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ABSTRACT Image segmentation is of great significance to a variety of tasks in image processing and
computer vision. Since fully unsupervised image segmentation is usually very hard in most cases, a task-
oriented interactive segmentation approach becomes a popular solution. This paper proposes a weakly
supervised image segmentation algorithm to extract foreground from a complex background relying only
on a roughly predefined bounding-box. The algorithm integrates the Watershed algorithm and Mean-shift
clustering algorithm to obtain reliable initial foreground and background labels for simple linear iterative
clustering (SLIC) superpixels. Then, a synthetic superpixel grouping mechanism is proposed to group the
remainder SLIC superpixels into foreground or background until the whole superpixels are completely
grouped. The proposed algorithm reliefs the interactive information from users while maintaining the
segmentation precision. Extensive experiments are performed, and the results indicate that the proposed
algorithm can reliably segment the image foreground from the complex background with only a weakly
supervision.

INDEX TERMS Computer vision, image segmentation, foreground segmentation, superpixel.

I. INTRODUCTION
Image segmentation is a fundamental problem in image
processing and computer vision, which plays a signifi-
cant role in object detection [1], recognition [2], track-
ing [3], etc. It is essentially a technology to group the
image pixels into a set of regions, where each contiguous
region with a delimited boundary is a superpixel. During
the past decades, a lot of segmentation algorithms are pro-
posed and quite a few famous works (such as ACM [4],
Watershed [5], Mean-shift [6], GraphCut [7], ActiveCut [8],
GrabCut [9], MSRM [10], simple linear iterative cluster-
ing (SLIC) [11], Turbopixels [12], Selective Search [2],
SEEDS [13], etc.) pushed forward the development of
image segmentation theory. Among these, the algorithms can
be roughly divided into unsupervised approaches (Water-
shed [5], Mean-shift [6], SLIC [11], etc.) and supervised
approaches (ACM [4], GraphCut [7], MSRM [10], etc.).
Since the natural image likely contains very complex color
and texture features, a totally unsupervised algorithm usually
fails to obtain a satisfactory segmentation result [14]. There-
fore, the approaches integrating the unsupervised low-level

FIGURE 1. Some applications of the proposed algorithm: left, background
change; right, video segmentation.

segmentation method and limited interactive inputs become
popular in recent years.

In this paper, we propose a weakly supervised image seg-
mentation algorithm to extract foreground from a complex
background, which can be widely applied in background
change, video segmentation, etc. We refer to Fig.1 for more
details. Our focus is to reduce the interactive inputs as much
as possible while maintaining the segmentation performance.
Generally, the prior knowledge provided by user may have
great help to obtain an accurate result. However, it may also
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decrease the convenience and intelligence. So, we design our
algorithm relying only on a roughly predefined bounding-
box. Similar works can be found in GrabCut [9], Lazy snap-
ping [15], MSRM [10], TouchCut [16], etc. With respect to
the interactive information, the main difference is that Grab-
Cut prefers to an input bounding-box that tightly encloses the
foreground object, Lazy snapping andMSRMneed both fore-
ground and background labels, while TouchCut relies only
on single stroke. Although TouchCut reliefs the dependence
on user input, there exist deficiency when the foreground is
complex. This mouse-clicks-based approach is also widely
used in the semi-automatic segmentation of scattered and
distributed objects [17] and image de-fencing algorithm [18].
Besides, some other meaningful works are proposed in
recent years, such as Lazy Random Walks (LRW) [19], sub-
Markov Random Walk (subRW) [20] and DBSCAN cluster-
ing algorithm [21] for superpixel segmentation, constrained
Laplacian optimization [22] for interactive segmentation, and
so on. The former three are different approaches to improve
the performance of superpixel extraction and the fourth one
is designed for interactive segmentation according to the user
strokes. This interactive segmentation method is similar to
MSRM [10] with respect to the interactive inputs. The main
deficiency of these methods are the dependency on the user
inputs and the sensitivity to those initial labels.

In order to reduce the interactive inputs while main-
taining the segmentation performance, we select Water-
shed and SLIC to extract the preliminary superpixels and
introduce Mean-shift clustering algorithm to learn reliable
initial foreground and background labels according to the
roughly input bounding-box. After that, a synthetic super-
pixel grouping (SSG) mechanism is proposed to partition
the unlabeled superpixels into either foreground or back-
ground. We select Watershed and SLIC as preliminary super-
pixels for their effectiveness and efficiency. The Watershed
superpixels are used to generate initial foreground and back-
ground labels and SLIC superpixels are used as inputs for
grouping.

The remainder of the paper is organized as follows. Follow-
ing a briefly literature review of related work, we describe the
proposed algorithm in detail in Section 3. A comprehensive
evaluation and the application discussion of the proposed
method are provided in Section 4. A brief conclusion is given
in the final section.

II. RELATED WORK
The past two decades have witnessed the emerging of image
segmentation algorithms. A comprehensive literature survey
of segmentation is beyond of the range of this paper. We only
briefly review the tightly related works with respect to sim-
ilar approaches, segmentation initialization and superpixel
grouping.

A. SIMILAR APPROACHES
Foreground extraction is a high-level segmentation which
can be implemented by grouping a set of over-segmented

superpixels or contour evolution under a well-designed
energy function. These interactive segmentation methods
share a common operation that how to initialize the segmen-
tation according to limited user inputs. Unlike digital matting
that requires a cautiously labeled contour of the foreground,
interactive segmentation seeks to alleviate the user’s burden
during the interaction while maintaining the segmentation
accuracy. A natural solution is to give initial labels to both
representative foreground and background via strokes of
points or lines. Such a method appears in MSRM [10] and
achieves a satisfactory result. This strategy can be further
applied into GraphCut. One of the deficiencies is that the
initial labels should cover almost the main features of the
foreground and background. Another option is to substitute
the strokes labels with a bounding-box tightly surrounding
the foreground (such as GrabCut [9]). It has been pointed out
that GrabCut algorithm fails when the bounding-box does not
tightly cover the foreground object [19]. The preference of a
tight bounding-box increases the burden of the human inter-
action, and moreover it prevents the algorithm from utiliz-
ing automatically generated bounding-boxes, such as boxes
from object proposals. An improved version can be found
in LooseCut [23]. A further alleviative work only requires a
click of the foreground, which is known as TouchCut [16].
Within the TouchCut, it requires only a single finger touch to
identify the object of interest in the image while the boundary
of the whole image will be taken as background. However,
this single touch approach has a limitation to make full use
of the desired foreground, especially when the foreground is
surrounded by cluttered background. In this paper, we com-
promise the single touch and tight bounding-box and propose
an initialization scheme by combing loose bounding-box and
clustering learning strategy. It owns the convenience like
single touch while exploiting the prior knowledge as much
as possible.

B. SEGMENTATION INITIALIZATION
Among the aforementioned approaches, segment the input
image into over-segmented superpixels is a common prepro-
cessing during the segmentation initialization. For example,
the Mean-shift clustering algorithm is used in MSRM [10]
to provide initialized segments. The authors also discussed
another superpixels method as initial segments and com-
pared the grouping results between these two. LooseCut [23]
exploited a multiscale superpixels algorithm to cluster all the
pixels into superpixels during the segmentation initialization
step. Such superpixel algorithm considers both within-cluster
feature consistency and the cluster-boundary smoothness for
pixel clustering.Watershed and SLIC are very common in the
unsupervised segmentation approaches, especially served as
initial segmentations. Watershed is a very efficient segmen-
tation approach based on mathematical morphology. There
are two models (simulated immersion model and simulated
rainfall model) to implement Watershed segmentation. It can
obtain a connected, closed, stable and pixel-wise segmen-
tation result. SLIC is another famous approach to obtain
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over-segmentation which adapts k-means clustering to gen-
erate superpixels while keeping its semantic meaning intact.
It obtains stable and consistent segmentation in a very effi-
cient manner. gSLIC [24] is an improvement of SLIC which
runs at 250 fps for image with a resolution of 640 × 480.
It makes SLIC further more efficient and suitable for real-
time operation. Turbopixels is another fast superpixel extrac-
tion method based on geometric flows. It generates segments
that on one hand respect local image boundaries, while on the
other hand limit under-segmentation through a compactness
constraint. The integration of Watershed and other superpix-
els theory is also an interesting research direction which can
adopt the both advantages.

C. SUPERPIXEL GROUPING
Although some level-set based methods are directly applied
on raw pixels under the driven of energy function, super-
pixel grouping is a very popular approach to obtain a high-
level segmentation. Superpixel grouping, also known as
region merge, has been researched for decades. A common
scheme to treat with superpixel grouping is region adjacent
graph (RAG) with each vertex stands for a region while each
RAG edge for the similarity of two adjacent regions. The
hard question is how to describe the similarity and design the
merging strategy. Ning et al. [10] presented a simple but very
effective grouping mechanism using the maximum similarity
based on RGB color histogram. The grouping process is
adaptive to the image content and it does not need to set the
similarity threshold in advance. However, this method is sen-
sitive to the initial markers in some cases.Within the selective
search algorithm [2], the authors proposed a hierarchical
grouping strategy to grouping the pre-segmented superpixels
step by step. This hierarchical grouping strategy integrates
four features (color, texture, size and fitness) and groups the
superpixel with its most similar neighbor in each step until the
whole image becomes a single region. In this paper, we seek
to group the unlabeled superpixels into either foreground
group or background group during the superpixel grouping
stage, which is similar to MSRM. The kernel question is
to measure the similarity of the unlabeled superpixels with
labeled foreground and background. We propose a synthetic
superpixel grouping (SSG) mechanism to consider both local
and global similarities which achieves a pleasing result.

III. THE PROPOSED ALGORITHM
The proposed algorithm (demonstrated in Fig.2) consists of
superpixel extraction, label initialization, synthetic super-
pixel grouping and final segmentation. We will introduce
these contents one by one.

A. SUPERPIXEL EXTRACTION
There are several famous algorithms to extract the super-
pixels, such as Mean-shift, Watershed, SLIC, and so on.
Among these algorithms, Watershed and SLIC are very com-
mon methods and widely applied as the input of some high-
level segmentation algorithms. In the proposed algorithm,

FIGURE 2. The flow chart of the proposed algorithm.

we select Watershed and SLIC as the low-level segmenta-
tion methods for the follow reasons. Firstly, as segmentation
initialization, we want to cutdown the time-consuming as
far as possible during the preprocessing. Both of these two
methods are good choices because they are very efficient
for superpixel extraction (millisecond-level for image patch
with the size of 100 × 100). Secondly, these two algorithms
have different emphasis. The Watershed algorithm rely more
on globe information and can extract some weak edges. But
it may produce over-segmentation in the texture areas. The
SLIC algorithm is a local clustering algorithm to obtain
superpixels. It can prevent over-segmentation according to
the preset parameters. The integration of these two can make
full use of both globe and local information. Thirdly, both
of these two methods can be easily implemented for auto-
matic process, which is of great significant for the proposed
algorithm.

For Watershed segmentation, we introduce the marker-
based Watershed algorithm which proposed by Yu et al. [25].
We slightly change the H-minima threshold initialization
rule. In the original literature, this threshold is adaptively
controlled by the mean intensity values of the correspond-
ing water basin. In this paper, we sort the depth of the
water basins descending and select the former N1 water
basins as the initial marker. The basic Watershed algorithm
is then applied on the marker-based image to obtain the
segmentation.

For SLIC segmentation, we directly introduce the original
SLIC algorithm [11] to extract the superpixels. Although
gSLIC is more efficient than the original SLIC, however,
it has special requirements for hardware. The only parameter
for SLIC superpixel algorithm need to be preset is the total
number of superpixel regions.We preset this parameter asN2.
So, the Watershed algorithm will obtain N1 regions and
SLIC will also obtain approximately N2 regions.
We exploit the Watershed algorithm to calculate the

initial label of reliable foreground and background. The
SLIC results are exploited for superpixel grouping. Note that
we only do the low-level segmentation on the enlarged image
patch (three times large as the input bounding-box in each
direction) centered with the input bounding-box. We refer to
Fig.2 for demonstration.
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B. LABEL INITIALIZATION
In order to partition the superpixel regions into either fore-
ground or background, we need an initial standard to dis-
tinguish these two types of regions. Here, we introduce the
Mean-shift clustering algorithm to initialize the foreground
and background labels.

Firstly, we give a label value for each pixel, of which the
ones inside the input rough bounding-box are 1 and others
are 0. Denote theWatershed regions as {rk}k=1,2,··· ,K . We cal-
culate label value for the k th region as follows:

r̂k =

∑
(x,y)∈rk p̂(x, y)∑

(x,y)∈rk 1
, (1)

where p̂(x, y) is the label value of pixel (x, y). If the pixel (x, y)
is inside the input rough bounding-box, then p(x, y) = 1.
Otherwise, p(x, y) = 0. Then, theWatershed regions are clus-
tered via the Mean-shift clustering algorithm. We describe
each Watershed region using a color histogram in HSI color
space, which consists of hue, saturation and intensity channel.
We further divide each channel into 8 bins so as to the image
region can be described with a 512 (83) bins feature vector.
Bhattacharyya coefficient [10] is employed to measure the
similarity between two histogram vectors. The bandwidth of
Mean-shift clustering is set as 0.25 in the proposed algorithm.
We refer to the literature [6] for more details about this
clustering course.

Denote the clustering result as {Cl}l=1,2,··· ,L . A similar
processing, we can calculate the label value of the l th cluster
as follows:

Ĉl =

∑
(x,y)∈Cl p̂(x, y)∑

(x,y)∈Cl 1
. (2)

It is reasonable that each cluster and its inner superpixel
regions should have the same label value. However, some
superpixel region far from the foreground may also be clus-
tered with the one falling into the foreground region when
they have a near color distribution. To avoid this situation,
we refine the label value of superpixel regions as follows:

r̂ ′i =
r̂i + Ĉj

2
, if : ri ∈ Cj. (3)

Based on the refined label value, we can select the reliable
foreground label and background label. We sort the label
values of superpixels according to the ascending order and
select the largest m1 as foreground label and the smallest m2
as background label. Fig.3 demonstrates the initialized labels.

C. SYNTHETIC SUPERPIXEL GROUPING
We impose the labeledWatershed regions (foreground or back-
ground) onto the SLIC result. Based on this, some regions of
the SLIC result are labeled as foreground and some regions
are labeled as background. However, there are still some
regions are unlabeled.

The main work of this step is to group the unlabeled
regions into either foreground or background. To resolve this
question, Ning et al. [10] proposed a maximal similarity

FIGURE 3. The demonstration of label initialization.

based region merge algorithm (MSRM). They divided the
whole course into two steps: background region merging
with unlabeled region and merging between two unlabeled
regions. These two steps repeat iteratively until no region can
be merged any more. The remaining unlabeled regions are
then classified into foreground. Based on a set of experiments,
we find that this algorithm is sensitive to the input labels
and may even produces a wrong segmentation result in some
cases. Inspired by MSRM, we propose a synthetic superpixel
grouping algorithm. The brief procedure can be described as
follows:
Step 1: construct (update) the superpixels adjacent

table (SAT), which describes the adjacent relationship and
similarity between the superpixels. Here, the superpixels are
described with histogram in HSI color space with 512 bins.
The similarity metric is Bhattacharyya coefficient [10].
Step 2: for each unlabeled superpixel which is adjacent

to the foreground or background, find out its most similar
neighbor superpixel. If this superpixel is already labeled, give
this label to the current superpixel. Otherwise, do nothing to
the current superpixel. For each label change, the number
of labeled superpixels increases by 1 while the number of
unlabeled superpixels decreases by 1. This process will stop
when there is no more label change.
Step 3: if there are still unlabeled superpixel regions,

denote these regions as {r ′s}s=1,2,...,S . We define a synthetic
superpixel distance (SSD) as follows to measure the distance
between the unlabeled superpixel and the labeled foreground
regions (RF) or background regions (RB):

SSD(r ′s,R) = 1−max{sim(r ′s,R)} × mean{sim(r
′
s,R)}, (4)

where sim(r ′s,R) is the function to compute the similarities
between r ′s and the regions in R = {rt }t=1,2,...,K according to
the following formula:

sim(r ′s,R) = {ρ(r
′
s, rt )}, t = 1, 2, . . . ,T , (5)

where ρ(r ′s, rt ) is the Bhattacharyya coefficient, and T is the
number of the regions in R.

If the current superpixel region satisfies the condition
SSD(r ′s,RF) < SSD(r ′s,RB), we group the current super-
pixel region into foreground. Otherwise, we group it into
background.
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FIGURE 4. The demonstration of superpixel grouping.

These three steps iterative until all the unlabeled superpixel
regions are grouped into either foreground or background.
After that, we obtain a binarymarker image distinguishing the
foreground and background. Fig. 4 demonstrates the course
of superpixel grouping.

D. FINAL SEGMENTATION
Based on the initialized foreground and background label,
the synthetic superpixel grouping can well group the unla-
beled superpixel regions into either foreground or back-
ground. The rest image content outside the processed image
patch is preset as background. So, the foreground is now
well segmented out from the original image with only a
weakly supervised input bounding-box. We refer to Fig.2 for
a demonstration of the whole course.

IV. RESULTS AND ANALYSIS
In this section, we will comprehensively evaluate the pro-
posed algorithm. After a brief introduction of parameters
setting, some representative results of the proposed algorithm
are provided. We then compare the segmentation perfor-
mance of the proposed algorithm with some closely related
state-of-the-art works. We further discuss the applications of
the proposed algorithm in background change, video segmen-
tation and visual tracking. Finally, the robustness analysis and
faultiness analysis will also be considered in this section.

A. PARAMETER SETTINGS
The whole algorithm integrates the Watershed, SLIC, Mean-
shift clustering and the proposed SSG. For Watershed and
SLIC, the parameters are exploited to control the segmen-
tation initialization. Denote the number of Watershed super-
pixels and SLIC superpixels as N1 and N2. Larger values
will providemore precise initial segmentation, however, these
will increase the time-consuming for subsequent processing.
We preset N1 = 200 and N2 = 200 for the proposed algo-
rithm after a number of experiments. We give the segmen-
tation results under different parameters setting and analyze
the influence to segmentation under different values of N1
and N2 in the subsequent content. When clustering theWater-
shed superpixels to obtain initial foreground and background
labels, the feature dimension and bandwidth need to be preset
for Mean-shift clustering algorithm. We use a histogram with

FIGURE 5. Some representative results of the proposed algorithm. The
top row are the input images with loosely selected bounding-boxes, and
the bottom row are the final segmentation results. The displayed images
from left ro right are fungus, deer, airplane, dog, tiger, and toucans
successively.

512 bins in HSI color space (8 bins for hue, saturation and
intensity respectively) to describe the Watershed superpixels
feature. This value is also used in SSG when describing the
SLIC superpixels. The bandwidth of Mean-shift clustering is
preset as 0.25. We found that a slightly change of bandwidth
have very limited influence to the final result. After refining
the label value, we need to select the largest m1 as reliable
foreground label and the smallest m2 as reliable background
label. Too small or too large values for these two parameters
will decrease the segmentation precision. Based on a large
number of tests, we find that the settingm1 = 10 andm1 = 10
produces relative better results. A slightly change of these
two value may not introduce distinctive change for the final
segmentation results. Unless mentioned otherwise, the afore-
mentioned parameters are fixed for all the experiments.

B. REPRESENTATIVE RESULTS
Fig.5 displays some representative foreground segmentation
results of the proposed algorithm. Considering the paper
length restriction, we only select very limited results to
demonstrate its effectiveness. Among the test images, some
target foreground appear in relative clean background (such
as the image dear and airplane), while others are inte-
grated with cluttered background (such as the image fungus
and dog). The difficulty is to segment out the foreground
completely with restricted interactive information while
suppress the background.We can see fromFig.5 that our algo-
rithm obtains a pleasing result under a very loose bounding-
box. Almost all the foreground pixels are grouped into the
final segmentation while the background within the input
bounding-box is well deleted. The segmentation is smooth
and integrated.

C. COMPARISON TO SIMILAR WORKS
We also compared the proposed algorithm to some recent
related works, such as MSRM [10] based on strokes input
and LooseCut [23] based on loose rectangle input. MSRM is
an efficient and effective algorithm to extract foreground
which demonstrates a better performance than GraphCut [7].
LooseCut is a recent work which relies only a roughly input
bounding-box. We select this algorithm as a comparison
because it is also a rough input based method and owns a
relative better performance than GrabCut [9]. For MSRM,
we run the algorithm 5 times with cautiously initialized labels
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FIGURE 6. Segmentation results comparison with related works. From top
to bottom, the original test images, the results of GrabCut [9], MSRM [10],
LooseCut [23] and the proposed algorithm are successively displayed.
In the top row, the red bounding-box is for GrubCut while yellow
bounding-box is for LooseCut and the proposed algorithm. The initial
labels for MSRM are purple (foreground) and green (background) strokes.

and selected a relative better result for each image. For Loose-
Cut, we draw a large rectangle enough to enclose the whole
foreground. As a baseline reference, the results of the original
GrabCut [9] are also displayed.

The test images are selected from the Berkeley segmen-
tation database (BSD) constructed by Martin et al. [26].
This database includes five hundred test images with human
segmentation masks as the ground-truth. The subjective com-
parison of the segmentation algorithms is displayed in Fig.6.
To be pointed out is that the GrabCut is heavily dependent
on the input bounding-box, which must tightly enclose the
foreground. Besides, MSRM needs some strokes to roughly
label the foreground and background. In the top row of Fig.6,
we displayed all the initialization information for the test
algorithm. The red bounding-box is for GrubCut while yellow
bounding-box is for LooseCut and the proposed algorithm.
The initial labels for MSRM are purple (foreground) and
green (background) strokes. It can be seen that GrabCut
mistakes the background pixels for foreground pixels in some
cases, such as the tree trunk when segmenting the sloth, and
the lake surface when segmenting the boat. MSRM obtains
a pleasing result when the background is simple (such as the
image boat and bird) but the performance decreases when
the background becomes cluttered (such as the image sloth
and skating). LooseCut obtains relative better results than
MSRM, however, the performance decreases when the dis-
crimination between foreground and background decreases
(such as the grass ring in the head and vegetation on the
ground in test image human). Compared with the referenced

approaches, the proposed algorithm behaves relative better in
most of cases, especially in the test image sloth and skating.

In order to give a quantitative evaluation, we introduce
two metrics [10] to compare the proposed algorithm with the
referenced algorithms.

The first one is True Positive Rate (TPR) which is defined
as the ratio of the number of correctly classified foreground
pixels to the number of total foreground pixels in the ground-
truth. Denote the binary images of algorithm result and
ground-truth as A and B. The TPR value can be calculated
as follows:

TPR =
count(A

⋂
B)

count(B)
, (6)

where the count(·) is the function to count the total number of
positive pixels in binary image, and A

⋂
B is the intersection

of A and B.
The second metric is the False Positive Rate (FPR). It is

defined as the ratio of the number of background pixels but
wrongly classified as foreground pixels to the number of
background pixels in the ground-truth, which can be calcu-
lated as follows:

FPR =
count(A

⋂
B)

count(B)
, (7)

where the B is the Non-logic operation of B, that is, the back-
ground of ground-truth.

We manually labeled the ground-truth pixels according to
the database [26] for TPR and FPR values calculation. The
comparison results are displayed in Tab.1. GrabCut obtains a
higher TPR at the cost of increasing of FPR. Compared with
MSRM and LooseCut, our method obtains a relative better
performance in both TPR and FPR.

D. APPLICATION DISCUSSION
One of the main advantages of the proposed algorithm is
that it can relief the user’s burden while maintaining the
segmentation performance. It is natural to apply it to some
weakly supervised image segmentation areas. In this sub-
section, we mainly discuss the applications in background
change, video segmentation and visual tracking.

1) BACKGROUND CHANGE
In many practical cases, we want to change the background
of something what we are interested in. This technology is
widely used in photo processing, post-production of films,
and so on. In these situations, what we can be sure of is the
foreground areas. Compared with the digital matting technol-
ogy which relies much on the user’s interactive information,
the proposed algorithm can segment out the foreground in a
very efficient way with only a loosely bounding-box input.
In Fig.7, we display four examples to demonstrate the appli-
cation of the proposed algorithm in background change. All
the test images are selected from BSD database [26]. In the
first image, we helped the News reporter change the back-
ground to an image with beautiful buildings. The foreground
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TABLE 1. The TPR(%) and FPR(%) values of different algorithms on the test images.

FIGURE 7. Background change using the proposed algorithm. The top row
are the original images and the bottom row are the background change
results. All the test images are selected from BSD database [26].

is well segmented out and integrated with the new back-
ground harmoniously. For the second image, we removed
the fungus from jungle to a wooden bridge, which makes
the image more interesting. In the rest two images, we also
obtained two new images with no sense of violation. We can
see from these examples that the proposed algorithm can
be well applied into background change area and obtain a
satisfactory result.

2) VIDEO SEGMENTATION
Video segmentation is a very interesting technology which
is widely applied in video edit, video coding, video compres-
sion, and so on. Under normal conditions, video segmentation
can be obtained by digital matting technology, however, it is
too troublesome to label the initial foreground and back-
ground. With the help of the proposed algorithm, we can
segment the foreground out from the video frames in a very
efficient way. We can draw a loose bounding-box for each
frame to finish the video segmentation, however, the most
convenient and efficient way is to draw a initial bounding-
box in the first frame and obtain the subsequent bounding-
boxes via a tracker. Fig.8 displays the segmentation results
of four video clips. All these video clips are collected from
public available dataset. The first three are from VOT-20141

and the last one is provided by OTB-2015 [27]. During these
experiments, we only draw a initial bounding-box for each
video, the bounding-boxes of the rest frames are obtained

1Available at http://votchallenge.net

FIGURE 8. Video segmentation using the proposed algorithm. From top to
bottom are the partial segmentation of the video clips diving, gymnastics,
bicycle, and walking. Among these clips, the first three are from
VOT-2014 and the last one is provided by OTB-2015.

by the Mean-shift tracker provided by OTB-2015 [27]. Some
typical segmentation results are displayed in Fig.8. We can
see that the proposed algorithm can well finish the video
segmentation tasks when the background is not so much
complicated.

3) VISUAL TRACKING
This proposed algorithm can be further applied to visual
tracking task. Firstly, in some realistic cases, we can only
obtain a rough location of the target rather than a cautiously
selected bounding-box. In this case, we can refine the ini-
tial bounding-box using the proposed algorithm. Secondly,
along with the tracking process, the tracking result may
drift little by little. In this situation, we can correct the
result using the proposed algorithm in every fixed number
of frames. We select four representative video clips from
OTB-2015 [27] to validate the effectiveness. We test the
tracking performances using the Mean-shift tracking and
the Mean-shift tracking with correction. It is known that
Mean-shift is a very familiar tracking algorithm. It works
well when the background is simple. However, the perfor-
mance becomes worse when the contrast between foreground
and background decreases. In this experiment, we first run
the original Mean-shift tracking algorithm through the test
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TABLE 2. The TPR(%) and FPR(%) values under different parameter settings of N1 with N2 = 200.

FIGURE 9. Tracking results comparison between the original Mean-shift
tracking and the Mean-shift tracking with correction. In the top-left corner
of each subplot, a red bounding-box shows the initial target to be track.

videos, and then run the Mean-shift algorithm integrated
with a correction processing based on the proposed algo-
rithm. The current tracking result will be used as a loose
bounding-box for the following frame and the segmenta-
tion result will be used to correct the tracking drift. This
correction process is added every three frames. We record
the tracking results of both Mean-shift and Mean-shift with
correction and compared the Center Location Error (CLE)
curves in Fig. 9. CLE is a metric to evaluate the tracking
performance, which measures the error between the centre
locations of tracking window and the ground-truth. For the
sequence david3, the average CLE value of Mean-shift track-
ing is 222.4, while this value decreases to 5.6 when adding
a correction processing. For the sequences doll, jogging
and walking2, the corresponding values decrease from 22.4,
90.7 and 44.9 to 3.1, 2.9 and 4.0, respectively. The results
indicate that the proposed algorithm can remarkably improve
the tracking performance when integrated with the visual
tracking algorithm. The additional benefits from the integra-
tion of Mean-shift tracking and foreground segmentation is
the scale adaption, which is of great importance for visual
tracking.

E. ROBUSTNESS, FAULTINESS AND RUNTIME ANALYSIS
In this subsection, we will mainly analyze the robustness,
faultiness and runtime of the proposed algorithm.

FIGURE 10. Robustness test to different initial bounding-box inputs. For
the top row, the left three are tiger images with different predefined
bounding-box, and the right three are bird images with different
predefined bounding-box. The bottom row displays the
segmentation results.

1) ROBUSTNESS ANALYSIS
The proposed algorithm is robust to the input bounding-box.
We evaluate this performance by shifting the input and chang-
ing the size and aspect ratio. The segmentation results are
robust to different input bounding-boxes. We refer to Fig.10
for a simple demonstration. However, if the coverage ratio
of input bounding-box to the ground-truth is less than 0.5,
the performance may become worse.

The proposed algorithm involves several parameters, how-
ever, it is not sensitive to the parameter change. We test the
parameter N1 that control the Watershed superpixels number
and display the test results in Tab.2. We preset the SLIC
superpixels number at 200 and increases N1 from 160 to 240
with step of 20. The results show that the final segmentation
changes very little when the Watershed superpixels number
variants around 200 and the parameter 200 produces relative
better results. We conclude the reasons as two aspects. Firstly,
the variation of the preset Watershed superpixels number has
more influence to the segmentation of the region with rich
image details. However, limited change of this segmentation
has very little influence to the initial foreground and back-
ground labels extraction. Secondly, we exploit theMean-shift
clustering algorithm to learn the initial foreground and back-
ground labels during the label initialization. This algorithm
has a relative high robustness to the initial input and thus,
a slight change of Watershed superpixels number will not
bring in large change of final results.

We also test the robustness to the preset SLIC superpixels
number (N2) from 150 to 250 and displayed the results in
Tab. 3. We restrict N1 at 200 and increase the N2 with step
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TABLE 3. The TPR(%) and FPR(%) values under different parameter settings of N2 with N1 = 200.

TABLE 4. The runtime (in ms) comparison of different superpixel extraction methods.

of 25. The results seem very consistent when N2 = 225 and
N2 = 250. This is because that the actual SLIC superpixels
number is an integral square root of the figure no larger
than N2. So, when N2 = 225 and N2 = 250, the actual
SLIC superpixels number are both 225 (equals 152). The
results show that the algorithm obtains the largest TPR and
the smallest FPR in most cases. Actually, the final results
will keep the same when N2 variants from 196 (equals 162)
to 224 (the actual SLIC superpixels number is still 196,
which equals 162). We also test the bandwidth of Mean-shift
clustering from 0.1 to 0.5 with step of 0.01 and found that
a value around 0.25 obtains a relative better result. For the
whole algorithm in this paper, we keep these three parameters
unchanged for all the experiments.

Note that if the background becomes very complex,
the performance of the proposed algorithm may decrease
distinctively. So, we advise to further improve the perfor-
mance by integrating the proposed algorithmwith some other
strategies that can increase the contrast between foreground
and background.

2) FAULTINESS ANALYSIS
To be mentioned is that we confronted with some failing
examples during the experiments. For the image human and
bird in Fig.6, some fine details are missed in the final results,
such as the long staff in the image human and the claws in the
image bird. The intrinsic reason is that the superpixel extrac-
tion algorithm (SLIC) can not segment such fine details and
thus, this small foregrounds are segmented into background
in the superpixel segmentation step. We tried to enlarge the
superpixles number to alleviate this problem and obtain an
improved result at the cost of time-consuming increasing.
However, if the superpixels method can not distinguish the
foreground from background, it will directly affect the final
segmentation result. A superpixels method with high preci-
sion and efficiency may be helpful to resolve this problem.

3) RUNTIME ANALYSIS
The time-consuming of the proposed algorithm mainly con-
sists of three parts: superpixel extraction, initial labels gener-
ation and SSG. Among these three, superpixel extraction is
affected by the region size of foreground while initial labels
generation and SSG are mainly affected by the number of
superpixels and the dimension of feature. In order to evaluate
the efficiency of the proposed algorithm, we test it with differ-
ent foreground size and different superpixels number.We also
test the proposed algorithm and the referenced algorithm
based on the images from BSD database. All these tests are
implemented on a PCwith Intel 3.3GHzCPU and 4GBROM.

In order to compare the time-consuming of Mean-shift
clustering algorithm, Watershed algorithm and SLIC algo-
rithm, we randomly generate five groups images with the
size from 50 × 50 to 250 × 250 with step of 50. Each
group contains 100 different images. After, we exploit
these three methods to extract the superpixel of all the
test images and calculate the average runtime per image.
The comparison results are displayed in Tab. 4. From the
comparison, we can see that the Watershed algorithm and
SLIC algorithm are more efficient than Mean-shift clustering
algorithm. It only takes millisecond-level forWatershed algo-
rithm and SLIC algorithm to extract the superpixel of image
patch with the size of 100 × 100. It is of great significance
for the integrated algorithm to cut down the time-consuming
during the preprocessing.

Tab. 5 displays the time-consuming of the proposed algo-
rithm with the increasing of foreground size. We fix the size
of the test image as 481 × 321, and increase the size of the
input bounding-box from 20 × 20 to 100 × 100 with step
of 20. The parameters N1 and N2 (the superpixels number
of Watershed and SLIC) are kept as 200. We also recorded
the runtime of the referenced algorithms in this table to
compare the efficiency of them. In order to test the runtime
of GrabCut and LooseCut algorithm, we run the segmentation
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TABLE 5. Runtime (in seconds) with the increasing of the input
bounding-box size.

TABLE 6. Runtime (in seconds) with the increasing of SLIC superpixels
number.

codes ten times with randomly initialized bounding-boxes to
obtain an average value. The runtimes of MSRM are also
statistical values based on ten times tests. We can see that the
proposed algorithm runs very efficient when the size of the
input bounding-box is small. The runtime increases when the
size of the input bounding-box increases.

The time-consuming of the proposed algorithm with the
increasing of SLIC superpixels number are demonstrated in
Tab. 6. The size of the test image is fixed as 481 × 321.
In order to analyze the influence to time-consuming with
the increasing of SLIC superpixels number under a single
variable maintaining other effect factors constant, we select
a value neither too big nor too little (60 × 60) as the size
of input bounding-box. The size of the test image is fixed as
481 × 321, and the size of input bounding-box is fixed as
60×60. SLIC superpixels number increases from 100 to 300
with step of 50. We found that the runtime of the pro-
posed algorithm increases along with the increasing of the
SLIC superpixels number. Actually, if the image size and
the input bounding-box size are fixed, the runtime of the
proposed algorithm mainly correlates to the SLIC super-
pixels number. The increasing of SLIC superpixels num-
ber will increase the processing time when describing the
superpixels and grouping these superpixels using SSG algo-
rithm. It is consistent to the experiment results displayed
in Tab. 6.

To be pointed out is that the runtime ofMSRMonly consid-
ers the superpixel grouping step because the input is the over-
segmented regions usingMean-shift clustering algorithm. So,
the Tables show thatMSRM is slightly more efficient than the
proposed algorithm. It can be concluded that the proposed
algorithm is practically as efficient as MSRM and more effi-
cient thanGrabCut and LooseCut. Furthermore, the proposed
algorithm is implemented only using Matlab and thus, it can
be substantially optimized for speed. Nevertheless, there is
a distance to obtain a realtime processing in current state.
We will do further research to improve the efficiency of the
proposed algorithm.

V. CONCLUSION
We proposed a weakly supervised image segmentation algo-
rithm to extract foreground from a complex background rely-
ing only on a roughly predefined bounding-box. The main
contribution of this paper are the weakly supervised fore-
ground segmentation framework based on a roughly prede-
fined bounding-box and the synthetic superpixel grouping
mechanism. We cluster the Watershed superpixels to obtain
the initial foreground and background labels according to the
input bounding-box. A synthetic superpixel grouping algo-
rithm is then proposed to segment the foreground based on
the SLIC superpixels according to the initialized foreground
and background labels. Extensive experiments indicate that
the proposed algorithm can obtain a robust segmentation
which outperforms the related works in most cases. We also
discussed the applications and analyzed the faultiness of the
proposed algorithm to comprehensively evaluate its perfor-
mance. Future work will be centralized on the integration of
SSG with some other superpixel methods and the improving
of the efficiency.
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