
Received December 4, 2017, accepted January 30, 2018, date of publication February 27, 2018, date of current version April 23, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2810214

Fault-Tolerant Scheduling for Hybrid Real-Time
Tasks Based on CPB Model in Cloud
HAORAN HAN , WEIDONG BAO, XIAOMIN ZHU , (Member, IEEE),
XIAOSHENG FENG, AND WEN ZHOU
College of Systems Engineering, National University of Defense Technology, Changsha 410073, China

Corresponding author: Haoran Han (hanhaoran16@nudt.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61572511 and Grant 71702186 and in
part by the China Postdoctoral Science Foundation under Grant 2016M602960 and Grant 2017T100796.

ABSTRACT Clouds are becoming a very important platform for hybrid real-time tasks. To enhance
the reliability of cloud, fault tolerance of cloud becomes a critical issue. However, the complexities and
specialties of traditional fault-tolerant mechanisms cannot meet the fault-tolerant requirements of clouds.
To address this issue, we propose a novel fault-tolerant scheduling algorithm named ARCHER for hybrid
tasks in cloud. ARCHER has three significant characteristics: 1) it integrates the traditional primary/backup
model and checkpoint technology which can flexibly determine the execution time of the backup copies
of tasks, so it greatly enhances the resource utilization and produces more time slots to execute tasks as
many as possible; 2) it employs task classification mechanism to realize precise scheduling for different
types of tasks and virtual machines, which reduces the response time of clouds; and 3) it uses time slot
exploiting mechanism, task forward mechanism, and task transform mechanism to achieve high-resource
utilization. We conduct extensive simulations to evaluate the performance of ARCHER by comparing it
with four baseline algorithms. The experimental results show that ARCHER can effectively improve the
resource utilization of cloud while guaranteeing fault tolerance.

INDEX TERMS Clouds, fault-tolerant scheduling, hybrid real-time tasks, primary-backup model,
CPB model.

I. INTRODUCTION
Hybrid real-time tasks such as experimental analysis of
nuclear physics, emergency response and traffic stream
analysis, which includes data-intensive real-time tasks and
computing-intensive real-time tasks, become an important
part of scientific and industrial circles. And most of these
hybrid real-time tasks choose clouds as the computing plat-
form because clouds can provide on-demand resource base
on ‘‘pay-as-you-go’’model. In general, these hybrid real-time
tasks have high fault tolerance requirement, just like scientific
real-time tasks of astronomy, physics and biology. But we
need to note that the faults in clouds are inevitable. It was
reported that 8% of the virtual machines encounter errors at
run time [4]. Thereby, fault-tolerance becomes a challenge in
cloud computing [5].

Hybrid real-time tasks in scientific and industrial applica-
tions not only require the correctness of calculation results
but also require fault tolerance of these tasks [3]. For
instance, nuclear physics simulation is an application which
has strict fault tolerance requirements. Since nuclear physics

simulations’ calculation process is very complex and requires
high security, cloud needs to provide not only computing
resource but also high fault-tolerant capability. As a con-
sequence, fault tolerance becomes the most critical part in
cloud.

For hybrid real-time tasks on clouds, scheduling plays an
indispensable role to achieve fault tolerance. Fault-tolerant
scheduling is widely studied, and there are many researches
focus on fault-tolerant scheduling models [1], [2]. These
models can be grouped into several categories [6]. In terms
of time, important methods are resubmission and checkpoint.
When a task fails, it will be resubmitted or rolled back to
achieve fault tolerance. In terms of space, task duplication is
commonly used to realize fault tolerance [7]. There also exist
some researchers who investigate how to backup the data
needed for tasks, including local backup storage and online
backup storage, to achieve fast task-error recovery [8], [9].

We also need to note that hybrid real-time tasks in
these applications are not in one type. Different types
of tasks have different requirements for virtual machines.
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Computing-intensive tasks require powerful computing capa-
bilities of virtual machines. Similarly, data-intensive tasks
require high bandwidth. However clouds will have long
response time.

In order to achieve fault tolerance, most researches use
multiple copies technology [15]. Backup copy of tasks will
consume a large amount of cloud resources, which cause low
utilization of cloud resources [10].

To the best of our knowledge, most work about fault-
tolerant scheduling lacks consideration about multiple kinds
of tasks. And no work has been down on fault-tolerant
scheduling for hybrid real-time tasks in clouds. In this paper,
we propose a novel fault-tolerant scheduling model named
ARCHER for hybrid real-time tasks in clouds. The major
contributions of this paper are summarized as follows.
• We design a novel classification mechanism for hybrid
real-time tasks, which can divide tasks and virtual
machines into different groups. Classification mecha-
nism guarantees that different types of tasks can be
scheduled to appropriate virtual machines.

• We propose a CPB model which combine the advan-
tages of Checkpoint and traditional PB model. It not
only guarantees cloud’s fault tolerance, but also makes
full use of the idle time slots to improve the resource
utilization of cloud.

• We devise three mechanisms including time slot exploit-
ing mechanism, task forward and transform mechanism.
The time slot exploiting mechanism is able to efficiently
utilize time slots by scheduling suitable tasks to these
time slots. If there exist time slots that have no suitable
tasks, the task forward and transform mechanism will
be employed to forward task and take full advantage
of virtual machines in different groups by transforming
these tasks’ type.

• Based on the CPB model and these three mechanisms,
we propose a novel fault-tolerant scheduling algorithm
named ARCHER. ARCHER can precisely determine
the execution time of backup copies and provide more
resources for critical tasks, which greatly improves the
resource utilization of cloud while guaranteeing the fault
tolerance.

The remainder of this paper is organized as follows. The
next section reviews relatedwork. Section III gives the system
design of our study. Section IV introduces the proposed CPB
model with its advantages. The ARCHER algorithm and its
analysis are detailed in Section V. The performance evalu-
ation of ARCHER is presented in Section VI. Section VII
concludes this paper and give our future work.

II. RELATED WORK
Cloud experiences failures and performance fluctuations
when executing tasks, which requires high fault tolerance of
the cloud. Mao et al. proved the dynamic variability of virtual
machines in clouds, and showed that about 8% of the virtual
machines will fail when running [4]. Plankensteiner et al. [11]
summarized the reasons for the failure of clouds, and further

emphasized on the importance of fault tolerance in
clouds.

In large-scale distributed systems such as cloud, failures
are almost inevitable [12]. The failures can occur in varieties
of levels, e.g., hardware level, operating system level, soft-
ware level and so on [13]. In this paper, based on our fault-
tolerant scheduling algorithm ARCHER, clouds can tolerate
all the faults occur in one host. Generally, exist researches
can be mainly classified into two categories: fault tolerance
in time and fault tolerance in space.

Fault-tolerant researches in space are replicating multiple
copies of tasks on different virtual machines. When a copy
of a task fails, the other copies will execute in order to
complete this task before its deadline [6]. Themore copies are
replicated, the higher fault-tolerant capability of cloud. How-
ever, these backup copies will occupy cloud resources and
cause low resource utilization of cloud [14]. It is noteworthy
that two-copies replication (e.g., PB model) can realize the
balance between fault tolerance and resource utilization [16].
Dukowicz and Baumgardner [17] proposed an active-copy
PB model, that is, the primary copy and backup copy can be
executed at the same time to achieve fault tolerance. Qin et al.
studied the passive-copy of PB model, if the primary copy
fails, the backup copywill start to execute. In thismode, a task
must have enough slack time for backup copy execution [18].
Further, Amoon [19] combined the ideas of the aforemen-
tioned two studies, proposing an adaptive sub-copy algorithm
that is able to independently decide whether the backup copy
execute with primary copy or not according to the task’ slack
time.

On the aspect of time, the main researches are focus
on resubmission and checkpoint. Resubmission technology
resubmits tasks to cloud when tasks fail so that tasks will
be re-executed to meet the fault tolerance requirements.
Plankensteiner et al. [11] pointed out that resubmission is
a powerful fault-tolerant technology that can tolerate most
of fails. However, resubmission technology needs tasks to
have enough slack times, which allow tasks to execute several
times, and it will reduce the resource utilization of cloud.
Checkpoint is another wildly used technology to achieve fault
tolerance. Checkpoint allows system to periodically record
the running status of tasks and save it. If tasks fail, systemwill
automatically check the record point close to the fail point,
and then the task quickly rolls back to the record point and
begins to re-execute. Cao et al. [20] studied the checkpoint
technology in a heterogeneous cloud environment, which
ensures fault tolerance for tasks with longer execution time
and provides priority execution strategies for high priority
tasks. Compared with resubmission technology, checkpoint
technology requires less on task slack time. When a task
fails, it will execute from the record point. And checkpoint
technology improves the resource utilization of cloud.

In addition, Zhu et al. [21] proposed a fault-tolerant
scheduling algorithm FASTER based on PB model and
improved the resource utilization of cloud by using overlap-
ping technologies. Poola et al. [22] proposed a fault-tolerant
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FIGURE 1. Fault-tolerant system architecture.

algorithm which can intelligently select the virtual machine
for tasks. Zikos and Karatza [23] proposed a scheduling
model for computing-intensive tasks based on the DVFS
technology. Qian et al. [24] proposed a distributed frame-
work with high fault tolerance. Zhou et al. [25] suggested to
optimize the virtual machine locations to improve the fault
tolerance of cloud.

There are two main distinctions between existing
researches and ours. First, they do not consider hybrid real-
time tasks characteristics in applications, thesemodels cannot
schedule the different types of tasks to appropriate virtual
machines. Second, we combine the advantages of traditional
PB (primary/backup) model and checkpoint technology, and
propose a novel fault-tolerant model named ARCHER which
achieves the balance between fault tolerance and resource
utilization of cloud.

III. SYSTEM DESIGN
In this section, we give the system architecture, model and
definitions used throughout this paper. And we analyze
the classification model of hybrid tasks and VMs (virtual
machines).

The fault-tolerant system architecture is presented in Fig. 1.
The system engine is between users and cloud, it provides
fault-tolerant mechanisms for tasks and schedules them to
cloud.

In this paper, We use Directed Acyclic Graphs (DAGs)
to represent applications. When users submit applications to
cloud, task classifier will classify the tasks in DAGs, then the
backup copies of task will be created. Task scheduler will
schedule primary copies to VMs within the constraints, then
computes tasks’ makespan and DAGs’ slack time, schedules
backup copies according CPB model. The resource opti-
mizer realizes the efficient use of resources through time
slot exploiting mechanism, task forward mechanism and task
transform mechanism.

CPB model will be introduced in Section IV, which inte-
grates the advantages of traditional PB model and checkpoint
technology, and provides a better fault-tolerant mechanism
for tasks. Task scheduler and resource optimizer will be
introduced in Section V.

A. TASK MODEL
An application can be denoted as a DAG G = {V (t),E(e)},
where V represents a set of tasks V (t) = {t1, t2 . . . , tn}, and

tn represents the n-th subtask of V (t). E represents the edge
set among tasks,E(e) = {e1,2, e1,3 . . . , en−1,n} ⊂ V (t)×V (t)
defines the edge set among all tasks ei,j ⊂ ti×tj( i 6= j∩i < j).
Task ti can be described as ti = (idti , cti , dti , pti , ati , dlti ,

iti , oti ), where idti represents the identification of task, cti rep-
resents the amount of calculation [26], dti represents the
amount of task’ data, pti indicates the priority of a task ti,
ati is the arrival time of task ti, dlti represents the deadline of
task ti. iti is the input required by the task, and oti denotes the
output result after the execution of task ti.
ei,j in edge set E(e) represents the relation between

task ti and task tj. Edge ei,j can be described as ei,j =
(idei,j , cei,j , dei,j ), where idei,j represents the identification of
edge ei,j, cei,j represents the amount of data transferred
between tasks, and dei,j denotes the connection between
tasks ti and tj. dei,j is 0 if there is no relation between ti and tj,
otherwise, dei,j is 1.

B. RESOURCE MODEL
We define H = {h1, h2, . . . , hn} as a group of physical
machines, where node hi represents the i-th physical machine.
hi can be described as hi = (idhi , bhi , shi , phi ) where idhi
represents the ID of physical machine node hi. bhi represents
the bandwidth of hi, shi represents the storage capability of hi.
phi represents the CPU processing power of hi, which is
measured by MIPS.

Each physical machine hi can host multiple virtual
machines, denoted as hi = {vhi1, vhi2, . . . , vhin}, where
vhij represents the j-th virtual machine on the i-th physical

machine, vhij = {idvhij , bvhij , svhij , pvhij}. Note that
n∑
j=1

bvhij ≤

bhi ,
n∑
j=1

svhij ≤ shi .

After giving the task model and resource model. To facili-
tate the analysis, we propose some definitions needed in this
paper.
Definition 1: Data Transmission Time (DTT): The time

required to download all the data which are needed to execute
a task. It depends on the amount of data and the transmission
speed.

DTT (tj) = dtj/ts(st, h(tj))+ oP(ti)/ts(h(ti), h(tj)), (1)

where dtj is the data needed for task tj, ts(st, h(tj)) is the data
transmission speed, oP(ti) is the result of task tj’s parent task,
and ts(h(ti), h(tj)) is the transmission speed of data between
two hosts.
Definition 2: Task Processing Time (TPT): The time to

execute a task.

TPT (ti) = cti/pvhij , (2)

where cti is the amount of computation for task ti (using MI
as a measure), pvhij is the CPU capability of the j-th virtual
machine in the i-th host, which is measured byMIPS (Million
of Instructions Per Second).
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FIGURE 2. Task classification.

Definition 3: Task Slack Time (TST): The time between a
DAG’s finish time and its deadline.

TST (DAGi)=dlDAGi−max(
∑
i=X

(DTT (ti)+TPT (ti))), (3)

where X involves every task ID in DAG’ task chain which is
the longest tasks execution sequence.

C. CLASSIFICATION OF TASKS AND VIRTUAL MACHINES
In order to improve the accuracy of task scheduling in this
paper, we devise the task and virtual machine classification
mechanism that improves resource utilization of cloud and
reduces task execute time while guaranteeing fault tolerance.
After classification, the task scheduler can accurately sched-
ule tasks to virtual machines.

1) THE CLASSIFICATION OF TASKS
When tasks are submitted to a cloud, the task classifier
will firstly divide these tasks into three types: computing-
intensive tasks (CIT), data-intensive tasks (DIT) and balanced
tasks (BT).

The classification of tasks is mainly based on the data
transmission time and task processing time. As shown
in Fig. 2, we choose 9 types of representative tasks and
extract the quartiles of their DTT and TPT . We can clearly
see that tasks t3, t5, and t8 are the balanced tasks, whose
DTT and TPT are similar. t1, t4, and t7 are the data-
intensive tasks, whose DTT are much larger than TPT . t2, t6,
and t9 are the computing-intensive tasks, whose DTT are
smaller TPT .

2) THE CLASSIFICATION OF VIRTUAL MACHINE
The classification of virtual machines is similar to tasks.
According to the data transmission speed (bandwidth) and
CPU processing capability of virtual machines, the virtual
machine can be divided into the following types: 1) DT virtual
machines whose data transmission speed is higher than CPU
manipulating ability. 2) CM virtual machines whose data
transmission speed is lower than CPU manipulating ability.
3) Balanced virtual machines whose data transmission speed
and CPU manipulating ability are balanced.

FIGURE 3. Schematic diagram of critical tasks.

3) THE DIVISION OF CRITICAL TASK
In DAGs, there are some tasks whose makespans are longer
than DAGs’ slack time. So those tasks cannot execute two
times before deadlines.Whether those tasks can be completed
before their deadlines become the key to cloud.

Critical tasks are the tasks whose makespans are longer
than DAGs’ slack time, TM (ti) = DTT (ti) + TPT (ti) >
TST (DAG). As shown in Fig. 3, critical tasks can be divided
into two types: independent critical tasks and dependent crit-
ical tasks.

As shown in Fig. 3, dl(DAG) − TM (t17) = 20 =
TST (DAG) < TM (t17), task t17 is an independent critical
task. The Fig. 3 also shows the dependent key tasks in DAG.

If TST (DAG) = dl(DAG)−
17,12,21,9∑

i=X
(DTT (ti)+ TPT (ti)) =

25, t6, t12 and t21 are dependent critical tasks in this case.

IV. FAULT-TOLERANT SCHEDULING MODEL
In this paper, we assume that at most one host fails at one time
instant. Based on this hypothesis, we propose a novel fault-
tolerant schedulingmodel CPB that combines theCheckpoint
technology with traditional Primary/Backup (PB) model for
hybrid tasks.

We divide the tasks scheduling of CPB model into two
cases, according to tasks’ makespan and its slack time. Then
we give the general constraints of CPB model, we also ana-
lyze the detailed constraints of task scheduling according to
the number of tasks in DAG.

Compared with the traditional fault-tolerant scheduling
model, CPB model can control the execution times of backup
copies and record this point. CPB model not only reduces
consume of cloud resource but also creates more time slots
for unscheduled tasks. Tasks scheduling in CPB model can
be divided into two cases according to the tasks’ makespans
and task slack times.

A. WHEN TM(ti ) > TST (ti ) IN CPB MODEL
Fig. 4 shows the case TM (ti) > TST (ti). TM (ti) is task ti’s
makespan, and TM (ti) = DTT (ti) + TPT (ti). Task ti’s slack
time is TST (ti) = dl(DAG)− (DTT (ti)+ TPT (ti)).
In traditional PB model, backup copy tBi will be executed

until its primary copy tPi completes. And primary copy tPj
will be scheduled after tBi . A large amount of resources are
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FIGURE 4. Examples of TM(ti ) > TST (ti ) in CPB model.

occupied by backup copies whose primary copies are exe-
cuted successfully. Importantly, these resources have not been
effectively utilized.

Fig. 4 shows the same situation in CPB model. We can
divide this situation into two cases. As shown in Fig. 4(a),
backup copy tBi will only execute AET (Advance Execution
Time) time, AET (ti) = TM (ti) − TST (ti), and then will be
recorded as a point. The resource AR (Available Resource),
which is occupied by backup copy in traditional PB model,
becomes available in CPB model. So CPB model can take
full use of the occupied resources in traditional PB model.
If primary copy tPj satisfies Constraint 4 (we will explicate
it on section 4.3.2), it will be scheduled forward. Primary
copy tPj will start execute behind of tPi ’s finish time. There
also exists an available time slot TS = TST (ti)− DT , where
DT is the system delay time. In this case, if primary copy tPi
fails in T1, backup copy tBi will execute and tPj will be re-
scheduled to original position. If primary copy tPi fails in T2,
tPj will be recorded and the backup copy tBi will execute from
the recorded point. If tPj does not satisfy Constraint 4, CPB
model will find a unscheduled task which can complete in
this time slot, and schedules it.

Fig. 4(b) shows the case that the next task is backup copy tBj
in CPB model. In this case, tBj cannot execute forward, and
CPB model will schedule a primary copy tPk to the time slot.
If primary copy tPi fails in T1, tPk will be re-scheduled to
other VM and backup copy tBi will execute to achieve fault
tolerance. If primary copy tPi fails in T2, task tPk will be
recorded and tPi will execute.

B. WHEN TM(ti ) < TST (ti ) IN CPB MODEL
Fig. 5 shows the case that TM (ti) ≤ TST (ti).

As shown in Fig. 5(a), compared with traditional
PB model, in CPB model backup copy tBi will be scheduled
after tPi ’ finish time and will be recorded as a point by
employing checkpoint technology. There exist a time slot
TS1, CPB model will find a task that can complete in TS1,
and schedule it to this time slot. Primary copy tPj will execute
forward if it satisfies Constraint 4, or CPB model will find
a task that can complete in TS2, and schedule it to TS2.
If primary copy fails, tPj will be re-scheduled to other VM,
and backup copy tBi will execute.
Fig. 5(b) shows the case that the next task is backup

copy tBj . Since backup copy tBj does not need to execute
forward. CPB model will find an appropriate unscheduled
task tPm and schedule it to this time slot. If primary copy tPi
fails, tPm will be re-scheduled to other VM, and backup copy
tBi will execute to achieve fault tolerance. As we presume
that at most one host fails at the same time, according to
Constraint 5 (we will explicate it on section 4.3.2). If primary
copy tPi fails, primary copy tPj will execute successfully,
and tBj will not execute so tBi will have enough execution
time.

C. FAULT-TOLERANT SCHEDULING CONSTRAINTS
FOR CPB MODEL
We analyze the constraints of tasks scheduling including
primary and backup copies in CPB model to achieve fault
tolerance and high resource utilization. In order to facilitate
the subsequent analysis, we firstly introduce the definitions
and basic constraints.
Definition 4: Earliest Start Time (EST): The earliest start

time of task ti depends on the performances of virtualmachine
where task ti is scheduled to and ti’s parent tasks’ parameters.
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FIGURE 5. Examples of TM(ti ) ≤ TST (ti ) in CPB model.

The earliest start time of primary copy tPi is:

est(tpi ) = min{eft(tk )+ SD(vm(t
p
i ))

+DTT (tpi )− TF(vm(t
p
i ))}, (4)

and if the virtual machine vm(tPi ) of primary copy tPi is failed,
the earliest start time of backup copy tBi is:

est(tBi ) = min{TFT (tPi )+ SD(vm(t
B
i ))+ DTT (t

B
i )}, (5)

where eft(tk ) is the earliest finish time of ti’s parent task tk ;
If task ti has no parent task, eft(tk ) = 0; TFT (tPi ) is the fail
time of the primary copy tPi , and SD(vm(t

B
i )) is the delay of

virtual machine vm(tBi ). TF(vm(t
P
i )) is the primary copy tPi ’s

forward time if there exists an available time slot before tPi ,
if not, TF(vm(tBi )) = 0.
Definition 5: Earliest Finish Time (EFT): The earliest fin-

ish time of task ti is defined as follows:

eft(ti) = min{est(ti)+ TPT (ti)}, (6)

where est(ti) is the earliest start time of task ti and TPT (ti) is
the processing time of ti.

Now, we analyze the basic constraints for CPB model.
Constraint 1: Primary copy tPi and backup copy tBi of task

ti cannot be scheduled to the same host hi.
If primary copy tPi and backup copy tBi are scheduled to

the same node hi, when hi fails, primary copy tPi and backup
copy tBi will fail at the same time, so the system will not be
fault tolerant.

Based on Constraint 1, according to the characteristics of
CPBmodel, we analyze the scheduling constraints for DAGs.

FIGURE 6. Examples of common task in one task DAG scheduling
constraints.

1) CONSTRAINTS FOR DAG WITH ONE TASK
In this paper, we use Directed Acyclic Graphs (DAGs) to
represent applications. There are some applications which
have only one task, such as traffic stream analysis. We divide
this situation into two cases.
Case 1: Task ti is a critical task in an one-task DAG,

Fig. 4 shows an example of this case.
Constraint 2: In this case, backup copy tBi ’s earliest start

time needs to meet est(tpi ) < est(tBi ) < eft(tPi ).
As shown in Fig. 4, task ti is a critical task satisfying

TM (ti) > TST (ti). If primary copy tPi fails and backup copy
tBi ’s earliest start time est(tBi ) > eft(tPi ), there is no enough
time to execute tBi successfully before its deadline, it must
ensure that tBi ’s earliest start time satisfies est(tBi ) < eft(tPi ).
In order to make effective use of resources of cloud, tBi ’s
earliest start time must satisfy est(tpi ) < est(tBi ).
Case 2: Task ti is a task in an one-task DAG, Fig. 6 shows

the example of this case.
Constraint 3: In this case, backup copy tBi ’s earliest start

time needs to satisfy eft(tPi ) < est(tBi ).
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FIGURE 7. Examples of serial dependent task scheduling constraints.

Since TM (ti) < TST (ti), backup copy tBi will be recorded
as a point to enhance resource utilization of cloud. As shown
in Fig. 6, if tBi ’s earliest start time eft(tPi ) > est(tBi ) and
primary copy tPi fails, backup copy tBi will execute from
the record point to achieve fault tolerance. And if primary
copy tPj is scheduled behind tBi , t

P
j will be recorded until

backup copy tBi completes, tPj may not complete before its

deadline. So backup copy tBi ’s earliest start time needs to
satisfy eft(tPi ) < est(tBi ).

2) CONSTRAINTS FOR DAGs WITH DEPENDENT TASKS
The constraints of task scheduling in DAGs with depen-
dent tasks are complicated. It not only needs to meet one
task DAGs’ scheduling constraints, but also needs to meet
other scheduling constraints. Dependent tasks in DAGs can
be divided into serial tasks and parallel tasks. In order to
facilitate analysis, we introduce serial tasks and parallel tasks
at first.

Serial tasks are those tasks that consist of parent tasks and
children tasks in a DAG, e.g., t17, t26, t21, and t9 in Fig. 3.
Parallel tasks are the tasks in different tasks chains,
e.g., t26, t12, and t6 in Fig. 3.
Case 1: Task ti and task tj are serial tasks, and task ti is the

parent task of task tj.
Constraint 4: Primary copies of task ti and task tj cannot be

scheduled to the same host. Task ti’ primary copy and backup
copy need to satisfy eft(tPi ) < est(tPj ), eft(t

B
i ) < est(tBj ).

As shown in Fig. 7, ti is the parent task of tj, when primary
copies of ti and tj are scheduled to the same host hl . If hl fails,
tBi and tBj will execute to ensure the finish of DAG. In CPB
model, the execution time of backup copy is determined by
the slack time of DAG. As shown in Fig. 7, task ti is not
a critical task, so tBi is recorded by checkpoint technology,
tj is a critical task and tBj will be recorded after executing
TM (tj) − TST . Since the execution time of a backup copy is
determined by the slack time of DAG. So after tBi completes,
the slack time of DAG has been used. If tBj needs to execute
after tBi , there is no enough slack time.
Case 2: Task ti and task tj are parallel tasks in DAG.
Constraint 5: If primary copies tPi and tPj are scheduled to

the same host, backup copies tBi and tBj cannot be scheduled
to the same VM.

As shown in Fig. 8, if primary copies tPi , t
P
j are scheduled

to the same host and these backup copies tBi , t
B
j are also

FIGURE 8. Examples of parallel dependent task scheduling constraints.

scheduled to the same VM. When host h1 fails, backup copy
tBi and tBj will execute at the same time, and this will lead to
time conflict.

V. FAULT-TOLERANT SCHEDULING ALGORITHM ARCHER
Based on the CPB model and aforementioned constraints,
we propose a novel fault-tolerant scheduling algorithm for
hybrid real-time tasks named ARCHER. ARCHER can be
divided into two parts: one is task fault-tolerant scheduling
based on CPB model, and the other is resource utilization
improvement.

A. DAG FAULT-TOLERANT SCHEDULING
When users submit applications to cloud, all applications will
be formed as DAGs, and hybrid real-time tasks in these DAGs
will be scheduled to VMs.

Algorithm 1 Tasks Scheduling Algorithm

1 Classify all available virtual machines and tasks in
DAG;

2 Monitor all virtual machines and DAG’deadline;
3 missTask← ∅;
4 while the task ti ∈ T not been scheduled do
5 success←schedulingPrimary(tPi );
6 success←schedulingBackup(tBi );
7 if !success then
8 if !success then
9 if there exit a task tk , tk ∈ P(ti)&tk ∈

scheduedSuccess then
10 if there exits a task tj, tj ∈ c(ti) then
11 c(ti) ∪ ti ∈ missTask;

12 else
13 ti ∈ missTask;

14 else
15 tk ∈ missTask;

16 Recycle all the reserved resources;
17 Re-calculate related parameters;
18 Re-scheduling the task ∈missTask;

The scheduling algorithm ARCHER firstly classifies vir-
tual machines and tasks, monitors the deadlines of all tasks
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in DAGs. When the primary copy or backup copy of task
ti fails, it judges whether the task has parent tasks and children
tasks or not. If ti’s parent tasks are scheduled successfully,
ti and its children tasks will be reclaimed (see Lines 4-12).
The system will reclaim all the resources allocated to the
tasks, recalculate the relevant parameters, and reschedule the
tasks (see Lines 13-15).

ARCHERminimizes the waste of resources caused by task
scheduling and decreases system response time. Considering
that task scheduling is a NP-complete problem in real system,
we use the heuristic algorithm to solve this problem.

we will show classification mechanism, primary copies
pre-scheduling algorithm and backup copies pre-scheduling
used in tasks scheduling algorithm.

1) TASKS AND VIRTUAL MACHINES CLASSIFY
After receiving DAGs submitted by users, ARCHER will
classify all the tasks and available virtual machines, to ensure
that tasks can accurately match with virtual machines.
Algorithm 2 gives the pseudocode for task classification.

The first line calculates the data transmission timeDTT (ti)
and the task processing time TPT (ti).

DTT (ti) = cti/ts(st, h(ti))+ rP(ti)/ts(h(ti), h(tj)), (7)

TPT (ti) = cti/pvhij . (8)

Tasks’ data transmission time DTT and processing time
TPT will be sorted, and system will take out the quartiles,
DTT (Q1,Q2,Q3) and TPT (Q1,Q2,Q3). Tasks are classified
according to the quartiles of DTT and TPT , and are divided
into three types BT, CIT, and DIT (see Lines 2-12). Then,
algorithm scans all tasks, puts the tasks that do not have
parent tasks in TDAG(S) and puts tasks that do not have
children tasks in TDAG(E) (see Lines 14-23). The classifi-
cation method of virtual machines is similar to tasks, and the
available virtual machines are divided into three types.

By employing classification algorithm, tasks and vir-
tual machines are grouped in different types, which pro-
vides the basis for accurately matching tasks to virtual
machines. It improves resource utilization of cloud and
decrease response time.

2) PRIMARY COPY PRE-SCHEDULE
In order to ensure that all tasks can successfully complete
before their deadlines, ARCHERwill minimize the execution
time of backup copy to provide more resources for tasks.
Algorithm 3 shows the detailed process of pre-scheduling of
the primary copy.

Algorithm 3 scans tasks and available virtual machines
in different groups (see Lines 1-3). Based on Constraint 4,
algorithm sorts tasks and matches them with virtual
machine vkl , and calculates the earliest finish time eftPikl

.

The primary copy tPi of task ti will be scheduled to the
virtual machine vkl that has the earliest finish time eftPi (see
Lines 4-13) to ensure that DAGs can be completed in the
earliest time. After all the tasks in the TDAG(s) are scheduled,

Algorithm 2 Tasks and Virtual Machines Classification

1 Statistics of all tasks’ data transmission time (DTT) and
task Processing time (TPT);

2 Sorting DTT and TPT then find out quartiles of them;
3 missTask← ∅;
4 for ti ∈ T do
5 if DTT (ti) > DTT (Q1)&TPT (ti) > TPT (Q1) then
6 T (Bt)← ti;

7 if DTT (ti) > DTT (Q1)&TPT (ti) < TPT (Q2) then
8 T (DIt)← ti;

9 if DTT (ti) < DTT (Q2)&TPT (ti) < TPT (Q2) then
10 T (CIt)← ti;

11 else
12 T (Bt)← ti;
13 Return T (BT )&T (CIT )&T (DIT );

14 Classify virtual machines by its compute capacity and
bandwidth;

15 Sorting all the tasks belong to T (BT )T (CIT )T (DIT );
16 while !all tasks ta ∈ T have been scanned do
17 for ta ∈ T do
18 if ta have ea,b satisfies dea,b > 0 then
19 TDAG← TDAG ∪ {ta};
20 for ti ∈ TDAG do
21 if ti have ea,b satisfies dei,j > 0&&ti

have not ek,i then
22 TDAG(S)← TDAG ∩ {ti};

23 if tm have em,n satisfies dem,n > 0&&tn
have not en,p then

24 TDAG(E)← TDAG ∩ {tm};

25 else
26 TDAG(T )← TDAG ∩ {ti};

27 Return all task sets:T (Bt), T (CIt), T (DIt), TDAG(S),
TDAG(E), TDAG(T );

tasks in TDAG(T ) will be scheduled to virtual machines and
calculate eftPjmn (see Lines 14-22). Finally, Algorithm 3 checks

whether each DAG can be completed before its deadline.
If not, the task forward and transform mechanism will be
employed (see Lines 23-28).

Through primary copy pre-scheduling, it will not only
ensure the completion of tasks, but also improve the utiliza-
tion of resources.

3) BACKUP COPY PRE-SCHEDULE
The scheduling of backup copies has more constraints than
primary copies. However, the scheduling of backup copy has
a strong connection with primary copy, so ARCHER will
schedule backup copy according to the scheduling of primary
copy. Algorithm 4 gives the pseudocode for backup copies
scheduling.
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Algorithm 3 Primary Copy (tPi ) Schedule

1 Sorting all the tasks DAG belong to
T (BT )T (CIT )T (DIT );

2 Search and sort all the hosts ∈ Ha which are available;
3 Hp

available←top α% available hosts ∈ Ha;
4 missTask← ∅;
5 while !all task∈ TDAG(s) or independent task have
been scheduled do

6 According to the sorting task out the host hk and
task ti from different groups;

7 if hk ∈ H
p
available satisfies t

p′

i s scheduling
constraints of Constraint1 and Constraint4 then

8 for vkl in hk ’VmList do
9 Calculate the earliest finish time eftPikl based

on Eq.(6),Definition2;
10 if vkl have the earliest finish time of

vkl’VmList then
11 Pre-Schedule tpi to vkl ;
12 Update the Havailable and TDAG(s);
13 Return eftPikl ;

14 while !all task∈ TDAG(T ) have been scheduled do
15 for vmn in hm’VmList do
16 Calculate the earliest start time estPjmn based on

Eq.(4),Definition1;
17 estPjmn = eftPikl

+ DTT (tpj )+ SD;

18 eftPjmn = estPjmn + TPT (t
p
j )+ SD;

19 if vmn have the earliest finish time of hm’VmList
then

20 Pre-Schedule tpj to vmn;
21 Update the Havailable and TDAG(T );
22 Return eftPjmn ;

23 for task tm ∈ TDAG(E) do
24 if eftPmxy >deadline(TDAG(ti)) then
25 Using the Task Forward Mechanism;

26 else
27 Schedule all tasks ti ∈ TDAG;
28 Calculate task slack time TST (ti) based on

Definition3;

29 Return estPjmn , eft
P
jmn

, TST (ti);
30 Return true;

Similar to Algorithm 3, Algorithm 4 scans and finds avail-
able virtual machines after the primary copy’ the earliest
start time estPimn (see Lines 2-3). Then Algorithm 4 finds the
virtual machine that has the earliest finish time eftBikl , and

pre-schedule tBi on this virtual machine vkl (see Lines 4-9).
Finally it calculates task makespan TM (tBikl ) of backup copy

Algorithm 4 Backup Copy Scheduling

1 while !all tBi ∈ TDAG or independent task tBi have been
scheduled do

2 Search and sort all the hosts∈ Ha which after eftPimn
are available;

3 HB
available←top β% available hosts ∈ Ha;

4 According to the sorting take out the host hk and
tasks tBi from different groups;

5 if hk ∈ H
B
available satisfies t

B′
i s scheduling

constraints of Contraint1, Contraint3 and
Contraint4 then

6 for vkl ∈ hk do
7 Calculate the earliest finish time eftBikl based

on Eq.(6),Definition6;
8 if vkl have the earliest finish time then
9 Pre-Schedule tBi to vkl ;

10 Update the HB
available and TDAG;

11 Calculate data transmission time(DTT )
based on Definition1;

12 Calculate task process time(TPT ) based
on Definition2;

13 TM (tBikl ) = DTT (tBi )+ TPT (t
B
i );

14 if TM (tBikl ) > TST (ti) then
15 Task tBikl will be scheduled based on

constraints for critical tasks in CPB
model;

16 else
17 Task tBikl will be scheduled based on

constraints for common tasks in
CPB model;

18 Task tBikl will be executed based on CPB
model;

and compares it with the task slack time calculated in
Algorithm 3, task tBikl will execute according to CPB model
(see Lines 11-17).

B. RESOURCE UTILIZATION IMPROVEMENT
In order to effectively utilize time slots which are created
by CPB model, we design time slot exploiting mechanism
and task forward and transform mechanism to improve the
resource utilization of cloud.

1) TIME SLOT EXPLOITING MECHANISM
By employingCPBmodel, ARCHER can providemore avail-
able time slots. Efficient use of those time slots can greatly
improve resource utilization of cloudwhile guaranteeing fault
tolerance. Algorithm 5 is the pseudocode for the time slot
exploiting mechanism.

After primary copies are pre-scheduled, some DAGs can-
not complete before their deadlines. In this case, the tasks
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Algorithm 5 Time Slot Exploiting Mechanism

1 T Savailable←the time slots which are available;
2 Tinsert ←Sort tasks which can use time slot by critical
degree;

3 while !all time slot in Tavailable have been scheduled do
4 for task ti ∈ Tinsert do
5 if time slot’VM vkl satisfies ti’s scheduling

constraints then
6 Calculate the earliest start time estti based

on Eq.(4), Definition4;
7 estti = DTT (ti)+ SD;
8 eftti = estti + TPT (ti);
9 if eftti < ti’deadline then

10 Schedule ti to vkl ;
11 Calculate the surplus time slot STS;
12 STS = TS − eftti + estti ;
13 Add surplus time slot to T Savailable;
14 else
15 Use task transform mechanism;
16 Re-calculate the earliest finish time

eftti ;
17 if eftti < ti’deadline then
18 Schedule ti to vkl ;
19 Calculate the surplus time slot

STS;
20 Add surplus time slot to

T Savailable;

21 else
22 Break;

in a DAG will be re-scheduled and critical tasks will be
scheduled to available time slots to solve this problem. Before
scheduling critical tasks into time slots, it is necessary to
know whether the time slot satisfies the constraints for fault
tolerance. The time slot exploiting mechanism will calcu-
late whether ef tti < dlti . If it satisfies the constraints,
Algorithm 5 will schedule ti to vkl , calculates the remain-
ing resources in this time slot, and adds it to T Savailable (see
Lines 5-13). If ef tti > dlti , Algorithm 5 will employ task
transform mechanism.

2) TASK FORWARD AND TRANSFORM MECHANISM
Task forward and transform mechanism will improve
resource utilization of cloud while guaranteeing fault toler-
ance. Task forward mechanism will be employed to advance
the execution of tasks if there exist available time slots
and tasks satisfy the constraints. Task transform mecha-
nism focuses on the transformation of different task types to
shorten critical tasks’ makespan.

As shown in Algorithm 6, if primary copy tPi fails, and
the next task is a primary copy tPj that meets Constraint 4,

Algorithm 6 Task Forward and Transform Mechanism

1 while !all task ti complete successful do
2 if task ti’primary copy fails then
3 Recycle all the reserved resources of tPi ;
4 if following task tj is primary copy and satisfies

constraint4 then
5 Task tj has been processed forward;
6 Re-Calculate task tj’earliest start time;
7 estj = eftPi + TR(t

P
i )+ DTT (tj);

8 eftj = estj + TPT (tj);

9 else
10 Use time slot exploiting mechanism;

11 if task ti’primary copy complete successful then
12 Recycle all the reserved resources of tPi ;
13 Process as primary copy fails;

14 while !all task ti can be processed in its type of virtual
machines do

15 if VM vkl processing the CIT task ti then
16 Choose DIT critical task tj;
17 Calculate DTT (tj) while ti be processed;
18 if task tj’earliest finish time eftj < deadline then
19 Allocation ti to ti;

20 else
21 Download the next task tj’data;
22 Refresh estj and eftj;

tPj will execute forward. If the next task is a backup copy,

it will be recorded as a point by using checkpoint technology,
ARCHER will find a task that can complete in this time
slot and schedule it to this time slot (see Lines 3-11). The
task transform mechanism can transformDIT tasks to simple
compute tasks or reduce CIT tasks’ complexity. If there is a
tight time slot behind aCIT task or aDIT task, and ARCHER
cannot find an available task, task transform mechanism will
be employed. For the CIT task ti, ARCHER will use its
compute time to download a DIT task tj’s data. When the
data download completes, ti will be transformed to a sim-
ply BT task. For the DIT task, ARCHER will use its data
transmission time to compute a CIT task (see Lines 16-21).
Task transform mechanism can also be used to reduce system
response time for a critical task.

VI. PERFORMANCE EVALUATION
In order to verify the performance of the proposed
ARCHER, extensive simulation experiments were
conducted. We compare ARCHER with Non-Resource-
Utilization-ARCHER (NRUARCHER), Non-CPB-Model-
ARCHER (NCMARCHER), to verify the effectiveness of
task classification, CPB model and resource utilization
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FIGURE 9. Performance impact of task count.

improvement. Also, we compare ARCHER with improved
classical First-Fit (IFirst-Fit) algorithm [27] and improved
FESTAL (IFESTAL) algorithm [21]. The main differences
between ARCHER and other algorithms are as follows:
• NRUARCHER lacks resource utilization improvement
compared with ARCHER, and the comparison of
NRUARCHER can verify the effectiveness of resource
utilization improvement mechanism.

• NCMARCHER employs traditional PB model com-
pared with ARCHER. It cannot flexibly adjust the exe-
cution time of backup copies. The comparison with
NCMARCHER can verify the superiorities of the CPB
model.

• IFirst-Fit algorithm is an improved classic First-Fit algo-
rithm. IFirst-Fit gives priority to schedule tasks to the
nearest hosts (the nearest neighbor scheduling mecha-
nism). The comparison between ARCHER and IFirst-
Fit is used to verify the fault tolerance and resource
utilization of ARCHER.

• IFESTAL algorithm is an improved fault-tolerant
scheduling algorithm for real-time scientific workflows.

The following three metrics are used to verify the perfor-
mance of these algorithms.
• Guarantee Ratio (GR): The percentage of DAGs that
successfully complete before their deadlines.

• Task Complete Time (TCT): The time consumed by
cloud to complete all DAGs.

• Host Consume (HC): The ratio of active hosts’ number
over the number of completed tasks. It represents the
resource consumption of each task.

We choose Cloudsim as a simulation platform, which is
widely used in academia and industry, and conduct experi-
ments. CloudSim is able to provide cloud environment under
almost all the necessary testing interface, thus it is a suitable
platform to verify the algorithms. The detailed parameters are
as follows:

Hosts’ processing capacities are randomly selected
from 1000 MIPS, 2000 MIPS, 3500 MIPS, 4000 MIPS
(Million of Instructions Per Second), and the bandwidths are
1 Gbps, 2 Gbps or 5 Gbps. The virtual machines’ processing

TABLE 1. Parameters of experimental variable.

capacities are randomly selected form 250 MIPS, 500 MIPS,
750 MIPS, to 1000 MIPS, respectively. The bandwidth are
500Mbps, 1000Mbps, 1300Mbps. The arrival times of tasks
are set as the Poisson distribution to simulate the real users
who submit applications.

In order to verify the performance of algorithms under
different parameters, we change task count, task size and
initialize host count while the other parameters are fixed.
Table 1 shows the values of the parameters.

A. THE IMPACT OF TASK COUNT
In this section, we test the performances of the five algorithms
with the change of task count from 5000-40000.

In Fig. 9(a), it can be seen that with the increase of
task count, ARCHER, NRUARCHER and NCMARCHER
maintain a high guarantee ratio (more than 95%). This is
because those algorithms can continue to search for appro-
priate virtual machines and schedule tasks to them for high
guarantee ratio. However, NCMARCHER does not employ
CPB model, the high guarantee ratios are achieved by con-
suming a large amount of resources as Fig. 9(b) demonstrates.
As shown in Fig. 9(a), the guarantee ratios of IFirst-Fit and
IFESTAL are obviously lower than other three algorithms
because the nearest neighbor schedulingmechanism of IFirst-
Fit brings excessive tasks for hosts with increase of task
count, which causes that the finish time of many tasks is
later than their deadlines. IFESTAL employs task overlap
mechanism, I-AEAP (improved as early as possible) strategy
and I-ALAP (improved as late as possible) strategy to have a
higher utilization of resources. But with the increase of task
count, the complexity of task scheduling is increased, causing
conflicts between scheduled tasks, so the guarantee ratio of
IFESTAL is low.
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FIGURE 10. Performance impact of task size.

As shown in Fig. 9(b), task complete time of these five
algorithms increases with the task count increases but TCTs
of NCMARCHER and IFirst-Fit are significantly higher than
other algorithms. Because NCMARCHER does not employ
CPB model, it cannot make batter decisions on backup
copies’ execution time. IFirst-Fit cannot make full use of
virtual machines’ idle resources and cannot control the execu-
tion time of backup copies with the nearest neighbor schedul-
ing mechanism, thus their TCTs are higher than others. TCT
of IFESTAL is lower than ARCHER, there are two reasons.
The first one is that IFESTAL uses task overlap mechanism,
and another one is that IFESTAL’ GR is much lower, a large
number of tasks cannot complete, thus the actual TCT of
IFESTAL will not be lower than ARCHER.

Fig. 9(c) shows the change of HC with the increase of task
count. We can find that HC is significant reduced and drop to
a lower level with the increase of task count.With the increase
of task count, ARCHER’ HC is lower than NRUARCHER
and NCMARCHER. HC for IFirst-Fit is always at a low
level because IFirst-Fit is more likely to schedule tasks to
the nearest hosts. HC of IFESTAL is higher than other algo-
rithms because with the increase of task count, IFESTAL will
increase host number to schedule tasks.

B. PERFORMANCE IMPACT OF TASK SIZE
In this subsection, we verify the performance of algorithms
with the change of task size. The results of experiment are
shown in Fig. 10.

It can be seen from Fig. 10(a) that the GR of each algorithm
decreases with the increase of task size. Due to the increase
of task size, each DAG’s slack time significantly reduces.
If a task’ primary copy fails, its backup copy does not have
enough time to execute successfully. We can also observe
that with the increase of task size, ARCHER, NRUARCHER
and NCMARCHER have higher GRs than other two algo-
rithms. However, the GR of ARCHER is significantly higher
than NRUARCHER, since NRUARCHER dose not employ
resource utilization improvement mechanism, so it cannot
make full use of time slot. Since TM of tasks increases, a lot
of tasks cannot complete before their deadlines by IFirst-
Fit, so the GR of IFirst-Fit is low. When task size increases,

because IFESTAL uses PBmodel, backup copies will take up
a large amount of resource. IFESTAL cannot find appropriate
virtual machines to schedule tasks, the only way is to start
new hosts and virtual machines. However, since the start up
of hosts and virtual machines needs some time, tasks that have
tight slack time cannot complete before their deadlines, so the
GR of IFESTAL is low.

As shown in Fig. 10(b), TCT increases with the increase
of tasks size. Compared with ARCHER and NRUARCHER,
since NCMARCHER employs traditional PB model, it needs
to consume a large amount of resources to guarantee sys-
tem fault tolerance. The TCT of NCMARCHER is signifi-
cantly higher than other two algorithms. The trend of IFirst-
Fit’ TCT is irregular, it increases first and then decreases.
With the increase of task size, TCT of IFirst-Fit increases,
which is an inevitable trend. However, due to IFirst-Fit’
nearest neighbor scheduling mechanism, it is not able to
flexibly adjust resources. When the critical value of task
size is reached, the GR of IFirst-Fit will be substantially
reduced, TCT of IFirst-Fit will also reduce. For IFESTAL,
its overlapping mechanisms reduces task completion time,
but it should be noted that its GR is low. As shown
in Fig. 10(c), IFESTAL’ lower TCT needs to consume more
hosts.

We can see from Fig. 10(c) that with the increase of task
size, Host Consumes of algorithms continue to rise except
IFirst-Fit. In those four algorithms, IFESTAL’ HC increases
quickly. This is because with the increase of tasks size,
IFESTAL cannot maximize the use of existing resource, so it
must add new hosts to satisfy task scheduling requirements.
HCs of ARCHER, NCMARCHER, NRUARCHER are sim-
ilar at beginning, but with the increase of tasks size, HC
for NRUARCHER is significantly higher than ARCHER,
because NRUARCHER adds more hosts to schedule tasks.
HC of IFirst-Fit algorithm is at a low level, which is related
to IFirst-Fit that likely schedules tasks to the nearest hosts,
and maintains a lower level of HC.

C. PERFORMANCE IMPACT OF HOST COUNT
In this subsection, we analyze the impact of initialize host
count on performance of each algorithm. The count of
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FIGURE 11. Performance impact of host count.

initialize host (available hosts when the tasks arrive) grad-
ually increases from 190 to 400, and the results of the exper-
iments are shown in Fig. 11.

Fig. 11(a) shows the effectiveness of initial host count
on GR. It can be seen from the figure that the guarantee ratios
of all algorithms increase steadily with the increase of initial
host count except IFirst-Fit. This is because with the increase
of initial host count, more virtual machines are available to
ARCHER, tasks that have tight slack time can be executed
on time, so tasks can be successfully completed. In those
four algorithms except IFirst-Fit, it is clear that the GR of
ARCHER is the highest, although GRs of NRUARCHER
and NCMARCHER are close to ARCHER, their resource
utilizations are low (see Fig. 11(b)). For IFirst-Fit, the count
of hosts has little impact on guarantee ratio due to its nearest
neighbor scheduling mechanism.

As shown in Fig. 11(b), the increase of initial host count
has little impact on task complete time. Since various param-
eters of tasks are not changed, the time required to complete
tasks is not reduced. It can be clearly seen from Fig. 11(b)
that the task complete time of NCMARCHER and IFirst-Fit
are much higher than other algorithms. For NCMARCHER,
it cannot control backup copies’ execution. For IFirst-Fit,
because its nearest neighbor scheduling mechanism, it causes
hosts to have large number of tasks and tasks cannot be
executed on time. Among of ARCHER, NRUARCHER and
IFESTAL, it is clear that the IFESTAL algorithm has the
earliest task complete time because it consumes a large
amount of host resources and has lower guarantee ratio
(see Figs. 11(a)(c)).

Fig. 11(c) shows the impact of initial host count on HC.
It can be seen that with the increase of initial host count,
HC of those algorithms increases except IFirst-Fit. Because
ARCHER, NCMARCHER, NRUARCHER and IFESTAL
schedule tasks tomore hosts to improve guarantee ratio. Since
IFirst-Fit tends to schedule tasks to the nearest hosts, so there
is no obvious changes in HC. HC of IFESTAL is higher than
other algorithms, especially, under the condition of fewer
hosts number. This is because IFESTAL prefers to add new
hosts and virtual machines to meet the requirements of tasks.

VII. CONCLUSIONS AND FUTURE WORK
This paper investigates the problem of fault-tolerant schedul-
ing for hybrid tasks in cloud.We establish a new fault-tolerant
scheduling model, CPB, and propose a dynamic scheduling
algorithm, ARCHER. The goal of this paper is to improve
resource utilization of cloud while guaranteeing its fault tol-
erance. Through classification of tasks and virtual machines,
tasks can be accurately matched to virtual machines in
cloud. CPB model provides more available time slots thus
the resource utilize of system is improved while guarantee-
ing fault tolerance. In order to verify the performance of
ARCHER, we conduct extensive experiments and compare
our algorithmwith four baseline algorithms: NCMARCHER,
NRUARCHER, IFirst-Fit and IFESTAL. The comparison
results show that ARCHER is superior to others.

In our future research, we will extend our CPB model to
tolerate multiple hosts’ fails. A multiple of data storage meth-
ods will be considered to tolerate data corruption. We will
also develop a prediction model, and analyze hosts system
log to schedule tasks more accurately.
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