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ABSTRACT In this paper, we investigate the energy-efficient resource allocation problem for heteroge-
neous wireless network with multihomed user equipments. First, the energy-efficient resource allocation is
formulated as an energy efficiency (EE) maximization problem, which is a mixed-integer nonlinear opti-
mization (MINO) problem. We first introduce a continuity relaxation and Lagrange dual method to solve
the MINO problem, which has relatively high computational complexity. For reducing the computational
complexity of the resource allocation problem, we further propose a two-phase optimization method.
Specifically, it includes the minimum rate guaranteed resource allocation and the energy-efficient resource
allocation. Finally, we show that the two-phase optimization method achieves the suboptimal EE with
significantly lower computational complexity compared with the optimal one. Simulation results show
that the suboptimal algorithm achieves the EE performance higher than the conventional approach and
comparable with the optimal one, but with much less complexity.

INDEX TERMS Wireless network resource allocation, energy efficiency, multi-homing.

I. INTRODUCTION
It is reported that there will be an astounding 1000-fold
increase in media traffic generated by smartphones, tablets
and machine-type communication devices for the wireless
network in the last decades [1]. Although many lasted
wireless technologies, such as WiMAX, Mobile-Fi, IEEE
802.11 wireless local area networks (WLAN) / Wi-Fi, and
IEEE 802.15 wireless personal area networks (WPAN), have
been proposed in recent years, supporting these media appli-
cations while maximizing the wireless network resource
(e.g., power, bandwidth) utilization is a challenging task [2].
Specifically, these lasted wireless technologies are limited in
radio coverage and mobility support for individual users [3];
while, the access point (AP) of traditional cellular network
can well sustain the user mobility but its bandwidth is often
inadequate to support the throughput-demanding video appli-
cations. To deliver high-quality media streaming service,
it becomes vital to consider aggregating the bandwidth of
heterogeneous wireless networks (HetNet). As a result, multi-
homing service, where a user equipment (UE) maintains

multiple simultaneous network paths between the media con-
tent server and the UE by employing different APs in the
HetNet, is considered as a promising solution for offloading
the massive media traffic [4].

Although multi-homing technology provides a lot of per-
formances improvement, there are many technical challenges
for realizing the multi-homing service in HetNet. First, due
to the fact that each UE can maintain multiple simultaneous
connections with different APs, the UEs QoS requirements
deepen the coupling of the resource allocations of differ-
ent APs, which leads to an across multiple APs resource
allocation problem and hence increases the problem com-
plexity. Second, most of the power energy of HetNet is
consumed by the APs [5]. Moreover, 80% of these energy
is dissipated as heat, and only around 5% to 20% of the
input power is used for supporting the wireless traffic [6].
Therefore, in order to realize the environmental-friendly com-
munication, energy efficiency (EE) must be a key perfor-
mance metric for the resource allocation in multi-homing
networks. However, the EE often leads to a non-convexity
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EE function, so that the optimal energy-efficient resource
allocation cannot be obtained by the conventional convex
optimization algorithms. Third, deployed with the orthogo-
nal frequency division multiple access (OFDMA) subcarrier,
the allocation of these wireless resource is indicated by the
binary allocation variable, which leads to a mixed-integer
nonlinear programming [7]. According to the analysis above,
the mentioned factors present difficult challenges to solve the
energy-efficient resource allocation problem for the HetNet
with multi-homing services.

In this paper, we first formulate the energy-efficient
resource allocation as an EE maximization problem.
We apply the nonlinear fractional programming to convert
the EEmaximization into amixed integer nonlinear optimiza-
tion (MINO) problem. Then, the optimal solution of MINO
problem is derived by the continuity relaxation and Lagrange
dual method, which has relatively high computational com-
plexity. For reducing the computational complexity of the
resource allocation problem, we also propose a two-phase
optimization method, which includes the minimum rate guar-
anteed resource allocation problem, and the energy-efficient
resource allocation problem. Finally, the two problems are
solved orderly for obtaining the low-complexity resource
allocation algorithm.

The main contributions of this paper are outlined as
follows:

• We propose an across multiple APs resource alloca-
tion framework, with considering the UEs multi-homing
capability.

• An iterative joint power and subcarrier allocation algo-
rithm consisting of both outer and inner loop optimiza-
tions is proposed to achieve the globally optimal EE.
Specifically, the algorithm is different from existing
algorithms for OFDMA system in that the resource allo-
cation is performed across multiple APs to maximize the
system EE.

• To facilitate practical implementation, we also develop
a low-complexity suboptimal joint power and subcar-
rier allocation algorithm. We prove that the proposed
algorithm achieves the suboptimal EE with significantly
lower computational complexity compared with the
optimal one.

The rest of the paper is organized as follows: Section II
presents the related works. The network model and prob-
lem formulation are given in Section III. In Section IV,
we introduce the optimal energy-efficient resource allocation.
Section V gives a low complexity suboptimal resource allo-
cation algorithm. Section VI presents the simulation results
to evaluate the proposed scheme. The conclusions are drawn
in Section VII.

II. RELATED WORKS
Our work in this paper lies along the intersection of research
contexts: 1) resource allocation for wireless networks, and
2) multi-homing media transmission.

There exists a large body of works conducted in resource
allocation for wireless networks. For example, an airtime-
based resource control technique was proposed in [8] for
the virtualized wireless network, in which wireless network
resources are allocated among competing virtual networks
while keeping their programmability. The Bayesian-game
based resource allocation schemes were developed in [9]
to dictate the UE to request wireless resources based on
the bidding strategies of other UE players. A three-phase
search algorithm was developed in [10] to choose appropriate
small cells and physical resources for UEs while minimiz-
ing the overall energy consumption and reducing the net-
work interference. The resource allocation scheme in [11]
develop an efficient distributed method to solve resource
allocation problem. The problem of energy-aware resource
management was formulated as a three-stage Stackelberg
game in [12] and an iterative algorithm was proposed to
obtain the Stackelberg equilibrium solution. In [8]–[12], all
the resource allocation schemes have relatively high compu-
tational complexity, they cannot be realized within a short
time window, which can be 10 ms for LTE system [13]. For
reducing the computational complexity, the resource alloca-
tion scheme in [14] divided the original optimization problem
into two subproblems, and the corresponding low-complexity
algorithms were developed. The low-complexity heuristic
algorithm was proposed in [15] to solve the resource allo-
cation problem in OFDMA networks. Nevertheless, the low-
complexity designs of [14] and [15] cannot be used in
the HetNet with multi-homed UEs, where the coupling
among multiple APs makes the resource allocation more
complicated.

Multi-homing service has received growing attentions
recent years. the piecewise linearization approach in [16]
selectively dropped some packets under the battery energy
limitation, and assigned the most valuable packets to different
radio interfaces in order to minimize the video quality dis-
tortion. A traffic splitting scheme was developed in [17] for
the cellular/WiFi heterogeneous networks to achieve various
performance gains. Under the multi-homing video transmis-
sion scheme in [18], the UE can adapt its energy consump-
tion to support at least the target video quality lower bound
during the call. An optimal rate splitting strategy was devel-
oped in [19] to improve both spectral efficiency and energy
efficiency by exploring and exploiting cooperation diversity.
However, all of these works focused on the traffic scheduling
among multiple APs, and the physical resource allocation
were not explored.

III. SYSTEM MODEL
In this section, we first introduce the network model of
HetNet including the definition of EE. Next, we discuss the
problem formulation for energy-efficient resource allocation.

A. NETWORK MODEL
The considered HetNet owns N APs. An example system
model of HetNet is shown in Fig. 1. Multiple radio interfaces
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FIGURE 1. System model of HetNet with multi-homed UEs.

are deployed on the UE, so that they have multi-homing
capable. With the help of these radio interfaces, the UE can
establish communication with multiple APs simultaneously
and employ them for media content transmission. We assume
that, in HetNet, different APs operate in different bandwidths
(e.g., 2.4 GHz for WiFi, 1.8-2.3 GHz for HSPA) [20]. Thus
the inter-APs interference does not exist in the HetNet. Let
N = {1, 2, · · · ,N } and M = {1, 2, · · · ,M} denote the
set of APs and UEs in the system, respectively. Due to
the practical limits in multi-homing capable, we consider
that each UE m (AP n) can connect to the set of Nm APs
(Mn UEs) from the available APs set N (UEs set M), then
M =

⋃N
n=1Mn, and N =

⋃M
m=1Nm.

The radio resources of APs include OFDM subcarrier and
transmit power. The subcarrier set of AP n is denoted as Jn,
and its number is written as Jn. Binary variable xkn,m indicates
that subcarrier k in AP n is allocated to UE m. The channel
gain between AP n and UE m on subcarrier k is gkn,m and the
transmit power is pkn,m. Then, the achievable data rate between
AP n and UE m on subcarrier k can be expressed as

rkn,m = xkn,mεnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
, (1)

where εn is the network efficiency depending on the decoder
efficiency of an AP, Bn is the subcarrier spacing in AP n,
0 is the capacity gap from the Shannon channel capac-
ity [7], and N0 is the power spectral density of additive white
Gaussian noise. Since subcarriers are allocated orthogonally
among UEs in AP n, we have∑

m∈Mn

xkn,m ≤ 1, xkn,m ∈ {0, 1},∀k ∈ Jn, n ∈ N . (2)

Thus, the sum-rate for UE m, which is served by the set of
Nm APs, is given as

Rm =
∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
. (3)

Let Rreqm denote the data requirement of UE m ∈M. In order
to reconstruct the media content successfully, the rate-
aggregation of the transmission rate on the multiple paths
should be larger than Rmreq, so that the rate constraint is given
as Rm ≥ Rmreq,m ∈M.

B. ENERGY EFFICIENCY
Due to the fact that circuit components power consump-
tion contributes to a large part of energy consumption in
HetNet [21], the circuit power pcn,m for establishing connec-
tion between AP n and UE m should be also considered
in the total power consumption. Therefore, the total power
consumption of AP n is expressed as

Pn =
∑

m∈Mn

∑
k∈Jn

xkn,mp
k
n,m +

∑
m∈Mn

pcn,m, ∀n ∈ N . (4)

In practice, the transmit power at the AP should not be
unbounded, hence the transmit power must satisfies the fol-
lowing constraint∑

m∈Mn

∑
k∈Jn

xkn,mp
k
n,m ≤ P

max
n ,∀n ∈ N . (5)

The EE is defined as the ratio of the total transmis-
sion rate to the corresponding total power consumption
(unit: bits/watt):

C(x,p)
P(x,p)

=

∑
m∈M

∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log
(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
∑
n∈N

( ∑
m∈Mn

∑
k∈Jn

xkn,mpkn,m +
∑

m∈Mn

pcn,m

) , (6)

where x = [xn]1×N , xn = [xkn,m]|Mn|×Jn
1 and p = [pn]1×N ,

pn = [pkn,m]|Mn|×Jn represent the feasible subcarrier and
power allocation polices, respectively.

C. PROBLEM FORMULATION
With the related constraints, the energy-efficient resource
allocation problem is formulated as

max
C(x,p)
P(x,p)

(7)

subject to the following constraints:
C1 (Orthogonality constraint):∑

m∈Mn

xkn,m ≤ 1, xkn,m ∈ {0, 1},∀k ∈ Jn, n ∈ N .

C2 (UEs QoS constraint):∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
≥ Rreqm ,

∀m ∈M.

C3 (Total power constraint):∑
m∈Mn

∑
k∈Jn

xkn,mp
k
n,m ≤ P

max
n , ∀n ∈ N .

We observe that the objective in optimization (7) is a
fraction function, which results a non-convex optimization

1
|S| is the cardinality of set S.
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problem. Moreover, due to the binary variables x, the prob-
lem falls a mixed integer nonlinear optimization (MINO)
problem, which is NP-hard generally [22]. Finally, the UEs
QoS constraint makes the resource allocation of different
APs coupled with each other, which increases the problem
complexity.

IV. OPTIMAL ENERGY-EFFICIENT RESOURCE
ALLOCATION
For coping with the non-convex optimization problem,
the non-linear fractional programming is utilized in this
section for converting the non-convex objective function in
problem (7) into a differential form. Then, an iteration algo-
rithm is developed to solve this EE maximization problem.

We first define the EE performance of the HetNet as a non-
negative variable η = C(x,p)/P(x,p). The optimal EE is
defined as ηopt = max

C1−C4

C(x,p)
P(x,p) . Then, it comes the following

lemma.
Lemma 1: The optimal EE of the resource allocation prob-

lem can be achieved if and only if

max
C1−C3

C(x,p)− ηoptP(x,p)

= C(x∗,p∗)− ηoptP(x∗,p∗)

= 0,

where x∗ and p∗ are the optimal solutions of optimization
problem (7).

Proof: Similar proof can be found in [23].
It is shown in Lemma 1 that if the optimal value ηopt is

given, optimization problem (7) can be converted into the
following optimization problem.

max C(x,p)− ηoptP(x,p)

s.t. C1− C4. (8)

In fact, we can not known ηopt in advance. Hence, an iterative
procedure is proposed in Algorithm 1 to update η. With
the definition of F(η) = max

C1−C4
C(x,p) − ηP(x,p), solving

optimization problem (8) is converted into finding the root
for nonlinear equation F(η) = 0.
Lemma 2: Based on an iteration algorithm, F(η) can con-

verge to zero with a linear convergence rate.
Proof: Similar proof is shown in [23].

Actually, there are two nested loops executed in
Algorithm 1. On the one hand, ηi+1 is iterated with the
obtained xi and pi at the Outer Loop; on the other hand, xi

and pi are solved through problem (9) at the Inner Loop.

max C(x,p)− ηP(x,p)

s.t. C1− C4. (9)

Now, resource allocation problem (7) is converted into
solving problem (9) at given η. However, we found that
problem (9) is an MINO problem, which is difficult to solve
in generally. In the following, we will employ the primal-dual
decomposition method in [7] and [24]. Moreover, the optimal

Algorithm 1 EE-Based Resource Allocation
Initialization Set the parameters about maximum iteration
number Imax, convergence condition ε and iteration index
i = 1;
Set η1 = 0 and begin iteration (Outer Loop);
for 1 ≤ i ≤ Imax do
Solve resource allocation problem (9) with ηk (Inner
Loop);
obtain xi,pi,C(x,p) and P(x,p);
if |C(xi,pi)− ηkP(xi,pi)| ≤ ε then
Set {x∗,p∗} = {xi,pi} and ηopt = ηi;

break
else

Set ηi+1 = C(xi,pi)
P(xi,pi) and i = i+ 1;

end if
end for

solution can be derived based on the special structure of our
optimization problem.

The primal-dual decomposition method includes the fol-
lowing two steps:

1) CONTINUITY RELAXATION
Relaxing xkn,m to the continuous interval [0, 1] and introduc-
ing a new variable skn,m = xkn,mp

k
n,m, problem (9) can be

rewritten as

max
∑
m∈M

∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+ 0

|gkn,m|
2skn,m

xkn,mBnN0

)

− η
∑
n∈N

 ∑
m∈Mn

∑
k∈Jn

skn,m +
∑

m∈Mn

pcn,m

 (10)

subject to the following constraints:

C1∗ :
∑

m∈Mn

xkn,m ≤ 1, 0 ≤ xkn,m ≤ 1, , ∀k ∈ Jn, n ∈ N ,

C2∗ :
∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+ 0

|gkn,m|
2skn,m

xkn,mBnN0

)
≥ Rreqm ,

∀m ∈M,

C3∗ :
∑

m∈Mn

∑
k∈Jn

skn,m ≤ P
max
n , ∀n ∈ N ,

C4∗ : skn,m ≥ 0, ∀n ∈ N , ∀k ∈ Jn, m ∈Mn.

It can be easily seen that problem (10) is concave optimiza-
tion. Furthermore, since the feasible sets of the constraints
are convex sets, there is a zero Lagrange duality gap for
problem (10) [25].

2) LAGRANGE DUAL SOLUTION
We relax the UEs QoS constraint C2∗ and total power con-
straint C3∗ by introducing dual variables λm and µn, respec-
tively, we obtain the Lagrange function as Eq. (11), as shown
at the top of next page.
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L(s, x,λ,µ)=
∑
m∈M

∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+ 0

|gkn,m|
2skn,m

xkn,mBnN0

)
− η

∑
n∈N

 ∑
m∈Mn

∑
k∈Jn

skn,m +
∑

m∈Mn

pcn,m


−

∑
m∈M

λm

Rreqm −∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log

(
1+0
|gkn,m|

2skn,m
xkn,mBnN0

)−∑
n∈N

µn

 ∑
m∈Mn

∑
k∈Jn

skn,m − P
max
n

. (11)

In Eq. (11), λ = [λm]1×M and µ = [µn]1×N , then the dual
function is given by

h(λ,µ)= max
s,x

L(s, x,λ,µ)

s.t.
∑

m∈Mn

xkn,m ≤ 1, ∀k ∈ Jn, n ∈ N ,

0 ≤ xkn,m ≤ 1, ∀k ∈ Jn, n ∈ N , m ∈Mn,

skn,m ≥ 0, ∀n∈N , ∀k ∈Jn, m∈Mn, (12)

and the dual problem of (10) is

min
λ,µ≥0

h(λ,µ). (13)

Due to the zero Lagrange duality gap between problems (10)
and (13), we can solve (12) and (13) for finding the
optimum λ, µ, s and x.

Based on the Karush-Kuhn-Tucker (KKT) conditions,
the following relationship between s and x can be obtained

skn,m =

[
εnBn(λm + ϕl + 1)

(µn + η) ln 2
−

BnN0

0|gkn,m|2

]+
xkn,m, (14)

where [x]+ = max{0, x}.
Then, substituting Eq. (14) into Eq. (12), extracting the

common factor and letting

3k
n,m

=−η

[
εnBn(λm + ϕl + 1)

(µn + η) ln 2
−

BnN0

0|gkn,m|2

]+

+ εnBn log

(
1+0
|gkn,m|

2

N0

[
εn(λm+ϕl+1)
(µn+η) ln 2

−
N0

0|gkn,m|2

]+)

+ λmεnBn log

(
1+0
|gkn,m|

2

N0

[
εn(λm+ϕl+1)
(µn+η) ln 2

−
N0

0|gkn,m|2

]+)

−µn

[
εnBn(λm + ϕl + 1)

(µn + η) ln 2
−

BnN0

0|gkn,m|2

]+
,

we can finally rewrite Eq. (12) as

h(λ,µ) = max
x

∑
m∈M

∑
n∈Nm

∑
k∈Jn

3k
n,mx

k
n,m + µn

∑
n∈N

Pmax
n

− η
∑
n∈N

∑
m∈Mn

pcn,m −
∑
m∈M

λmRreqm , (15)

subject to the following constraints:∑
m∈Mc

n

xkn,m ≤ 1, 0 ≤ xkn,m ≤ 1, ∀k ∈ Jn, n ∈ N . (16)

Eqs. (15) and (16) can be considered as a classical linear
assignment problem. The solutions of xkn,m can either be
0 or 1. Therefore, we found that the optimal solution is binary
even after continuity relaxation on xkn,m. More specifically,
the allocation of x is only determined by 3k

n,m. Thus for any
subcarrier k ∈ Jn, xkn,m, wherem = argmaxm∈Mn{3

k
n,m,∀k ∈

Jn, n ∈ N }, is the best subcarrier allocation.

xkn,m =

{
1, m = argmaxm∈Mn{3

k
n,m,∀k ∈ Jn, n ∈ N };

0, otherwise.

(17)

The optimal values of λ∗ and µ∗ can be solved by using a
gradient descent method, i.e.

λι+1m =

[
λιm + κ

(
Rreqm (18)

−

∑
n∈Nm

∑
k∈Jn

xkn,mεnBn log(1+ 0
|gkn,m|

2pkn,m
BnN0

)

+ ,
µι+1n =

µιn + ν
 ∑
m∈Mn

∑
k∈Jn

xkn,mp
k
n,m − P

max
n

 , (19)

where ι stands for the iteration index, κ and ν are sufficiently
small positive step-sizes and [·]+ denotes the projection of
[·] onto the nonnegative orthant. It is shown in [25] that
the gradient descent method is guaranteed to converge to
the optimal Lagrange multiplier for some sufficiently small
step-size.

A. COMPUTATIONAL COMPLEXITY
At the Inner Loop of Algorithm 1, the subgradient method
is utilized to solve dual problem (13). In order to achieve
δ-optimality, i.e., |h(λ,µ) − h(λ∗,µ∗)| < δ, the number of
iterations is on the order of O(1/δ2) [26], which does not
depend on the number of variables. In each iteration, Eq. (17)
needs to be computed for Jn subcarriers. Because that there
are |Mn| UEs connected to AP n ∈ N , Eq. (17) needs to be
computed |Mn|·Jn times in each iteration. It can be easily seen
that the computational complexity for computing Eq. (17) is
O(|Mn|). In resource allocation of AP n ∈ N , the order of
|Mn|JnO(1/δ2) times is needed to compute Eq. (17), thus
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the computational complexity for resource allocation of AP
n ∈ N is O

(
Jn|Mn|

2(1/δ2)
)
. Considering that there are N

APs in the HetNet, the computational complexity of resource
allocation at the Inner Loop is

∑
n∈N O

(
Jn|Mn|

2(1/δ2)
)
.

At the Outer Loop, the order of O(1/ε2) iterations is needed
for achieving ε-optimality, i.e., |η − ηopt | < ε. Therefore,
the computational complexity of the optimal energy-efficient
resource allocation is

∑
n∈N O

(
Jn|Mn|

2(1/δ2)(1/ε2)
)
.

The analysis above shows that the optimal energy-efficient
resource allocation has a relatively high computational com-
plexity, it is suitable for the HetNet with high computing
capacity. However, if the resource allocation needs to be
realized in a short time window, such as 10 ms for LTE
system [13], the optimal energy-efficient resource allocation
is no longer applicable. For reducing the computational com-
plexity, we will develop a low-complexity algorithm in the
next section.

V. LOW COMPLEXITY SUBOPTIMAL RESOURCE
ALLOCATION
In this section, we solve the energy-efficient resource allo-
cation problem in two phases: the first is the minimum QoS
guaranteed resource allocation (MGRA) and the second is the
EE maximization resource allocation (EMRA). Next, we will
discuss the two phases in detail.

A. MINIMUM QoS GUARANTEED RESOURCE ALLOCATION
In this phase, we assume that each AP n maximum transmit
power Pmax

n is divided equally to its subcarriers k ∈ Jn,
and then each UE m is allocated its best subcarrier alter-
natively until the minimum UEs QoS constraint is guaran-
teed. In this case, the best subcarrier is defined as the one
that maximizes the rate rkn,m. Let J̃n,∀n ∈ N represent
the allocated subcarrier set for AP n to grantee the QoS
constraint. Let PQoSn ,∀n ∈ N represent the corresponding
power used for AP n, i.e. PQoSn =

∑
k∈J̃n

xkn,mP
max
n /Jn.

Intuitively, the equal power allocation is not the optimal
power allocation, and PQoSn is not the minimum required
power for satisfying the QoS constraint. Thus, we further
minimize the power allocation for given subcarrier sets J̃n,
∀n ∈ N .

min
∑
m∈M

∑
n∈Nm

∑
k∈J̃n

pkn,m (20)

subject to the following constraints:
C1 (UEs QoS constraint):∑

n∈Nm

∑
k∈J̃n

εnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
≥ Rreqm ,

∀ml ∈M.

C2 (Total power constraint):∑
m∈Mn

∑
k∈J̃n

pkn,m ≤ P
QoS
n , ∀n ∈ N ,

where PQoSn can be considered as the upper bound of AP n’s
transmit power.

It is not difficult to verify that problem (20) is convex
optimization, which can be solved via convex optimization
techniques, such as the interior point method and Lagrange
dual method [25].

After solving problem (20), we use RIn and P
I
n to represent

the current throughput and power consumption of AP n,
respectively. The remaining subcarriers are allocated to the
connected UEs in a greedy manner, i.e., the subcarrier which
has the highest channel gain is allocated to the correspond-
ing UE to maximize the network throughput. The subcarrier
set allocated in the greedy manner is represented as J̄n,
∀n ∈ N , then Jn = J̃n + J̄n.

B. EE MAXIMIZATION RESOURCE ALLOCATION
Intuitively, the constraints C1 and C2 are already guaranteed
in MGRA phase, therefore we do not consider these con-
straints again in the resource allocation of EMRA phase. For
a fixed subcarrier set J̄n, determined from MGRA phase,
we obtain the following EE maximization problem.

max

∑
n∈N

RIn +
∑
n∈N

∑
k∈J̄n

εnBn log
(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
∑
n∈N

PIn +
∑

m∈Mn

pcn,m +
∑
n∈N

∑
k∈J̄n

pkn,m

s.t.
∑
k∈J̄n

pkn,m ≤ P
max
n − PIn,∀n ∈ N , (21)

where the constraint shows that the sum of transmit power
on the subcarriers in set J̄n should be no larger than the
remaining maximum allowed transmit power of AP n.
From Eq. (21), we observe that the power allocation of

different APs are coupled in the objective function and
this coupling will certainly increase the complexity of the
EE maximization problem. The following lemma provides a
decoupling method which converts optimizing the system EE
into maximizing the minimum individual AP EE.
Lemma 3: The optimal EE of problem (21) defined as ηIIEE

is lower bounded by

min
n∈N

 max
pkn,m,k∈J̄n

RIn +
∑
k∈J̄n

εnBn log
(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
PIn +

∑
m∈Mn

pcn,m +
∑
k∈J̄n

pkn,m

.
Proof: Similar proof can be found in [27].

The lemma above enables us to split the joint and complex
optimization (21) into maximizing the individual EE of AP n.

max
RIn +

∑
k∈J̄n

εnBn log
(
1+ 0

|gkn,m|
2pkn,m

BnN0

)
PIn +

∑
m∈Mn

pcn,m +
∑

k∈J̄n
pkn,m

s.t.
∑
k∈J̄n

pkn,m ≤ P
max
n − PIn. (22)
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Intuitively, optimization problem (22) is a fractional pro-
gramming. However, using the transformation method in
Section IV may has a relatively high computational com-
plexity. In this subsection, we propose a two-lever algorithm.
At the inner loop, we solve a throughput maximization prob-
lem of AP n at the given total power Pn, where 0 ≤ Pn ≤
Pmax
n − PIn. At the outer loop, we solve the EE maximization

problem of power Pn. Next, we will discuss the two loops in
detail.

1) THROUGHPUT MAXIMIZATION
Given the total transmit power Pn, maximizing the individual
EE is equivalent to maximizing the AP throughput, i.e.,

max
∑
k∈J̄n

εnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)

s.t
∑
k∈J̄n

pkn,m ≤ Pn. (23)

Problem (23) is a concave optimization problem, and many
iteration algorithms, such as interior point method and
Lagrange dual method [25], can be used to solve it. However,
the iteration algorithm will increase the computational com-
plexity of the throughput maximization problem. Therefore,
wewill propose a low-complexity resource allocationmethod
in this subsection.

The Lagrange function of problem (23) is given as

L(p, β) =
∑
k∈J̄n

εnBn log

(
1+ 0

|gkn,m|
2pkn,m

BnN0

)

−β

∑
k∈J̄n

pkn,m − Pn

. (24)

By computing the derivation ∂L
∂pkn,m
= 0, we obtain the follow-

ing equation

pkn,m +
BnN0

0gkn,m
=
εnBn
β ln 2

. (25)

The right-hand-side of Eq. (25) is not related with the sub-
carrier indicator k , then, for any two subcarriers k1, k2 ∈ J̄n,
the following relationship can be derived

pk2n,m = pk1n,m +
BnN0

0

(
1

gk1n,m
−

1

gk2n,m

)
. (26)

Eq. (26) shows that as long as the transmit power on a
certain subcarrier is determined, the transmit powers on other
subcarriers can be computed. More specifically, the sum of
the transmit powers on these subcarriers is∑

k∈J̄n

pkn,m = 2npk1n,m +2n
BnN0

gk1n,m0
−

∑
k∈J̄n

BnN0

gkn,m0
, (27)

where 2n = |J̄n|.

The constraint in problem (23) shows that
∑

k∈J̄n
pkn,m ≤

Pn, then p
k1
n,m can be calculated as

pk1n,m ≤
1
2n

Pn +∑
k∈J̄n

BnN0

gkn,m0
−
2nBnN0

gk1n,m0

. (28)

Taking the upper bound of Eq. (28), we can compute the
transmit power on subcarrier k1. Then, by using Eq. (26),
we can compute the transmit powers of all the remaining
subcarriers in set J̄n. However, the computed transmit power
may be illegal value, such as pk1n,m < 0. For avoiding this
case, we firstly arrange the subcarriers as gk1n,m ≤ gk2n,m ≤
· · · ≤ g

k2n
n,m , then p

k1
n,m ≤ p

k2
n,m ≤ · · · ≤ p

k2n
n,m . Taking the upper

bound of Eq. (28), we compute pk1n,m as

pk1n,m =
1
2n

Pn +∑
k∈J̄n

BnN0

gkn,m0
−
2nBnN0

gk1n,m0

. (29)

If pk1n,m < 0, we set the transmit power of this subcarrier as 0,
remove it from J̄n and compute the transmit power on gk2n,m

pk2n,m =
1
2n

Pn+ ∑
k∈J̄n/k1

BnN0

gkn,m0
−

(2n − 1)BnN0

gk2n,m0

, (30)

until find that pkn,m ≥ 0. Afterwards, the transmit powers on
other subcarriers can be computed by Eq. (26).

Therefore, the throughput maximization problem can be
solved, and the optimal value can be considered as function
of Pn, we denote it by Rmax

n (Pn).

2) EE MAXIMIZATION
We define the individual EE of AP nwith respect to the given
total transmit power Pn as ηn(Pn) =

RIn+R
max
n (Pn)

PIn+Pn+
∑

ml∈Mn p
c
n,ml

.

Then, EE maximization problem (21) is reformulated as

ηmax
n = max

0≤Pn≤Pmax
n −PIn

ηn(Pn). (31)

The following lemma shows that ηn(Pn) is a quasiconcavity
function with respect to Pn.
Lemma 4: ηn(Pn) is a quasiconcavity function in total

transmit power Pn.
Proof: Please refer to Appendix A for the proof.

For any quasiconcavity function, there is always a unique
globally optimal solution [27]. Thus, we give the follow-
ing theorem to show the properties of the globally optimal
solution.
Theorem 1: If ηn(Pn) is a quasiconcavity function, there

exists a unique globally optimal solution for problem (31),
and ηn(Pn) is maximized at

1) Pn = 0, if dηn(Pn)
dPn

∣∣∣
Pn=0
≤ 0;

2) Pn = P∗n, where
dηn(Pn)
dPn

∣∣∣
Pn=P∗n

= 0, if dηn(Pn)dPn

∣∣∣
Pn=0
≥ 0

and dηn(Pn)
dPn

∣∣∣
Pn=Pmax

n −PIn
≤ 0;
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3) Pn = Pmax
n − PIn, if

dηn(Pn)
dPn

∣∣∣
Pn=Pmax

n −PIn
≥ 0,

where dηn(Pn)
dPn

=

Rmax
n (Pn)′(PIn+Pn+

∑
ml∈Mn

pcn,ml )−(R
I
n+R

max
n (Pn))

(PIn+Pn+
∑

ml∈Mn
pcn,ml )

2

and Rmax
n (Pn)′ =

dRmax
n (Pn)
dPn

.
According to Theorem 1, the EE maximization problem

(31) can be solved by a bisection algorithm. However, it is so
difficult to obtain Rmax

n (Pn)′ due to the fact that Rmax
n (Pn) can

not be expressed as an explicit function of Pn. For solving this
difficult, we give the following lemma.
Lemma 5: For any Pn > 0, the derivative of Rmax

n (Pn) is

Rmax
n (Pn)′ = max

k∈J̄n

εnBn0|gkn,ml |
2(

BnN0 + 0|gkn,ml |
2pkn,ml

)
ln 2

.

Proof: Please refer to Appendix B for the proof.
Then, the EEmaximization problem (31) can be effectively

solved by a bisection algorithm.
Finally, the framework of low-complexity suboptimal

resource allocation algorithm is given in Algorithm 2.

Algorithm 2 Low-Complexity Suboptimal Resource
Allocation

MGRA:
1) Divide APs’ maximum transmit power equally to

its subcarriers, and then allocate the best subcarrier
alternatively to the corresponding UEs until both the
minimumUEs QoS constraint and SLA contract con-
straint are guaranteed.

2) For given subcarrier set J̃n,∀n ∈ N , solve optimiza-
tion problem (20).

3) Greedily allocate APs’ remaining subcarriers to the
connected UEs.

EMRA:
1) For given subcarrier set J̄n and total transmit power

Pn, solve throughput maximization problem (23)
(Inner loop).

2) Solve EE maximization problem (31) with the
bisection-based method given inAlgorithm 3 (Outer
loop).

Algorithm 3 Bisection-Based Method
1) Initialize the lower and upper bound of transmit

power, Plown = 0 and Pupn = Pmax
n − PIn.

2) Calculate d = dηn(Pn)
dPn

, where Pn = (Plown + P
up
n )/2.

3) If d > 0, then update Plown = Pn. If d < 0, then
update Pupn = Pn.

C. COMPUTATIONAL COMPLEXITY
At theMGRA phase, the computational complexity is mainly
related to the iteration algorithm for solving problem (20).
If the δ-optimality wants to be achieved, the computational

FIGURE 2. Convergence results of EE under EEmax and SubEE algorithms.
Solid and dotted lines represent EEmax and SubEE algorithms
respectively. The minimum rate requirements of the four UEs are 20, 30,
25 and 18bits/s, respectively. The network efficiencies ε1 = 0.8 and
ε2 = 0.8. The circuit power parameters are taken as pc

n,m = 2,∀n ∈ N ,

ml ∈ M. The maximum transmit power of APs are Pmax
1 = Pmax

2 = 10W.

complexity of the subgradient algorithm is on the order
of O(1/δ2). At the outer loop of EMRA phase, bisection
method is used to obtain the optimal transmit power, whose
computational complexity is relatively low. If the required
accuracy is υV , the order of iteration is O(log2(1/υ)), where
V is the difference between upper bound and lower bound
of the initialized EE. At the inner loop of EMRA phase,
the computational complexity comes from computing the
transmit powers in Eqs. (29), (30) and (26), whose complexity
is O(2n). Thus, the computational complexity of EMRA
phase isO(2n log2(1/υ)). Together withMGRA phase, com-
putational complexity of suboptimal resource allocation is
O(1/δ2)+

∑
n∈N O(2n log2(1/υ)), which is much lower than

the optimal resource allocation.

VI. SIMULATION RESULTS
In this section, we present experiments to evaluate the per-
formance of the optimal energy-efficient resource alloca-
tion algorithm (EEmax) and the low complexity suboptimal
resource allocation algorithm (SubEE). In particular, we com-
pare our proposed designs to the throughput maximization
strategy (SRmax), which is widely used for the resource
allocation in wireless networks [10], [13], [14]. We note that
the SRmax problem is a convex optimization, which can be
solved efficiently by the standard subgradient method.

During the simulation, we use the HetNet having two
APs and four UEs in the network topology. For simplicity,
we assume that both the subcarrier spacing Bn and the power
spectral density of additive white Gaussian noise N0 are nor-
malized to unit [28]. We model the channel gain as Gaussian
random variables in [7] and [24]. The Shannon capacity gap
is 0.7. The other values will be specified in each numerical
experiment.

In the first experiment, we investigate the convergence
results of EEmax and SubEE algorithms in Fig. 2. In the
figure, TEEmax and TSubEE represent the elapsed time of

14598 VOLUME 6, 2018



R. Liu et al.: Energy-Efficient Resource Allocation

FIGURE 3. EE versus circuit power. The minimum rate requirements of the four UEs are 20, 30, 25 and 18bits/s, respectively. The
maximum transmit power of APs are Pmax

1 = Pmax
2 = 10W. (a) Network efficiencies ε1 = 0.8 and ε2 = 0.8. (b) Network

efficiencies ε1 = 0.9 and ε2 = 0.5.

FIGURE 4. EE and throughput versus maximum allowed transmit power. The minimum rate requirements of the four UEs are 20,
18, 22 and 18bits/s, respectively. The network efficiencies are ε1 = 0.8 and ε2 = 0.8. (a) EE versus maximum allowed transmit
power. (b) Throughput maximum allowed transmit power.

EEmax and SubEE algorithms respectively. The codes are
executed on a 64-bit Windows 7 operating system with AMD
Athlon II x4631 Quad-Core Processor, 4 Gbyte RAM. Obvi-
ously, SubEE algorithm is more computationally efficient
than EEmax algorithm. However, SubEE algorithm achieves
smaller system EE and individual AP EE than EEmax algo-
rithm, but with much lower complexity.

We test the EE versus circuit power under various resource
allocation algorithms in Fig. 3. The figure also plots the EE of
individual AP to investigate the effect of network efficiency.
We remark that the system EE of HetNet defined in this
paper is not equal to the sum of the EE of individual APs.
We observe that the difference in terms of EE of the two
APs is remarkable in Fig. 3 (b), which is the result of a
large difference in network efficiencies. The figure shows
that SubEE algorithm achieves smaller EE than EEmax algo-
rithm but larger than SRmax algorithm. We also observe that
EEmax and SubEE algorithms achieve remarkably higher

EE than SRmax algorithm when the circuit power is small.
As the circuit power increases, the EE of all algorithms in
comparison is reduced. This can be explained as follows.
If the circuit power is small, the main contributing term of
the denominator in Eq. (6) is the transmit power. As the rate
function is logarithmic function corresponding to transmit
power, the EEmax and SubEE algorithms utilize a small
transmit power to obtain the achievable EE. On the other
hand, if the circuit power is large, the main contributing term
of the denominator in Eq. (6) is the circuit power. Then,
maximizing EE is equivalent to maximizing the sum rate.
That is the why the EE of all algorithms in comparison is
reduced when the circuit power is large.

To further evaluate the impact of maximum allowed trans-
mit power of APs on EE and throughput performance,
Fig. 4 compares the EE and throughput performance of
different algorithms in terms of Pmax. In this experiment,
we set Pmax

1 = Pmax
2 = Pmax. When Pmax is small, the
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EE performance increases with the rising of Pmax for all algo-
rithms. Fig. 4 (a) even shows that SRmax algorithm achieves
the EE performance similar to EEmax and larger than SubEE
when Pmax is small. When Pmax

n is large, the EE performance
under EEmax and SubEE algorithms keeps stable, while the
one under SRmax algorithm drops rapidly. That is because
both EEmax and SubEE algorithms find the optimal max-
imum allowed transmit power for APs, which is probably
around 5-6w for EEmax algorithm and 7-8W for SubEE
algorithm, respectively. Therefore, the consumed transmit
powers under EEmax and SubEE algorithms are no longer
growth, even through the maximum allowed transmit power
increases. However, for maximizing the system throughput,
SRmax algorithm greedily consumes all of the allowed trans-
mit power, hence it incurs terrible EE performance. Fig. 4 (b)
shows that SRmax algorithm always achieves the maximum
throughput among all of the algorithms, and it increases
almost linearly with the rising of Pmax. However, the through-
put under EEmax and SubEE algorithms keeps stable when
the maximum allowed transmit power is larger than the cor-
responding optimal value. Therefore, the EE performance
under EEmax and SubEE algorithms keeps stable when
Pmax
n is large.

VII. CONCLUSIONS
In this paper, we investigated the energy-efficient resource
allocation problem for the HetNet with multi-homed UEs.
We formulated the resource optimization as a non-concave
EE maximization problem, which was converted by a frac-
tional programming theory into an MINO problem. Then,
we solved the MINO problem by using the continuity relax-
ation and Lagrange dual method. Afterwards, we developed
an optimal energy-efficient joint power and subcarrier allo-
cation algorithm. For reducing the computational complexity
of the resource allocation problem, we also proposed a two-
phase optimization method, which included the minimum
rate guaranteed resource allocation and the energy-efficient
resource allocation.We showed that the low-complexity algo-
rithm achieved the suboptimal EE with significantly lower
computational complexity compared with the optimal one.

APPENDIX A
PROOF OF LEMMA 4

Proof: Denote the superlevel set of ηn(Pn) as Sα =
{Pn|ηn(Pn) ≥ α,Pn ≥ 0}, where α is a positive value because
of the nonnegative characteristic of EE. The superlevel set Sα
can be also denoted as

{Pn|RIn+R
max
n (Pn)−αPIn−αPn−α

∑
ml∈Mn

pcn,ml ≥0,Pn≥0}

Intuitively, Rmax
n (Pn) is a strictly concave function in Pn, thus

there exist P1n ∈ Sα and P2n ∈ Sα satisfying

Rmax
n (τP1n + (1− τ )P2n) ≥ τR

max
n (P1n)+ (1− τ )Rmax

n (P2n).

There comes that

RIn + R
max
n (τP1n + (1− τ )P2n)− αP

I
n − α(τP

1
n + (1− τ )P2n)

−α
∑

ml∈Mn

pcn,ml ≥ R
I
n + τR

max
n (P1n)+ (1− τ )Rmax

n (P2n)

−αPIn − α(τP
1
n + (1− τ )P2n)− α

∑
ml∈Mn

pcn,ml

= (1− τ )(RIn + R
max
n (Pn)− αPIn − αPn − α

∑
ml∈Mn

pcn,ml )

+ τ (RIn + R
max
n (Pn)−αPIn−αPn−α

∑
ml∈Mn

pcn,ml )=0.

Thus, τP1n + (1 − τ )P2n ∈ Sα , and Sα is a convex set.
Hence, ηn(Pn) is a quasiconcavity function in total transmit
power Pn.

APPENDIX B
PROOF OF LEMMA 5

Proof: According to the definition of Rmax
n (Pn),

we obtain that

Rmax
n (Pn +1P)− Rmax

n (Pn)

= max
k∈J̄n

εnBn log

(
1+ 0

|gkn,ml |
2(pkn,ml +1P)

BnN0

)

− εnBn log

(
1+ 0

|gkn,ml |
2pkn,ml

BnN0

)
.

Using the equation of

Rmax
n (Pn)′ = lim

1P→0

Rmax
n (Pn +1P)− Rmax

n (Pn)
1P

,

we obtain

Rmax
n (Pn)′ = max

k∈J̄n

εnBn0|gkn,ml |
2(

BnN0 + 0|gkn,ml |
2pkn,ml

)
ln 2

.
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