set of recommendations for performing TSR
related experiments was suggested owing to the poor quality
of current experiments in the field of TSR. These recommen-
dations were formulated by considering the principles behind
well-designed software engineering experiments [46]. They
should be of assistance to researchers in performing quality
TSR experiments, as the recommendations have been final-
ized bearing in mind existing TSR experiment deficiencies
exposed during the extensive literature review.

VIII. CONCLUSION AND FUTURE WORK
This paper presents the results of a first systematic review
conducted in the field of Test Suite Reduction (TSR).
We investigated 113 studies published between a period
1993 to 2016 as a basis to classify existing TSR approaches
and to assess the quality of experiments conducted in the area
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of TSR.
According to our methodical search, 95 TSR heuris-

tics were identified, which were classified into four main
categories based on the type of employed algorithms:
greedy-based, clustering-based, search-based, and hybrid
approaches. As TSR approaches are mainly evaluated empir-
ically, 18 experiments were identified whose quality was
evaluated in accordance with the defined quality assessment
criteria.

The results of this systematic review indicate that most
of the TSR research is related to greedy-based approaches
(69%, 65/95) using one or more forms of greedy algo-
rithms to achieve high coverage as quickly as possible
based on the assumption that achieving high coverage will
reveal more faults. Furthermore, search-based approaches
(20%, 19/95) are gaining increasing attention on account
of several successful results reported for solving numer-
ous search-based software engineering problems. In con-
trast, hybrid approaches (8%, 8/95) focus on combining the
strengths of other TSR approaches to provide enhanced cost-
effective solutions by employing various algorithms. More-
over, the majority of TSR approaches (80%, 76/95) focus on
solving the single-objective optimization problem.

Finally, the quality of experiments related to TSR
approaches was analyzed and it was observed that the
reported experiments do not adhere to the guidelines of well-
designed software engineering experiments, and thus may
pose validity threats related to their results. The current lit-
erature lacks information on guidelines for performing qual-
ity experiments in the field of TSR. Our systematic review
bridges this research gap by providing a set of appropriate rec-
ommendations that may be applied by researchers in future to
conduct quality experiments related to TSR.

Based on this systematic review, we suggest the following
potential research directions in the field of TSR:
• Developing model-based TSR heuristics

It is evident that researchers have mainly (39%, 37/95)
focused on developing code-based TSR heuristics. Although,
some work has focused on model-based heuristic
(24%, 23/95), still further research is required in this class
of greedy-based approaches that can fulfill the demands
of different domains (e.g., Service Oriented Architec-
ture (SOA), Software Product Lines (SPLs), Model-based
Testing (MBT)). As motivational drive to fellow researchers,
it has to be said that model-based heuristics possess some
characteristics that give an extra advantage over code-
based heuristics such as managing complexity with abstrac-
tion, facilitating automation, and providing a systematic
mechanism.
• Evaluating proposed TSR heuristic with cost-effectiveness
and efficiency measures

Researchers have mostly used different effectiveness mea-
sures, such as size of reduced test suite and coverage
achieved, to assess the performance of proposed heuristics.
In contrast, some proposed heuristics (55%, 52/95) have been
evaluated using various cost measures (e.g., fault detection

loss and cost of executing test cases in RS). For wider accep-
tance of the proposed heuristics, it is crucial to investigate
their performance using both cost and effectiveness measures
of diverse nature. In addition, studying cost and effectiveness
alone is not sufficient and requires studying cost and effec-
tiveness together, for instance, in terms of efficiencymeasures
that can be derived from cost and effectiveness measures. For
example, number of test cases to be executed per unit time
that can be calculated by combining an effectiveness measure
(e.g., number of test cases to be executed) and a cost measure
(e.g., time to execute test cases).
• Comparing the performance of proposed TSR heuristic
with consolidated benchmark techniques

We found 20 studies that used HGS heuristic [18] as a bench-
mark in order to judge the performance of their proposed
heuristic. In contrast, four studies used random technique
for evaluation purpose. It is necessary to employ consol-
idated benchmark techniques, such as HGS heuristic [18]
and random technique for unbiased and relative performance
evaluation of the proposed heuristic. Ultimately, complete
unbiased results can be presented for the considered dataset.
• Focusing industrial-strength datasets

The majority of the investigated studies (57%, 54/95) used
small-sized subject programs including Siemens [48] and
Space Programs taken from Software Infrastructure Repos-
itory [49]. Both subject programs are publically available
for empirical evaluation. However, practitioners are keen to
observe the behavior of proposed TSR approaches on large-
scale industrial projects, which represent the real world prob-
lems. As a result, the efficacy of the proposed approaches can
be better analyzed.
• Conducting comparative studies

Only 14% (13/95) of the investigated studies focused on
comparing the performance of various TSR approaches.
We observed that main research focus in the field of TSR
is on proposing TSR approaches (85%, 95/112). Therefore,
it is crucial to perform more comparative studies since new
TSR approaches are constantly developed and existing ones
are evolved.
• Tackling branchmania situation

In case of Software Product Lines (SPLs), a feature model
may grow exponentially resulting into large number of
numerous product variants. This situation is named as
Branchmania [56] since SPL architecture contains large num-
ber of branches, which makes it impossible to provide an
optimal product line. One of the viable solutions to deal
with branchmania situation is to minimize the number of
branches. Therefore, future work should focus on proposing
such TSR heuristics that effectively determine and eliminate
similarities between the branches of product line architecture.
Consequently, it enables the developer to control branchma-
nia situation and maintain a cost-effective product line.
• Targeting scalability using search algorithms

Scalability remains a key issue especially for testing
large systems. Search algorithms are also referred as
‘embarrassingly parallel’ since they support natural formu-
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TABLE 18. Overview of selected studies. TABLE 18. Continued. Overview of selected studies.

lations that can produce significant scalability improvements.
For instance, global search algorithms, such as Genetic Algo-
rithm (GA), can easily compute the fitness of each individual
solution in a parallel fashion. Similarly, local search algo-
rithm, such as Hill Climbing (HC), requires multiple restarts
for a sequential setting and all restarts can be initiated in a
parallel manner.

Some previously conducted work has focused on adapting
General Purpose Graphics Processing Units (GPGPUs) for
regression test case prioritization [57] and selection [58]
using search algorithms. Future work should focus on adapt-
ing GPGPUs for search-based TSR, which can yield sig-
nificant scalability improvements for large-size software
systems.
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