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ABSTRACT Principal subspace analysis (PSA) and minor subspace analysis (MSA) are considered two
robust instruments in many fields. The dual purpose algorithm is capable of solving the PSA and MSA by
simply switching the sign of one algorithm. Until today, there have been few dual purpose algorithms that
are able to find their corresponding cost functions. In this paper, a novel unified cost function (NUCF) is
proposed that possesses a global maximum, which is achieved only in the case where the weight matrix
encompasses the desired principal or minor subspace. With the use of the gradient ascent method in
the NUCF, we propose a novel dual purpose algorithm, which possesses lower computational complexity
when compared with some existing algorithms. Numerical simulations and real applications illustrate that
the proposed dual purpose algorithm is capable of tracking the desired subspace, and it converges faster than
some similar types of algorithms.

INDEX TERMS Novel unified cost function, principal subspace analysis, minor subspace analysis, dual
purpose algorithm.

I. INTRODUCTION
Principal subspace analysis (PSA) and minor subspace anal-
ysis (MSA) perform essential functions in numerous signal
processing applications. For instance, PSA has been imple-
mented in machine learning [1], face recognition .[2] and
direction of arrival (DOA) estimation [3]. Likewise, MSA has
been implemented in array signal processing [4], radio fre-
quency interference (RFI) mitigation [5], total least squares
(TLS) [6], and parameter estimation [7]. Recently, the neural
network based PSA and MSA algorithms have garnered sig-
nificant attention. When compared to conventional algebraic
methodologies such as singular value decomposition (SVD)
and eigenvalue decomposition (EVD), the benefits offered
by neural network algorithms are that they are capable of
estimating the covariance matrix from sample signals and
tracking non-stationary distributions [8]. Large numbers of
algorithms have been reported with respect to PSA [9]–[11]
and MSA [12]–[15].

Dual purpose algorithms have capabilities for PSA and
MSA through simply switching the sign in the same algo-
rithm [16]. Thus, they have emerged as one of the hot research
topics in this field. When compared to other PSA or MSA
algorithms, dual purpose algorithms offer numerous benefits,
including lower computation complexity and lower hardware

costs [17]. Tianping [16] proposed the first dual purpose
learning rule using neural networks. Following this inno-
vative work, numerous dual purpose algorithms have been
proposed with respect to both PSA and MSA, such as Hasan
algorithm [18], Peng algorithm [19] and the stable data pro-
jection method (SDPM) algorithm [7]. Nevertheless, every
algorithm stated above is proposed on the basis of heuristic
reasoning. Furthermore, it is difficult to assess their matching
cost functions. In [20], a unified information criterion (UIC)
was proposed and a dual purpose algorithm (UIC algorithm)
was developed. However, simulation experiments discovered
that the UIC algorithm is limited in fast tracking. Since the
convergence speed is an important property and the cost func-
tion can affect the convergence speed of neural network algo-
rithms [21], it is valuable to develop new cost functions for
dual purpose algorithms. In this paper, through the addition of
a penalty term to the Rayleigh Quotient, we propose a novel
unified cost function (NUCF) and analyze its landscape.

The main contributions of this paper are 1) A novel unified
cost function is proposed for PSA andMSA. 2) The landscape
of NUCF is analyzed using the stable point method, which
provides a new way to analyze cost functions. 3) A dual
purpose algorithm is derived, which has fast convergence
speed and low computation complexity.
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The rest of this paper is organized as follows. In Section II,
we propose a novel cost function and analyze its landscape
with the use of the stationary point method. In Section III,
a dual purpose algorithm is proposed based on the proposed
cost function and we also compare it with some prevalent
existing algorithms. Section IV presents a numerical sim-
ulation and two application experiments. We conclude this
research in Section V.

II. NOVEL COST FUNCTION AND ITS LANDSCAPE
A. NEURAL NETWORK MODEL AND NOVEL
COST FUNCTION
Consider the following linear neural network framework

y(k) = WT (k)x(k), k = 0, 1, · · · (1)

where W (k) ∈ Rn×r indicates the weight matrix of this
neuron. x(k) ∈ Rn×1 and y(k) ∈ Rr×1 are the input and out-
put of this model, respectively. The key aim of dual purpose
algorithms is the construction of an appropriate learning rule
with respect to the weight matrix for the purpose of tracking
the principal subspace (PS) or the minor subspace (MS) of
input signals [9].

Inspired by the Rayleigh Quotient, we propose following
dual purpose cost function:

W∗ = arg max
W∈�

JNUCF (W )

JNUCF (W ) = ±
1
2
tr[(WTRW )(WTW )−1]

+
1
2
tr[ln(WTW )−WTW ] (2)

where R = E[x(k)xT (k)] is the autocorrelation matrix of
the input signal. Clearly, R is a symmetric positive definite
matrix. When ‘‘+’’ is used, (2) indicates a PSA cost function.
When ‘‘−’’ is utilized, (2) suggests an MSA cost function.
Clearly, (2) is an unconstraint optimization function. With
respect to this function, we pay attention to the following
three questions.

a) Does the maximum of this function exist?
b) What is the relationship between the desired subspace

and the maximum?
c) Is there any other local maximum?
The answers to the above questions will be provided in the

subsequent subsections. These answers merely accomplish
the landscape analysis of this function.

B. LANDSCAPE OF NUCF
Suppose that the eigenvalues and eigenvectors of R are stated
as λi and ui (i = 1, 2, · · · , n), respectively. Then arrange the
eigenvectors in two different manners.

In the first manner, the arrangement of the orthonormal
eigenvectors u1,u2, · · · ,un is performed in a way that their
respective eigenvalues have a non-ascending sequence such
as λ1 ≥ λ2 ≥ · · · ≥ λn. Subject to this scenario, R can be
decomposed as:

R = U3UT
= U131UT

1 + U232UT
2 (3)

where U = [U1,U2] and

3 =

[
31

32

]
(4)

In (3) and (4), U1 = [u1,u2, · · · ,ur ] is constituted by
the first r eigenvectors and U2 = [ur+1,ur+2, · · · ,un] is
constituted by the remaining n − r eigenvectors. 31 and 32
represent two diagonal matrices whose diagonal elements are
the respective matching eigenvalues. Therefore, (3) is merely
the EVD of R.
In the second manner, the arrangement of the eigenval-

ues is carried out in an arbitrary sequence, but not the
non-ascending sequence. Subject to the second scenario,
the decomposition of R can be implemented in the following
formula

R = U′3
′(U ′)T = Ur3rUT

r + Un−r3n−rUT
n−r (5)

where U ′ = [Ur ,Un−r ] and

3′ =

[
3r

3n−r

]
(6)

In (5) and (6), Ur houses r arbitrary eigenvectors and
Un−r possesses the residual n− r eigenvectors.3r and3n−r
indicate the two diagonal matrices. Moreover, their diagonal
elements constitute their respective eigenvalues.

Given W in domain � = {W |0 < WTRW <∞,

WTW 6= 0}, we assessed the following PSA cost function

W∗ = arg max
W∈�

E1(W )

E1(W ) =
1
2
tr[(WTRW )(WTW )−1]

+
1
2
tr[ln(WTW )−WTW ] (7)

Theorem 1: W indicates a stationary point of E1(W ) in �
ifW = UrQ, where Q is an arbitrary orthogonal matrix.

Proof: From (7), we observe that in the region �,
E1(W ) is a differentiable function since WTRW and WTW
are two positive definite matrices. Through the matrix dif-
ferential method, we can conveniently attain the gradient of
E1(W ) with respect toW , which is provided by

∇E1(W ) =
[
RW −W {WTW }−1WTRW

]
×{WTW }−1 +

[
W {WTW }−1 −W

]
(8)

IfW = UrQ, we then have

∇E1(W )|W=UrQ

=

[
RUrQ− UrQ

{
QTUT

r UrQ
}−1

QTUT
r RUrQ

]
×

{
QTUT

r UrQ
}−1
+

[
UrQ

{
QTUT

r UrQ
}−1
− UrQ

]
=

[
RUrQ− UrQQTUT

r RUrQ
]
+ [UrQ− UrQ]

= 0 (9)
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Moreover, through the use of ∇E1(W ) = 0, ifW indicates
a stationary point of E1(W ), we have[
RW −W

{
WTW

}−1
WTRW

] {
WTW

}−1
= −

[
W
{
WTW

}−1
−W

]
(10)

Multiplying both sides of (10) by WT , we can attain
that

WTW = Ir (11)

As suggested by (11), we can observe that the columns of
W are orthonormal at the stationary point of E1(W ). Suppose
that the EVD ofWTRW can be written as

WTRW =
(
Q′′
)T
3′′rQ

′′ (12)

where Q′′ is an arbitrary orthogonal matrix. By substi-
tuting (12) into (10) and simplifying the statement, we
have

RU ′′r = U ′′r3
′′
r (13)

where U ′′r = WQ′′T and it satisfies (U ′′r )
TU ′′r = Ir . Since

3′′r indicates a diagonal matrix and U ′′r denotes a column full
rank matrix, we can conclude thatUr and3r are respectively
equivalent to U ′′r and 3′′r . In other words, at the stationary
point of E1(W ), we haveW = UrQ.
This accomplishes the proof.
Theorem 2: In �, E1(W ) possesses just one global maxi-

mum, which is attained if and only ifW = U1Q, whereU1 =

[u1,u2, · · · ,ur ]. Every other stationary point is merely a
saddle point of E1(W ). Moreover, at this global maximum,
we have

E1(W ) =
1
2

r∑
i=1

λi −
r
2

(14)

Proof: From Theorem 1, we can observe that any W =
UrQ constitutes a stationary point of E1(W ). Thus, we denote
Ur = [ui1 ,ui2 , · · · ,uir ], where i1, i2, · · · , ir indicates the
indexes of these eigenvectors. Furthermore, the set, which
comprises these indexes, is denoted as L1 = {i1, i2, · · · , ir }.
In the same manner, the indexes of the vectors in U1 =

[u1,u2, · · · ,ur ] constitute another set, which is denoted as
L2 = {1, 2, · · · , r}.
In respect of any L1(L1 6= L2), there must exist a j

that caters to j ∈ L1 and j /∈ L2. Thereafter, we replace
the component uj of the matrix Ur using uj + εuk , where
k ∈ L2, k /∈ L1 and ∀ε > 0. Suppose that Ũr indi-
cates the resulting new matrix, where W̃ = ŨrQ. Then we
have

Ũr = Ur + εM (15)

where M = [0, · · · ,uk , · · · ,0] is an n × r matrix. The
jth column of M is uk and the other columns are null
vectors.

Substituting (15) into (7), we have

E1(W )|W=ŨrQ

=
1
2
tr
[(
QT Ũ

T
r RŨrQ

) (
QT Ũ

T
r ŨrQ

)−1]
+
1
2
tr
[
ln(QT Ũ

T
r ŨrQ)−

(
QT Ũ

T
r
QUrQ

)]
=

1
2
tr
[(
QT (Ur + εM)TR(Ur + εM)Q

)
×

(
QT (Ur + εM)T (Ur + εM)Q

)−1]
+
1
2
tr
[
ln
(
QT (Ur + εM)T (Ur + εM)Q

)
−

(
QT (Ur + εM)T (Ur + εM)Q

)]
=

1
2
tr
[(
QT3rQ+ ε2QTMTRMQ

)
×

(
QT (I + ε2MTM)Q

)−1]
+
1
2
tr
[
ln
(
QT (I + ε2MTM)Q

)
−

(
QT (I + ε2MTM)Q

)]
(16)

By usingMTM = diag (0, 0, · · · , 1, · · · 0), we have(
QT (I + ε2MTM)Q

)−1
= I + QTC1Q (17)

where C1 = diag(0, 0, · · · , 1
/
(1+ ε2)− 1, · · · 0).

Denote C2 = MTRM = diag(0, · · · , λk , · · · 0) and
substitute it into (7). Subsequently, we have

E1(W )|W=ŨrQ

=
1
2
tr
[(
QT3rQ+ ε2QTC2Q

) (
I + QTC1Q

)]
+
1
2
tr
[
ln
(
QT (Ur + εM)T (Ur + εM)Q

)
−

(
QT (Ur + εM)T (Ur + εM)Q

)]
=

1
2
tr
[
QT3rQ+ ε2QTC2Q

+QT3rQQTC1Q+ ε2QTC2C1Q
]

+
1
2
tr
[
ln
(
QT (I + ε2MTM)Q

)
−

(
QT (I + ε2MTM)Q

)]
(18)

In the same way, we obtain

E1(W )|W=UrQ

=
1
2
tr
[(
QTUT

r RUrQ
) (

QTUT
r UrQ

)−1]
+
1
2
tr
[
ln(QTUT

r UrQ)−
(
QTUT

r UrQ
)]

=
1
2
tr
[
QT3rQ

]
+

1
2
tr [ln(I)− I] (19)
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Through the use of (16) and (19), we obtain

E1(W )|W=ŨrQ
− E1(W )|W=UrQ

=
1
2
tr
[
QT3rQ+ ε2QTC2Q+ QT3rQQTC1Q

+ε2QTC2C1Q
]
−

1
2
tr
[
QT3rQ

]
−

1
2
tr [ln(I)− I]

+
1
2
tr
[
ln
(
QT (I + ε2MTM)Q

)
−

(
QT (I + ε2MTM)Q

)]
=

1
2
tr
[
ε2C2 +3rC1 + ε

2C2C1

]
+
1
2
tr
[
ln
(
I + ε2MTM

)
− ε2MTM

]
=

1
2

[
ε2λk −

ε2

1+ ε2
λj −

ε4

1+ ε2
λk + ln

(
1+ ε2

)
− ε2

]
=

1
2

(
λk − λj

)
ε2 + o(ε2) (20)

It is easily observed that, along the direction of compo-
nent uk , E1(W ) is expected to rise. Ûr indicates the resulting
new matrix that is obtained through the replacement of the
jth column of Ur with uj + εuj such that

Ûr = Ur + εP (21)

where P = [0, · · · ,uj, · · · ,0] indicates an n × r matrix.
The jth column of P is uj and the other columns are all null
vectors.

IfW = ÛrQ, by substituting (21) into (7), we obtain

E1(W )|W=ÛrQ

=
1
2
tr
[(
QT Û

T
r RÛrQ

) (
QT Û

T
r ÛrQ

)−1]
+
1
2
tr
[
ln(QT Û

T
r ÛrQ)−

(
QT Û

T
r ÛrQ

)]
=

1
2
tr
[(
QT (Ur + εP)TR(Ur + εP)Q

)
×

(
QT (Ur + εP)T (Ur + εP)Q

)−1]
+
1
2
tr
[
ln
(
QT (Ur + εP)T (Ur + εP)Q

)
−

(
QT (Ur + εP)T (Ur + εP)Q

)]
=

1
2
tr
[(
QT3rQ+ 2εQTC ′′2Q+ ε

2QTC ′′2Q
)

×

(
QT (I + 2εC ′1 + ε

2C ′1)Q
)−1]

+
1
2
tr
[
ln
(
QT (I + 2εC ′1 + ε

2C ′1)Q
)

−

(
QT (I + 2εC ′1 + ε

2C ′1)Q
)]

(22)

where C ′′2 = diag(0, · · · , λj, · · · 0) and C ′1 = diag
(0, · · · , 1, · · · 0). By using I + 2εC ′1 + ε2C ′ =

diag(1, · · · , 1+ 2ε + ε2, · · · , 1), we can obtain(
QT (I + 2εC ′1 + ε

2C ′1)Q
)−1
= I + QTC ′′1Q (23)

where C ′′1 = diag(0, · · · , 1
/
(1+ 2ε + ε2) − 1, · · · 0). Sub-

stituting (23) into (7), we obtain

E1(W )|W=ÛrQ
=

1
2
tr
[
QT3rQ+ 2εC ′′2 + ε

2C ′′2

+3rC ′′1 + 2εC ′′2C
′′

1 + ε
2C ′′2C

′′

1

]
+
1
2
tr
[
ln
(
I + 2εC ′1 + ε

2C ′1
)

−

(
I + 2εC ′1 + ε

2C ′1
)]

(24)

From (22) and (24), we obtain

E1(W )|W=ÛrQ
− E1(W )|W=UrQ

=
1
2
tr
[
QT3rQ+ 2εC ′′2 + ε

2C ′′2

+3rC ′′1 + 2εC ′′2C
′′

1 + ε
2C ′′2C

′′

1

]
−

1
2
tr
[
QT3rQ

]
+
1
2
tr
[
ln
(
I + 2εC ′1 + ε

2C ′1
)

−

(
I + 2εC ′1 + ε

2C ′1
)]
−

1
2
tr [ln(I)− I]

= 2ελj + ε2λj + (
1

1+ 2ε + ε2
− 1)λj

+ 2ε(
1

1+ 2ε + ε2
− 1)λj + ln (1+ ε)2

+ ε2(
1

1+ 2ε + ε2
− 1)λj + 2ε + ε2

= −2ε2 + o(ε2) (25)

From (25), we observe that E1(W ) is expected to decrease
along the direction of uj. It implies that the stationary point
W = U ′rQ is not stable. Since E1(W ) is expected to
decrease whenever any constituent of U ′r gets affected by
uk (1 ≤ k ≤ r), W = U1Q indicates the exclusive global
maximum. This suggests that E1(W ) possesses a global
maximum with no other local maximum. By substituting
W = U1Q into E1(W ), we obtain the global maximum,

E1(W ) =
1
2

r∑
i=1

λi −
r
2

(26)

This accomplishes the proof.
Adhering to the confirmed procedures in Theorems 1-2,

it appears quite convenient to analyze the landscape of the
following MSA cost function.

W∗ = arg max
W∈�

E2(W )

E2(W ) = −
1
2
tr[(WTRW )(WTW )−1]

+
1
2
tr[ln(WTW )−WTW ] (27)

Theorem 3 and Theorem 4 illustrate the landscape
of E2(W ). Since the proven procedure is very similar to that
of E1(W ), we do not include the derivation steps.
Theorem 3: W is a stationary point of E2(W ) in � if

W = U ′rQ, where Q represents an arbitrary orthogonal
matrix.
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Theorem 4: In �, E2(W ) possesses a global maximum,
which is obtainable if and only ifW = Ũ1Q, in which Ũ1 =

[un−r+1,un−r+2, · · · ,un]. Every other stationary point is a
saddle point of E2(W ). Furthermore, at this global maximum,
we have

E2(W ) = −
1
2

n∑
i=n−r+1

λi −
r
2

(28)

Theorem 1 and Theorem 2 suggest that E1(W ) possesses
a global maximum with no local ones. Therefore, iterative
approaches (such as the gradient method) can be utilized for
the purpose of searching for the global maximum of E1(W ).
The same kinds of arguments are applicable for E2(W ).

III. DUAL PURPOSE ALGORITHM AND COMPARISONS
A. DUAL PURPOSE ALGORITHM
The gradient of JNUCF (W ) is given by (8). By utilizing this
gradient as the iteration step size, we obtain the following
algorithm

W (t + 1) = W (t)± µ

[
RW (t)−

W (t)WT (t)RW (t)

WT (t)W (t)

]

×

{
WT (t)W (t)

}−1
+µ

[
W (t)

WT (t)W (t)
−W (t)

]
(29)

Discretizing (29) and substituting the instant estimation of
R = xkxTk into it, we obtain the following discrete algorithm:

W k+1=W k ± µ

[
xyTk −W k

(
WT

kW k

)−1
yky

T
k

](
WT

kW k

)−1
+µ

[
W k −W k

(
WT

kW k

)] (
WT

kW k

)−1
(30)

where 0 < µ ≤ 1 is the learning rate. If ‘‘+’’ is utilized, then
(30) indicates a PSA algorithm, and ‘‘−’’ (30) indicates an
MS tracking algorithm. Therefore, we denote equation (30)
as the NUCF algorithm.

B. REMARKS AND COMPARISONS
In this part, we provide some statements on the NUCF algo-
rithm and compare it to some other algorithms.
Remark 1: From [20], we know that the landscape of

UIC is analyzed by the similar matrix methodology. In this
paper, the landscape of NUCF is analyzed by the stable point
methodology, which provides us with another viewpoint of
the cost function. Moreover, this method also has general
applicability and can be used to analyze other cost functions.
Remark 2: From (7), we can conclude that the NUCF

are constituted by two terms. The first term is a Rayleigh
Quotient, which can guarantee that the algorithms converge to
the desired subspace (PS orMS). The second term is a penalty
term that impacts the attributes of the algorithms, such as
convergence speed. From [20], we see that the second term
of the UIC is a quadratic formula of the weight matrix, while
this part in the NUCF is a nonquadratic of the weight matrix.

According to [9], the nonquadratic term can greatly improve
the performance of neural network algorithms.
Remark 3: From (30), it is evident that the NUCF algo-

rithm introduces the mechanism for the purpose of adaptively
adjusting the step size at all steps. It emerges as quite apparent
when the subspace dimension is one andwTw is scalar. In this
scenario, the learning rate µ is a time varying step size
µk = µ

/
wTw rather than a fixed value µ as in the UIC

algorithm. In accordance with the research findings in [9],
this adaptive learning rate is able to extensively promote the
convergence speed of neural network algorithms.
Remark 4:The computation complexity of the NUCF algo-

rithm is 3nr2 + 4r3
/
3 + 4nr flops per update, which poses

to be the same as that of the UIC algorithm in [20]. It is
also cheaper than 8nr2 + o(nr2) of the algorithm in [22]
and 12nr2 + o(nr2) of the algorithm in [23]. Although the
NUCF algorithm has the same computational complexity as
the UIC algorithm, it has a faster convergence speed than
the UIC algorithm, which will be proven by the following
experiments.
Remark 5: Self stability (which studies the dynamic behav-

iors of the weight matrix norm) and global convergence
analysis (which researches the convergence regions of algo-
rithms) are two essential properties for neural network algo-
rithms. Through further analysis, it is easy to prove that
the NUIC algorithm is self-stabilizing and its convergence
domain is � =

{
W |0 < WTRW <∞,WTW 6= 0

}
. Since

the proof procedures are similar to those in [20], they are
omitted herein.

IV. NUMERICAL SIMULATIONS AND REAL
APPLICATIONS
In this part, we have developed three experiments to illustrate
the superiority of the NUCF algorithm. The first experi-
ment presents some contrasting observations with other algo-
rithms using numerical simulations. The second experiment
illustrates the applicability of the NUCF algorithm for the
DOA estimation. The last experiment applies the NUCF algo-
rithm to solve the linear system detection issue.

For the purpose of measuring the attributes of these algo-
rithms, we calculated the norm of the weight matrix

ρ(W k ) = ‖W k‖F (31)

and the deviation parameter [24]

dist(W k ) =

∥∥∥∥WT
kW k

[
diag

(
WT

kW k

)]−1
− Ir

∥∥∥∥
F

(32)

where diag(M) is a diagonal matrix and is obtained by setting
all the off-diagonal elements ofM to zero.

A. PS AND MS TRACKING
In this section, we compared the NUCF algorithm with
some other prevalent algorithms. With respect to PS tracking,
we compared the NUCF algorithm with the UIC [20] and
NIC algorithms [9]. The NUCF algorithm is compared to
both the UIC algorithm and the OJAm algorithm [24] for
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FIGURE 1. Norm curves for PS with µ = 0.2.

FIGURE 2. Deviation curves for PS with µ = 0.2.

MS tracking. The input signal is generated by xk = B · zk ,
whereB = (1

/
31)randn(31, 31) is generated in the sameway

as that in [24] and its elements obey Gaussian distribution.
zk ∈ R31×1 denotes the zero-mean white noise with the
variance σ 2

= 1. Thereafter, these three algorithms are
applied to track the PS or MS of this signal. The dimensions
of PS and MS are 16. For the purpose of making an appropri-
ate comparison, these algorithms use the same preliminary
weight matrix and the learning rate. The simulation findings
are presented in Fig. 1-Fig.4. These simulation results are
attained by averaging 100 independent experiments.

From Fig. 1, it is observable that after approximately
45 steps, the weight matrix norm tends to a constant. Fur-
thermore, the deviation curve in Fig. 2 trends to zero. As
suggested by these two figures, we can observe that the
NUCF algorithm is capable of tracking the PS of a signal.
Fig. 3 and Fig. 4 shed light on the simulation findings that are
attained when the NUCF algorithm is put to use as an MSA
algorithm. As suggested by these two figures, we confirm that
the NUCF algorithm can track the MS of a signal.

From both Fig. 1 and Fig. 2, it is also observable
that when it is utilized to track the PS of a signal, the

FIGURE 3. Norm curves for MS with µ = 0.05.

FIGURE 4. Deviation curves for MS with µ = 0.05.

NUCF possesses a quicker convergence speed than both the
NIC algorithm and the UIC algorithm for both the weight
matrix norm and deviation parameters. The speed benefits of
the NUCF algorithm are also apparent to us from Fig. 3 and
Fig. 4, where it serves as an MSA algorithm. To conclude,
as this experiment reveals, we prove that the NUCF algorithm
can track the PS and MS of an input signal and it has a faster
convergence speed than some existing algorithms.

B. DOA ESTIMATION
This experiment is a DOA estimation. It is designed to
examine the applicability of the NUCF algorithm in track-
ing the PS from signals. There are K narrow band signals
(S = [s1(t), s2(t), · · · , sK (t)]T ) that impinge on a homoge-
neous linear array having N antennas. The observed signals
on this array are stated as y(t) such that

y(t) = AS(t)+ n(t) (33)

where A = [a1, a2, · · · , aK ] indicates the n × K array
response matrix. Its column vector is

ak =
[
1, e−j2π f0

d sin θk
c , · · · , e−j2π f0

(N−1)d sin θk
c

]T
(34)
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FIGURE 5. DOA curves of three algorithms (80◦).

In the field of signal processing, ak is also stated as the
frequency vector. f0 is the carrier frequency, c is equal to
the speed of light (i.e. c = 3 × 108(m/s)), d is the length
between the two array antennas, θk is the direction angle
of the kthsignals and n(t) is the observed noise vector. The
DOA aims at estimating the direction angle from the observed
signals.

The ESPRIT method [25] (which is accomplished on the
basis of the PSA approach) is a popular approach for solving
the DOA problem. The measurement procedure is available
in [25] and we do not include it here. Suppose that two
incident signals impinge on an antenna array that has 13 units
from the directions of 40◦ and 80◦ . The observed noise
amounts are zero mean Gaussian noise, which have the vari-
ance σ 2

= 1. Moreover, the signal-to-noise ratio (SNR)
is 10dB. Thereafter, we apply the ESPRIT method to solve
the problem of estimating the direction angles.

All through the calculation of the ESPRIT method, the PS
tracking is accomplished by NUCF, UIC [20] and NIC [9],
respectively. Similar to the previous experiment, the same
primary parameters are utilized for these algorithms. We set
µ = 0.05. Moreover, the primary weight matrix is ran-
domly produced and its elements obey Gaussian distribu-
tion. The estimation results of these algorithms are presented
in Fig. 5 and Fig. 6.

From the two figures, it is observed that the NUCF algo-
rithm can estimate the direction angles from the observed
signals. When comparing the NUCF algorithm to the
other two algorithms, it is very easy to observe that the
NUCF algorithm possesses the fastest convergence speed
among the three PSA algorithms.

C. LINEAR SYSTEM IDENTIFICATION
In this experiment, the use of some MSA algorithms has
been made to solve the TLS problem. Considering the linear
system detection, the application of the TLS method can be
madewith respect to the parameter assessment of the adaptive
filters [26].

FIGURE 6. DOA curves of three algorithms (40◦).

The signal model of the adaptive filter is stated as follows.
Suppose that at time k , the input vector of the adaptive filter
is p̃(k) = p(k) + n1(k), where p(k) is the true input signal
and n1(k) represent the additive noise vector. The output of
this filter is given by q̃(k) = q(k) + n2(k), where n2(k) is
the additive output noise. Denote h(k) = [h1, h2, . . . , hn]T

as the estimation parameter vector of the adaptive filter,
then the representation of the filter output at time k can be
stated as y(k) = p̃T (k)h(k). The output error of this filter is
ε(k) = y(k)− q̃(k). The linear system identification estimates
the parameters of the adaptive filter from the observations of
both the input and the output.

To address this issue, let us denote z(k) = [p̃T (k), q̃(k)]T

and w(k) = [hT (k),−1]T . Then we have ε(k) = zT (k)w(k).
On the basis of the above derivation, estimation of the param-
eters of this adaptive filter can be transformed into minimiz-
ing the following equation:

J (k) =
w(k)TRw(k)
w(k)Tw(k)

=
E[ε(k)2]

‖w(k)‖22
(35)

where R = E{z(k)z(k)T } indicates the autocorrelation matrix
of z(k). Clearly, (35) is the Rayleigh Quotient of w(k). There-
fore, the minimum point of J (k) can be attained when w(k) is
equal to the MC of the vector sequence {z(k)}.
In this simulation, we use the OJAm [24], UIC [20] and

NUCF algorithms to identify this linear system. The param-
eters of this adaptive filter are given by:

h = [−0.3,−0.9, 0.8,−0.7, 0.6]T (36)

The unknown system is triggered by a zero-mean homo-
geneously allocated random white signal with its variance
equal to unity. The additive input noise n1(k) and output noise
n2(k) appear to be zero-mean white Gaussian noise with the
variance σ 2

= 0.01. The learning rate of the three algorithms
is set as µ = 0.1. Moreover, the preliminary weight vector
is produced in the same way as that in the above experiment.
For the purpose of manifesting the convergence speed of the

VOLUME 6, 2018 12891



D. Hai-Di et al.: Fast Dual Purpose Algorithm Based on NUCF

FIGURE 7. Convergence of the components.

FIGURE 8. Convergence curves of three algorithms.

three algorithms, we calculate the direction cosine (DC) at
every step, which is given by

DirectionCosine(k) =

∣∣hT (k)h∣∣
‖h(k)‖ ‖h‖

(37)

Fig. 7 illustrates the dynamic conduct of the constituents of
the weight vector h(k). As suggested by this figure, we can
conclude that the h(k) converges to the weight vector of the
linear system. Therefore, the NUCF algorithm can be used to
solve the linear system identification problem. Fig. 8 reveals
the DC curves of the three algorithms. As is evident in Fig. 8,
we can confirm again that the NUCF algorithm possesses
faster convergence speed when compared to the other two
algorithms for MSA.

V. CONCLUSION
In this paper, a novel cost function, which is actually an
unconstrained optimization formula, is proposed for both the
PS and the MS tracking. The theoretical analysis reveals that
the proposed function contains only one maximum, which
is achieved if and only if the weight matrix produces an
orthonormal foundation of the desired subspace (PS or MS)

of an input signal. Through the use of gradient ascent method
on the proposed function, a dual purpose algorithm is estab-
lished. In comparison with some prevalent algorithms, the
extracted dual purpose algorithm offers lower computational
complexity and faster convergence speed. A numerical simu-
lation and real application experiments prove that the derived
algorithm is capable of efficiently and satisfactorily tracking
the desired subspace.
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