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ABSTRACT This paper investigates the pilot signal design for a massive multiple-input multiple-out
(MIMO) frequency division duplexing downlink system by taking the channel spatial correlation into
account. Our objective is to optimize the pilot pattern, including the pilot power and structure, from the
perspective of energy-efficient communication, which can evaluate the channel estimation accuracy, spectral
efficiency, and power consumption simultaneously. The original problem is established based onmaximizing
the energy efficiency (EE) with a predefined quality-of-service requirement and the total power budget,
where the involved cost function is in a nonanalytic formwith the non-convex nature. To solve it, an analytical
expression is derived first by the virtue of the deterministic equivalent approximation technology, which
is shown to be a tight approximation. Based on this, the structure of the EE maximization-based pilot
signal matrix is proved to be column orthogonal, where the column corresponds to the dominant eigen-
directions of channel spatial correlation matrix. By use of the derived pilot structure, the primal non-convex
fractional optimization problem is recast to an equivalent optimization problem with the objective function
in a subtractive form, which can be solved by deliberately manipulating the Lagrangian function. Finally,
an iterative algorithm is proposed to obtain the closed-form solution and further insights are extracted.
Numerical results validate the performance gain of our proposed near-optimal pilot scheme in terms of the
energy efficiency and spectral efficiency compared with the classical mean squared error-based pilot scheme.

INDEX TERMS Massive MIMO, FDD, pilot design, energy efficiency.

I. INTRODUCTION
Massive MIMO has been widely considered as one of
the most promising candidate technologies for the 5th
mobile communication systems (5G), which has drawn
extensive research attention in the wireless communication
fields [1]–[3]. By equipping hundreds or more antennas at
base station (BS) to provide service for a much smaller num-
ber of users simultaneously, massive MIMO exhibits numer-
ous noteworthy merits in the sense of spectral efficiency,
energy efficiency, spatial resolution, inter-user interference

elimination as well as secure transmission and so on [4]–[7].
What’s more, the potential benefits can be realized with low-
complexity coherent processing [8].

Note that to fully reap the remarkable gains of massive
MIMO, the knowledge of channel state information (CSI) at
the BS is a prerequisite [8]. The CSI acquisition has also been
recognized as a very challenging task for massive MIMO
systems, due to the high dimensionality of channel matrices
as well as the training and computation overhead. In practice,
the pilot-aided channel estimation approach is commonly
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utilized for CSI acquisition in massive MIMO systems [3].
Moreover, in view of the two main duplexing modes in the
existing cellular systems, i.e., time division duplexing (TDD)
and frequency division duplexing (FDD), the correspond-
ing pilot-based CSI acquisition methods work in different
mechanisms, which lead to different training overhead and
estimation accuracy.

A large body of the studies on massive MIMO focus on
TDDmode [9]–[14], where the downlink CSI can be obtained
at the BS by exploiting the channel reciprocity and using
uplink pilots sent from the users. As a sequence, the required
length of orthogonal pilot sequence is proportional to the
number of users, which results in lower training overhead
than that in FDD mode. On the other hand, the problem
of CSI acquisition in FDD mode becomes more intractable
because the channel reciprocity is unavailable. In this case,
the BS must first broadcast downlink pilot signals, and then
the users send the estimated CSI to the BS through the feed-
back channel, which means that the downlink training and
uplink feedback overhead scale up with the number of BS
antennas. Although TDD system has the superiority of train-
ing overhead, the inherent imperfections in TDD mode, e.g.,
pilot contamination [9], calibration error [15], and hardware
impairments [16], seriously limit the system performance.
Besides these, since FDD mode is still dominant in the cur-
rently deployed cellular system [17] and more applicable to
the symmetric traffic and delay-sensitive applications [18], it
is therefore of great meaning to explore the challenging prob-
lems for CSI acquisition in massive MIMO FDD systems.
Thus, we pay attention to the potential channel training issues
under the FDD massive MIMO framework in this paper.

Even though the CSI acquisition is faced with more dif-
ficulties in massive MIMO FDD system, some explorative
studies have been carried out in the ares of downlink pre-
coding design, channel estimation and training, as well as the
feedback scheme [19]–[25], which all aimed to lower down
the training and/or feedback overhead. Nam et al. [19] pro-
posed a two-tier precoding scheme by grouping the users with
approximately the same channel covariance matrix, which
reduced the dimensionality of the original physical channel
and accordingly cut down the training overhead. In [20], two
novel types of angle-of-arrival (AoA) based beamforming
schemes were offered, wherein the required training overhead
for CSI acquisition only depends on the number of served
users. Duly et al. [21] introduced a new misalignment cost
function to optimize the training sequences without orthog-
onality constraint. Choi et al. [22] developed a successive
channel prediction/estimation strategy at the user side with
only small length of training signals by leveraging time cor-
relation of the channels. In [23], the achievable rates were
optimized by heuristically designing the downlink training
sequences and feedback codebooks. Xie et al. [24] sum-
marized the current low-rank channel estimation approaches
with the sparse properties of channel environments and then,
they built a spatial basis expansion channel model (SBEM)
with far fewer parameter dimensions such that both the uplink

(for TDD) and downlink (for FDD) channel estimation can
be carried out with a small amount of training resource [25].
Apart from these, Dai et al. provided a class of compressive
sensing (CS) based algorithms to reduce the overhead of
channel estimation estimation and feedback by exploiting the
sparsity of wireless channels, such as the sparsity of time-
domain channel impulse response [26], the spatially common
sparsity [27], and the joint spatio-temporally sparsity [28].

It is worth mentioning that the vast majority of aforemen-
tioned works only concentrated on the channel estimation
accuracy with low overhead and considered the conventional
criterion, such as mean squared error (MSE), to design the
pilot signal for channel estimation. However, the designed
pilot signal not only affects the channel estimation accuracy
as well as the achievable rate but also consumes the system
energy load. Thus, from the perspective of Green commu-
nications [29], [30], the energy efficiency metric is more
comprehensive and suitable for the pilot signal designs, which
has attracted more and more interest for the system analysis
and design. Unfortunately, the energy efficiency based pilot
signal design, including the pilot power and structure, is still
an open topic, as the cost function capturing energy efficiency
is in general non-convex with respect to (w.r.t.) pilot signal
matrix and thus is hard to tackle.

To the best of our knowledge, by far few literatures put
forth the energy-efficient pilot signal design for massive
MIMO FDD systems, among which our previous work [31]
proposed an energy-efficient resource allocation scheme
between the training phase and the downlink data trans-
mission phase when considering a limited channel coherent
interval and a total power budget. However, it only focused
on the joint optimization of system parameters, i.e., the total
pilot signal power, the data power and the training dura-
tion, wherein the conventional MSE-based orthogonal pilot
sequence was adopted for simplicity without an in-depth dis-
cussion for the pilot signal structure optimization. It is worth
noting that although the energy-efficient pilot transmission
scheme has been studied in other cellular configurations,
like in multiuser TDD MIMO system [32] and multiuser
OFDM system [33], such results are not directly applicable
to massive MIMO FDD systems. In addition, the orthogonal
pilot sequence is a pre-assumption in [32] and [33]. However,
in this work we relax the orthogonal restriction on the pilot
signal and try to investigate the optimal pilot signal design
from the EE point of view, which means a more general case.

Inspired by this, in this paper we aim to use the energy
efficiency as a performance metric for the design of pilot pat-
tern inmassiveMIMOFDDdownlink systemwhilemeets the
target quality-of-service constraint and total power budget.
Since the complicated objective function and the non-convex
nature of the original problem, obtaining the optimal solution
is intractable. Thus, we first derive an analytical expres-
sion to approximate the energy efficiency function, based on
which, the structure of the near-optimal pilot signal is proved.
Then, by utilizing the fractional programming, the fractional
non-convex optimization problem is transformed into an
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equivalent optimization problem with a subtractive-form
objective function, which can be handled by the Lagrangian
multiplier method. Accordingly, an iterative algorithm is
developed and a closed-form solution for the near-optimal
pilot signal is deduced. Finally, numerical results are given
to validate the effectiveness and superiority of our proposed
pilot pattern.

The rest of this paper is organized as follows. In Section II,
the involved massive MIMO FDD system is introduced and
the EE-based pilot signal design problem is put forward.
Section III derives the EE-based pilot signal pattern by
using the majorization theory and the deterministic equiva-
lent approximation technology, based on which, an iterative
algorithm is proposed to achieve the near-optimal pilot solu-
tion. In Section IV, the numerical simulations are provided
to verify the performances of our proposed pilot pattern,
including the comparison with the traditional MSE-based
pilot stratagem. Section V concludes our work.
Notations—We use the boldface uppercase, lowercase let-

ters and italic letters to representmatrices, vectors and scalars,
respectively. (·)T, (·)H, (·)−1, and tr(·) denote the transpose,
conjugate transpose, inverse, and trace of a matrix, respec-
tively. A (i, j) refers to the i-th row and j-th column element
of matrix A. E{·} is the statical expected value of random
variable x and E {x| y} means the conditional expected value
of random variable x on a realization of the random variable y.
diag{x} denotes a diagonal matrix with the vector x on its
principal diagonal. The notation |·| and ‖·‖ denote the abso-
lute value and the Frobenius norm, respectively. The operator
[·]+ means max {0, ·}. CN (m,�) stands for the circular
symmetric complex Gaussian distribution with mean m and
covariance �. IN is the identity matrix of size N × N . We
also use Span(U) to denote the linear subspace spanned by the
columns of U and Span⊥(U) for its orthogonal complement.
a.s.
−→ means almost sure convergence.

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider a massive MIMO FDD downlink system over flat
Rayleigh fading channels, which consists of a BS with N
antennas (N is large) and a single-antenna user as illustrated
in Fig. 1. The downlink transmission includes three stages,
i.e. pilot-based donwlink channel estimation, CSI feedback
and data transmission. Assume that the block-fading channel
has a coherence interval of Tc (in symbols), which implies
that channel coefficients keep quasi static during a coherence
time block.

In each coherent interval, we assume that the BS employs
the first L (< Tc) symbols to send the pilot signal on its
N antennas, which can be denoted as a N × L matrix X.
Furthermore, the total power assigned to the pilot sequence
satisfies the constraint Tr

(
XXH

)
≤ P. Thus, the received

L × 1 pilot vector at the user can be expressed as

yp = XHh+ np (1)

where np ∈ CL×1
∼ CN (0, σ 2

p IL) is the additive white
Gaussian noise (AWGN) vector and h ∈ CN×1

∼ CN (0,R)

FIGURE 1. Massive MIMO FDD Downlink System.

denotes the downlink channel with R = E{hhH} being the
positive semidefinite spatial correlation matrix [34]. Herein,
the transmit-side antenna correlation at the BS usually results
from the little antenna spacing and insufficient near-field
scattering conditions. We assume that trR = N denotes
the normalized average channel gain and R is known to
the system [34].1 To proceed, we introduce the eigenvalue
decomposition of R as follows, which is necessary for the
subsequent analysis in this paper.

R = U3UH (2)

where U is a N × K unitary matrix with orthonormal
columns, which correspond to the eigenvectors of R, and
3 = diag {[λ1, λ2, . . . λK ]} is a K × K diagonal matrix with
all the non-zero eigenvalues of R on its principal diagonal,
where the eigenvalues is in descending order. It is clear that
the rank of R is K (≤ N ), which implies that R might be
rank-deficient. As h is included in the subspace Span (U),
the channel vector can be modeled as an equivalent form

h = Ug (3)

where g ∼ CN (0,3) can be viewed as the equivalent and
effective channel vector with reduced dimensionality.

Thanks to h ∈ Span (U), we still make use of the following
substitution

X = UX̃ (4)

which will not incur any performance degradation since the
pilot signal power assigned to Span⊥ (U) will be directly
filtered without affecting the received signal. Thus, we use
X̃ ∈ CK×L as the equivalent pilot signal instead of X here-
after, unless otherwise notified. Kindly note that the column
orthogonality of the pilot matrix X is not emphasized so far,
which is different from the traditional assumption on the uni-
tary training with equal power allocation as in [22] and [31].
By substituting (3) and (4) into (1), the received pilot signal
can be redescribed as

yp =
(
UX̃

)HUg+ np = X̃Hg+ np (5)

1In realistic situations, the channel covariance matrix changes slowly
w.r.t. the coherence time of the instantaneous channel matrix, which can be
estimated and updated with low training overhead. Thus, it is reasonable to
assume the channel covariance matrix known at the BS and the user.
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where X̃ meets the power constraint Tr
(
X̃X̃H

)
=

Tr
(
XXH

)
≤ P. From (5), it can be seen that at most K

unknowns in g are needed to be estimated. Thus, for ease
of analysis, we assume that the length of pilot sequence is not
more than the channel rank as in typical MIMO systems [35],
namely, L ≤ K .2

With the observed signal yp in (5), the minimum mean
squared error (MMSE) estimator is adopted at the user for
channel estimation. According to the statistical signal pro-
cessing methodology in [10], [11], and [36], the MMSE
estimate ĝ of g can be obtained

ĝ = E
{
g| yp

}
= 3X̃

(
X̃H3X̃+ σ 2

p IL
)−1

yp (6)

which is distributed as CN (0,8), where

8 = E
{̂
ĝgH

}
= 3X̃

(
X̃H3X̃+ σ 2

p IL
)−1

X̃H3 (7)

By virtue of the orthogonally property of MMSE estima-
tion [10], [11], [36], g has the following decomposition

g = ĝ+ g̃ (8)

where g̃ ∼ CN (0, �) is the channel estimation error with �
given by

� = E
{̃
g̃gH

}
= 3−8 (9)

What’s more, g̃ and ĝ are mutually independent [10]. There-
fore, the normalizedmean squared error (MSE) of the channel
estimation is given by

MSE
(
X̃
)
=

E
{
‖g− ĝ‖2

}
E
{
‖g‖2

}
=

tr
{
3−3X̃

(
X̃H3X̃+ σ 2

p IL
)−1

X̃H3

}
N

(10)

which is a function w.r.t. the pilot matrix X̃.
After the downlink channel vector is estimated at the user,

the estimated CSI ĝ will be sent to the BS through the
feedback channel. For the analytic simplicity, we assume that
the SNR of the feedback channel is high enough such that
the feedback error is negligible compared with the channel
estimation error [34], [37]. Thus, the ideal no-delay and error-
free feedback channel condition is considered here as in [31],
[34], and [37] such that we concentrate on the influence of
the downlink training and data beamforming.3

When the BS obtains the downlink CSI, it performs beam-
forming scheme for the data transmission during the remain-
der Tc − L symbols in a coherent interval. Then, the beam-
formed data signal can be expressed as

d = vs = Ũvs (11)

2Kindly note that there has no effect on the subsequent analytical conclu-
sions when L > K is assumed.

3The study of feedback scheme with low overhead is another interesting
and nontrivial topic in massive MIMO FDD system, which is beyond the
scope of our research. Interested readers can refer to [38] and references
therein for in-depth discussion.

where s is useful data symbol with power normalization
E
{
|s|2

}
= 1, v is the beamforming vector with ‖v‖2 = 1

to normalize the transmit power. Once again, we adopt the
substitution v = Ũv without any loss of performance owing
to h ∈ Span (U).
Finally, the received data signal at the user can be

described as

yd =
√
ρdhHd+ nd

(a)
=
√
ρd̂gHṽs+

√
ρd̃gHṽs+ nd (12)

where ρd is the transmit power for the useful data,
nd ∼ CN (0, σ 2

d ) is the AWGN, (a) comes from the substi-
tution of (3), (8), and (11).

Using a standard bound based on the worst-case
uncorrelated additive noise theory [10], the average spectral
efficiency (SE) can be obtained as follows

R = E
{
log2 (1+ γ )

}
(13)

where γ is the equivalent received signal-to-noise ratio (SNR)
and given by

γ =
ρd̂gHṽ̃vHĝ

ρd̃vH�̃v+ σ 2
d

=
ṽH ĝ̂gHṽ

ṽH
(
�+ δ−1IK

)
ṽ

(14)

where δ = ρd
σ 2d

denotes the transmit SNR for data symbol.

Different from the commonly-used beamforming scheme
in typical massive MIMO system, i.e., maximum-ratio trans-
mission (MRT) and zero-forcing (ZF), the optimal beam-
forming vector that maximizes the received SNR is employed
here, i.e., ṽopt = argmax

ṽ

ṽH ĝ̂gHṽ
ṽH(�+δ−1IK )̃v

. Since
(
�+ δ−1IK

)
is a positive definite matrix and ĝ̂gH is a Hermitian matrix,
the involved optimal beamforming design is a generalized
eigenvalue problem, also known as generalized Rayleigh
quotient.

Generally speaking, it is quite difficult to achieve
a closed-form solution to a generalized eigenvalue prob-
lem. Fortunately, the rank of ĝ̂gH in the numerator of the
right-hand side (RHS) of (14) is equal to 1, which makes
us easily solve the problem in this case. By using the
substitution ã ,

(
�+ δ−1IK

)1/2ṽ, an equivalent prob-
lem can be obtained in the form of standard Rayleigh-Ritz
ratio, i.e., max

ṽ

ṽH ĝ̂gHṽ
ṽH(�+δ−1IK )̃v

= max
ã

ãHWã
ãHã , where W =(

�+ δ−1IK
)−1/2 ĝ̂gH(�+ δ−1IK )−1/2. Therefore, we can

obtain the optimal beamforming vector and the corresponding
maximum received SNR ṽopt bymeans of the similar method-
ology as [39], which are given by

ṽopt =

(
�+ δ−1IK

)−1ĝ∥∥∥(�+ δ−1IK )−1ĝ∥∥∥ (15)

γmax = ĝH
(
�+ δ−1IK

)−1
ĝ (16)

Consequently, the SE can be obtained as

R = E
{
log2

(
1+ ĝH

(
�+ δ−1IK

)−1
ĝ
)}

(17)
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Based on the analysis above, it can be seen that the pilot
signal not only determines the channel estimation accuracy
and further the SE but also affects the system overall power
consumption. Hence, there is a tradeoff between the SE and
the power consumption, which can be evaluated by a new
measurement, i.e., energy efficiency (EE), which is defined
as the SE divided by the total power consumption [40]–[43].
To handle the EE problem, a practical power consumption
model is necessary. Based on [41]–[45], the power consumed
by the pilot sequence and the data signal is given by

Ptot =
Tr
(
X̃X̃H

)
ζTc

+
Tc − L
Tc

ρd

ζ
+ NPant + Psta (18)

where the first two terms of the RHS of (18) denote the
pilot power and practical data transmit power, respectively,
ζ ≤ 1 denotes the power amplifier efficiency, Psta is the
static circuit power consumed at the BS, which is irrelevant to
the BS antenna number and Pant is the constant circuit power
consumption per antenna, which accounts for the power dis-
sipations in the transmit filter, mixer, frequency synthesizer,
and digital-to-analog converter which is independent of the
actual transmitted power (Please refer to [42] and references
therein for more details). For notation ease and analysis sim-
plicity, we let ζ = 1 without loss of generality and define
Pfix ,

Tc−L
Tc

ρd
ζ
+ NPant + Psta.

With the consideration above, we establish the pilot signal
design problem for maximizing the EE while guaranteeing
the required QoS and stratifying the total power budget

P1 : max
X̃∈CK×L

EE =
(1− ϑ) · R

Tr
(
X̃X̃H

)
/Tc + Pfix

s.t. C1: Tr
(
X̃X̃H)

≤ P, C2: R ≥ R0 (19)

where ϑ = L
Tc

accounts for the training overhead proportion
in a coherent interval. It is worth mentioning that the con-
straints on the QoS can be presented in many different ways
and herein, the minimum SE is selected as the constraint.

The EE-based pilot scheme in (19) evaluates the EE practi-
cally, yet leads to some obstacle for solving the optimization
problem. The main difficulties rest with two-fold: (1) The
derivation of the analytical expression of EE function in (19)
is extremely challenging; (2) The objective function is in a
non-convex fractional form w.r.t. the pilot matrix.

In next section, we will try our best to solve the pilot design
problem for the massive MIMO FDD system.

III. ENERGY-EFFICACY BASED PILOT SIGNAL
DESIGN ALGORITHM
In this section, wewill propose a two-layer iterative algorithm
to deal with the optimization problem P1 in (19). As a pre-
condition, a closed-form expression of the EE is derived with
the help of the random matrix theory. Based on the analytical
approximation expression, the structure of the near-optimal
pilot matrix is deduced by utilizing the majorization theory.
Then, by means of the fractional programming technology,
the EE-based optimization problem is reformulated into an

equivalent problem in subtractive form, wherein the standard
Lagrangian duality theory can be employed and a closed-form
solution is obtained.

On account of the complicated expression of the SE in (17),
exact evaluation for it appears to be intractable in mathe-
matics. Alternatively, by using the deterministic equivalent
approximation method in [10] and [46] we can obtain a
closed-form expression of the SE, which is quite applicable
for the large-dimensional system. Then, we have the follow-
ing lemma.
Lemma 1: When the BS adopts the vector ṽopt for down-

link beamforming, a tight approximation of the average SE
in (17) is given by

R = log2
(
1+ δTr (3)− Tr

(
δ
(
S+ X̃X̃H)−1Z)) (20)

where S = σ 2
p
(
δIK +3−1

)
andZ = σ 2

p (δ3+ IK ). Further-

more, it is guaranteed that R− R
a.s.
−−−−→
N→∞

0.

Proof 1: Please refer to Appendix B.
As pointed out in [10] and [34], although the asymptotic

result in Lemma 1 is derived when N → ∞, the tight
approximation of the SE derived from the asymptotic analysis
is suitable for large but finite system dimensionality.

By using (20), the problem P1 can be redescribed as

P2 : max
X̃∈CK×L

(1− ϑ) · R

Tr
(
X̃X̃H

)
/Tc + Pfix

s.t. C1, C2: R ≥ R0 (21)

Although P2 cannot be solved directly, the structure of
the EE maximization pilot sequence to P2 can be uncovered,
which is summarized in Theorem 1.
Theorem 1: The optimal solution X̃ toP2 is aK×L quasi-

diagonal matrix in the form of

X̃ =
[
diag {[x1, x2, . . . , xL]} , 0

]T
, xl ≥ 0, ∀l. (22)

Proof 2: Assume that X̃ is in the set of feasible solution
of the problem P2. For notation ease, let us define V =(
S+ X̃X̃H

)−1. According to [47, Th. 20.A.4], we have

Tr (VZ) ≥
K∑
i=1

λV,i · λZ,K−i+1 (23)

where λV,i is the i-th largest eigenvalue of V. Since Z is a
diagonal matrix with positive real diagonal entries in decreas-
ing order, the equality in (23) is achieved if and only if V is
diagonal with its elements in the opposite order of Z. Then,
the EE in P2 is upper bounded by

EE
(
X̃
)
≤

(1− ϑ) · log2

(
1+ δN − δ

K∑
i=1
λV,i · λZ,K−i+1

)
Tr
(
X̃X̃H

)
/Tc + Pfix

(24)

The upper bound in (24) can be fulfilled whenV is a diago-
nal matrix with its diagonal entries in increasing order. On the
one hand, tomakeV a diagonal matrix,Q = X̃X̃H should be a
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diagonal matrix, as S is a diagonal matrix. On the other hand,
the diagonal elements of Q should be in decreasing order,
which is because the diagonal elements of S are in increasing
order. Furthermore, due to rank(Q) ≤ L, the optimal Q is
in the form of Q = diag {[q1, q2, . . . , qL , 0, . . . , 0]} with
q1 ≥ q2 ≥ · · · ≥ qL ≥ 0. Therefore, we have a solution
to P2 in the form of X̃ given in (22), where xl =

√
ql .

This completes the proof.
Remark 1: From (4) and (22), one can find that in the

EE maximization based pilot scheme, the dominant channel
eigen-directions are selected for pilot sequences as that in the
MSE minimization based pilot scheme [35], [48], wherein
the variable xl in (22) indicates the assigned power to the
corresponding channel eigen-directions for channel estima-
tion. Since x1 ≥ x2 ≥ . . . ≥ xL , it tells us that more power
is allocated to the strong channel eigen-direction in EE-base
pilot scheme. In addition, substituting (22) into (10) yields

MSE
(
X̃
)
= 1−

1
N

L∑
l=1

x2l λ
2
l

x2l λl + σ
2
p

(25)

which confirms that both the pilot power and the pilot
sequence length play important roles in the channel estima-
tion accuracy.
Remark 2: One can also find that the EE-based pilot signal

structure still has the column orthogonality as theMSE-based
pilot pattern, although we have relaxed this requirement at the
beginning of the system model establishment.

By using Theorem 1 and the substitution xl =
√
ql ,

P2 can be rearranged to an equivalent form w.r.t. m ,
[q1, q2, . . . , qL]

P3 : max
q

(1− ϑ) · R (q)
Ptot (q)

s.t. C1:
L∑
l=1

ql ≤ P, C2:R (q) ≥ R0 (26)

where R (q) and Ptot (q) are given by

R (q) = log2

(
1+ δ

(
N −

L∑
l=1

Z (l, l)
ql + S (l, l)

−

K∑
l=L+1

λl

))

Ptot (q) =
L∑
l=1

ql/Tc + Pfix (27)

However, P3 is still a non-convex optimization problem
due to the fractional form of the objective function. To tackle
this dilemma, the nonlinear fractional programming method-
ology is exploited. According to [42, Th. 1], the maximum
EE for P3 can be achieved if and only if

max
q∈D

(1− ϑ) · R
(
q
)
− η?Ptot

(
q
)

= (1− ϑ) · R
(
q?
)
− η?Ptot

(
q?
)
= 0 (28)

where D =
{
q |C1,C2

}
is the feasible set for P3, η? =

(1−ϑ)·R
(
q?
)

Ptot
(
q?
) = max

q∈D

(1−ϑ)·R
(
q
)

Ptot
(
q
) is the maximum EE to P3, and

q? is the associated optimal solution.

Eq. (28) tells us that for a fractional optimization problem,
there exists an equivalent problem with the objective function
in subtractive form, e.g., (1− ϑ) · R

(
X̃
)
− η?Ptot

(
q
)
in the

considered case. Moreover, one can see that the optimal solu-
tion to P3 can be obtained by solving max

q∈D
(1− ϑ) · R

(
q
)
−

η?Ptot
(
q
)
if η? is known in advance. Though η? is unknown

at first, an iterative algorithm (also known as Dinkelbach
method [42]) can be used to solve P3 with an equivalent
objective function. Therefore, we will focus on the following
equivalent objective function for a given parameter η in the
rest of the paper.

P4 : max (1− ϑ) · R
(
q
)
− ηPtot

(
q
)

s.t. C1,C2 (29)

By using the properties of the compound function [49],
it can be proved that the objective function in P4 is concave.
Thus, we can conductP4 by solving its equivalent Lagrangian
dual problem, namely,

min
µ,ν≥0

max
q≥0

L (µ, ν,q) (30)

where µ and ν are the Lagrangian multipliers corresponding
to the constraints C1 and C2, respectively. L (µ, ν,q) is the
Lagrange dual function as follows

L (µ, ν,q) = (1− ϑ)R (q)− ηPtot (q)

+ µ

(
P−

L∑
l=1

ql

)
+ ν

(
R (q)− R0

)
(31)

The optimization problem in (30) can be further decom-
posed into two subproblems, i.e., the inner maximization
problem and outer minimization problem, which can be
solved by alternate iteration. For the outer minimization prob-
lem, the multipliers µ and ν can be updated by means of the
gradient method

µ(n+1)
=

[
µ(n)
− t1

(
P−

L∑
l=1

q?l

)]+
(32)

ν(n+1) =
[
ν(n) − t2

(
R
(
q?
)
− R0

)]+
(33)

where nmeans the iteration number, t1 and t2 are the positive
step sizes, q? is the optimal solution of the inner maximiza-
tion problem in (30) by using µ(n) and ν(n). The gradient
updates of (32) and (33) can always converge to the optimal ν
and µ with t(n)1 and t(n)2 being sufficiently small [31].

In the following, we devote to obtaining q? with given µ
and ν, i.e.,

max
q≥0

L (µ, ν,q) (34)

Theorem 2: For the given µ and ν, the optimal solution q?

of (34) can be obtained by

q?l =
[√

Z (l, l)
$

− S (l, l)
]+
, ∀l (35)
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where$ , a, b, and c are defined as

$ ,

√
((η/Tc + µ) b)2 + 4ac (η/Tc + µ)− (η/Tc + µ) b

2a

a ,
1− ϑ + ν

ln 2
, b ,

L∑
i=1

√
Z (i, i), c ,

1
δ
+ N −

K∑
i=L+1

λi

(36)
Proof 3: Please refer to Appendix C.
Obviously, the power allocation in (35) is in the form of

multilevel water-filling type solution. Apart from this, we can
conclude from Theorem 2 that:
• The actual pilot sequence length is equal to the num-
ber of the nonzero elements in q?, which can only
be determined numerically through the proposed algo-
rithm. That is to say, wemight assign zero power to some
of the channel eigen-directions such that the ultimate
pilot sequence length might be shortened.

• The water level
√
Z(l,l)
$

is different from the conven-
tional water level, which is not solely determined by the
Lagrange multipliers.

One can also find from (35) that the power variable ql is
updated by the Lagrange multiplier µ(n) until convergence.
However, through an in-depth study of the structure of ql
in (35) w.r.t. µ, it is discovered that ql has a lower bound,
which has an impact on the convergence. Then, we have the
following proposition.
Proposition 1: For a given pilot sequence length L and a

total power constraint P, the Lagrangian dual problem (30)
can converge if and only if

P ≥
L∑
l=1


σ 2
p

L∑
i=1

√
(δλi + 1) (δλl + 1)

δ−1 +
L∑
i=1
λi

− σ 2
p

(
δ +

1
λl

)
+

(37)

and there will be no solution otherwise. In other words,
the required minimum power to support the pilot sequence
length L for EE maximization is given by the RHS of (37).
Proof 4: Please refer to Appendix D.
The physical meaning of Proposition 1 is that the maxi-

mum pilot length is restricted by the given power budget P.
Moreover, we can find that the water level

√
Z(l,l)
$

is deceasing
with L, whose proof is straightforward and omitted here.
Thus, when (37) is not satisfied, we should reduce the pilot
length gradually until (37) is fulfilled. Furthermore, it can be
guaranteed that the minimum pilot length, i.e. L = 1, can
always satisfy (37), since the RHS of (37) is equal to zero in
this case.
Remark 3: Different from our EE-based pilot design,

the MSE-based algorithm [35] can always converge for a
given power budget P and predefined training length L with-
out any condition such as (37). This is because the involved
water-filling levels in [35] does not have the similar bound as
in our proposed algorithm.

Based on aforesaid analysis, a near-optimal two-layer iter-
ative algorithm is developed to solve P1. The detailed steps
are summarized in Algorithm 1. Regarding the convergence
of the proposed algorithm, it can be easily proved according
to [42], which is omitted here.

Algorithm 1 Iterative Algorithm for EE-Based Pilot Design
1: Initialize m = 1, n = 1, t1 > 0, t2 > 0, ε1 > 0, ε2 > 0,
µ(1)
≥ 0, ν(1) ≥ 0, η(1) ≥ 0;

2: while (37) is not satisfied do
3: L = L − 1;
4: end while
5: repeat {Layer 1}
6: repeat {Layer 2}
7: Compute q? by using (35) with η(m), µ(n), and ν(n);
8: Updateµ(n+1) and ν(n+1) according to (32) and (33)

with q?;
9: n = n+ 1;
10: until |µ(n)

− µ(n−1)
| ≤ ε2 and |ν(n) − ν(n−1)| ≤ ε2.

11: η(m+1) =
(1−ϑ)·R(q?)
Ptot(q?)

;
12: m = m+ 1;
13: until

∣∣(1− ϑ) · R (q)− η(m−1)Ptot (q)∣∣ ≤ ε1.
IV. NUMERICAL RESULTS
In this section, we evaluate the performance of our proposed
EE-based pilot scheme from different aspects. For simplicity
and without loss of generality, the path-loss and shadow
fading coefficient is set to be 1, and the variance of AWGN
is set to be 1W. Herein, the channel correlation matrix R is
characterized via the commonly-used exponential correlation
model, where R (i, j) = r |i−j| (i, j = 1, · · · ,N ) with r ∈
[0, 1] denoting the correlation coefficient between adjacent
transmit antennas. This model basically approximates the
correlation in a uniform linear array (ULA) under rich scat-
tering conditions [50], [51]. In our simulations, a correlation
coefficient of r = 0.8 is considered, which describes a
modest correlation in the sense of typical ULA behaving
with half-wavelength antenna spacings. The circuit power
per antenna is Pant = 0.01W, and the static power con-
sumption is Psta = 1W. With regard to the channel coher-
ence interval, a typical value Tc = 50 is chosen, which
corresponds to a low or moderate mobility environment
with coherence bandwidth of 10KHz and coherence time of
5ms [32]. The convergence thresholds ε1 and ε2 are set to
be 10−5. For comparison, the pilot sequence design based
on the MSE minimization [35] is provided for benchmark,
i.e., min

X̃
MSE

(
X̃
)

s.t. C1,C2, where MSE
(
X̃
)
is defined

in (10), C1 and C2 correspond to the total power budget and
the minimum SE requirement, respectively, as in problemP1.

Firstly, we examine the accuracy of the closed-form
expression of the SE in Lemma 1 through Monte Carlo
simulations. In each simulation, 104 independent channel
realizations are generated and averaged to produce the numer-
ical results. One can find from Fig. 2 that the analytical
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FIGURE 2. The spectral efficiency v.s. the number of BS antennas under
different pilot length L, where K = N , r = 0.8, ρp = ρd = 10dB,
X̃ =

√
ρp
[
diag

{
[1,1, . . . ,1]

}
,0
]T.

FIGURE 3. The convergence trajectory of the proposed EE-based
algorithm, where N = 100, Tc = 50, L = 10, r = 0.8, P = 9dB,
R0 = 2bps/Hz.

FIGURE 4. The normalized MSE v.s. the total pilot power constraint,
where N = 100, Tc = 50, L = 10, r = 0.8, R0 = 2bps/Hz.

expression of SE in (20) becomes increasingly tight as the
antenna number grows large. That is, the concise analyti-
cal expression in Lemma 1 is effective for the consequent
EE-based algorithm evaluation.

FIGURE 5. The actual power consumption v.s. the total pilot power
constraint, where N = 100, Tc = 50, L = 10, r = 0.8, R0 = 2bps/Hz.

FIGURE 6. The energy efficiency v.s. the total pilot power constraint,
where N = 100, Tc = 50, L = 10, r = 0.8, R0 = 2bps/Hz.

FIGURE 7. The spectral efficiency v.s. the total pilot power constraint,
where N = 100, Tc = 50, L = 10, r = 0.8, R0 = 2bps/Hz.

Fig. 3 illustrates the convergence trajectory of Algorithm 1.
The sub-figure (a) shows the convergence speed of the vari-
able η in Layer 1 (line 5 in Algorithm 1). The convergence
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FIGURE 8. Power assignment for the first L strongest channel eigen-directions under different total pilot power constraint, where
N = 100, Tc = 50, L = 10, r = 0.8, R0 = 2bps/Hz. (a) P = 0dB. (b) P = 6dB. (c) P = 12dB. (d) P = 18dB. (e) P = 24dB. (f) P = 30dB.

behaviors of the variables µ and ν in Layer 2 (line 6 in
Algorithm 1) are presented in sub-figures (b) and (c), respec-
tively. It is obvious that the proposed algorithm can always
converge to the optimal energy efficiency within a limited
number of iterations.

Fig. 4 depicts the performance of the normalized MSE,
which is defined as E{‖h− ĥ‖2}/E

{
‖h‖2

}
. Obviously,

the MSE-based pilot scheme outperforms the EE-based pilot
scheme. However, as the total power grows large, the perfor-
mance gap between them becomes small. Especially, when
the total power exceeds 18dB, the performance of both
schemes saturate to a certain level. This is because both
the pilot power and pilot sequence length impact the chan-
nel estimation accuracy. Thus, for the fixed pilot sequence
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length L, the performance gain will eventually enter into
the saturation regime when only relying on the pilot power
increment.

Fig. 5 illustrates the actual power consumption for the pilot
transmission. One can see that the EE-based pilot scheme
allocates the same pilot power as theMSE-based pilot scheme
in the low transmit power region, which implies that both
schemes transmit the pilot signals with full power in this
region. However, when the transmit power constraint is larger
than 18dB, i.e., the moderate to high transmit power region,
the latter still expends full power for pilot signal transmission
to pursuit MSE minimization, whereas the former would
rather reduce the pilot signal power so as to guarantee energy
efficiency performance. This is also another key reason why
the EE-based pilot scheme quickly saturates to a certain level
in terms of the MSE performance in Fig. 4.

Fig. 6 compares the energy efficiency performance for both
pilot schemes. It is observed that the EE-based pilot scheme is
always superior to the MSE-based pilot scheme in the whole
transmit power range. More precisely, the performance gain
is more remarkable at middle to high transmit power region,
namely P � 18dB. The reasons lie in two-fold: (1). In low
transmit power region, the MSE-based pilot scheme provides
more accurate CSI at the expense of pilot sequence length,
which can be confirmed from Fig. 8(a) - Fig. 8(c). In fact,
the EE-based pilot scheme does not take up the full pilot
length, i.e., the actual pilot length is smaller than L, which
implies that more symbols are remained for effective data
transmission in a channel coherent interval. Taking Fig. 8(a)
for example, when the total pilot power P = 6dB, the actual
pilot length is 4 in EE-based pilot scheme, whereas the
MSE-based pilot scheme occupies full training length, i.e.,
L = 10. (2). In middle-high transmit power region, the SE
gain resulting from the improvement of the channel estima-
tion accuracy cannot make up for the adverse influence of the
total power increment, which incurs performance degradation
in the MSE-based pilot scheme.

Fig. 7 provides the spectral efficiency performance of the
two pilot schemes. Surprisingly, although the MSE-base pilot
scheme dominates in term of the channel estimation accuracy
at low transmit power region, the EE-based pilot scheme
still exhibits better performance than the MSE-based pilot
scheme in the sense of the SE performance owing to the
shorter pilot sequence length. While at middle to high trans-
mit power region, the performance of EE-based pilot scheme
falls short of theMSE-base pilot scheme. Furthermore, the SE
performance of the EE-based scheme enters into a saturation
regime, which is because the EE-based pilot scheme tends to
lower down the transmit power consumption so as to keep the
overall energy efficiency maximizing.

From Fig. 4, Fig. 6, and Fig. 7, one can conclude that
we should not persistently pursue the channel estimation
accuracy but neglect the significant goal of data communi-
cation, which may leads to severe waste of the transmis-
sion resource, including the time, frequency as well as the
energy. In essence, the resource allocation should be carefully

managed in order to balance the training phase and data
transmission phase.

Fig. 8 shows the pilot power assignment for the first L
channel eigen-directions. It can be found that in the EE-based
pilot scheme, the strong eigen-directions receive more power
assignment than weak in all transmit power region. To be
more exact, at low transmit power region, this scheme would
rather discard the weaker eigen-directions and make the
power concentrate on the stronger eigen-directions. More-
over, as the total pilot power increases, longer pilot length will
be utilized. However, in MSE-based pilot scheme, the power
is also allocated to strong channel eigen-directions. But with
the total pilot power increasing, the equal power is dis-
tributed to all the eigen-directions which is different from the
EE-based scheme.

V. CONCLUSION
In this paper, we studied the energy-efficient pilot signal
design for a single-user massive MIMO FDD downlink sys-
tem. With considering the total pilot energy budget and the
system minimum spectral efficiency requirement, an energy-
efficiency based pilot signal optimization problem was estab-
lished. Since the objective function was complicated even
without a analytical expression, the deterministic equivalent
approximation technology was utilized to derive a closed-
form expression of the cost function, based on which, the pat-
tern of the near-optimal pilot signal was deduced in the light
of the theory of majorization. In an effort to solve the non-
convex and fractional optimization problem, we resorted to
the fractional programming methodology such that the orig-
inal problem was rearranged into an equivalent subtractive-
form problem, where the standard convex theory was adopted
and the closed-form solution was obtained. The performance
gain of our proposed pilot scheme is justified in comparison
with the traditional MSE-based pilot signal by the numer-
ical results. Furthermore, it is shown that the developed
iterative algorithm can converge during a few number of
iterations.

APPENDIX A
DETERMINISTIC EQUIVALENT APPROXIMATION LEMMA
Lemma 2 ( [10, Lemma 4], [46, Lemma 1]): Assume W

and4 ∈ CN×N with uniformly bounded spectral norms w.r.t.
N . Consider x ∈ CN×1

∼ CN (0,4) and we have

xHWx
N
−

trW4
N

a.s.
−−−−→
N→∞

0 (38)

APPENDIX B
PROOF OF LEMMA 1
Since ĝ ∼ CN (0,8), the received SNR in (16) has the corre-
sponding deterministic equivalent approximation as N →∞
by using Lemma 2 in Appendix A, i.e.,

γmax

N
a.s.
−→

γ

N
=

Tr
((
�+ δ−1IK

)−1
8
)

N
(39)
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γ = Tr
((
3−3X̃X̃H(σ 2

p3
−1
+ X̃X̃H)−1

+ δ−1IK
)−1

3X̃X̃H
(
σ 2
p3
−1
+ X̃X̃H

)−1)
= Tr

((
σ 2
p3
−1
+ X̃X̃H)−1(3−3X̃X̃H(σ 2

p3
−1
+ X̃X̃H)−1

+ δ−1IK
)−1

3X̃X̃H
)

= Tr
((
3
(
σ 2
p3
−1
+ X̃X̃H)

−3X̃X̃H
+ δ−1

(
σ 2
p3
−1
+ X̃X̃H))−13X̃X̃H

)
= Tr

(
δ
(
σ 2
p δIK + σ

2
p3
−1
+ X̃X̃H

)−1(
3
(
σ 2
p δIr + σ

2
p3
−1
+ X̃X̃H)

−3
(
σ 2
p δIr + σ

2
p3
−1)))

= δTr (3)− Tr
(
δ
(
σ 2
p δIK + σ

2
p3
−1
+ X̃X̃H)−1 (σ 2

p δ3+ σ
2
p IK

))
(40)

1− ϑ + ν
ln 2

( √
Z (l, l)

ql + S (l, l)

)2

+

(
η

Tc
+ µ

) L∑
i=1

√
Z (i, i)

√
Z (l, l)

ql + S (l, l)
−

(
η

Tc
+ µ

)1
δ
+ N −

K∑
i=L+1

λi

 = 0 (46)

Substituting (7) and (9) into the RHS of (39) yields (40),
as shown at the top of this page, where the properties of
matrix computation, namely, (I+ AB)−1A = A(I+ BA)−1,
(AB)−1 = B−1A−1, and Tr (AB) = Tr (BA), are employed.
Then, on the basis of the dominated convergence and the

continuous mapping theorem [10], we have the deterministic
equivalent approximation of the average SE as follows

R
a.s.
−−−−→
N→∞

R = log2 (1+ γ ) (41)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 2
In order to solve (34), the KKT conditions will be uti-
lized [49]. Letting the first-order derivative of L w.r.t. ql be
zero yields

L′ (ql)=(1−ϑ)R
′
(ql)−η/Tc−µ+νR

′
(ql)=0,∀l (42)

From (42), we have

R
′
(ql) = R

′ (
qj
)
,∀l 6= j (43)

where R
′
(ql) is given by

R
′
(ql) =

δZ (l, l)

(ql + S (l, l))2 ln 2

·

1+δN − δ L∑
i=1

Z (i, i)
qi + S(i, i)

− δ

K∑
i=L+1

λi

−1, ∀l
(44)

Combining (43) and (44) yields

qj =

√
Z (j, j)
Z (l, l)

(ql + S (l, l))− S (j, j) (45)

By substituting (44) and (45) into (42) and simplifying it,
one can find that the optimal q?l is equivalent to solve the root
of a quadratic polynomial equation (46), as shown at the top
of this page.

By using the standard root of quadratic equation, we have
√
Z (l, l)

q?l + S (l, l)

=

√((
η
Tc
+ µ

)
b
)2
+ 4ac

(
η
Tc
+ µ

)
−

(
η
Tc
+ µ

)
b

2a
where a, b, and c are given in (36). Therefore, the closed form
of q?l is derived in (35) after simple transformation.

This completes the proof.

APPENDIX D
PROOF OF PROPOSITION 1
For simplicity of analysis,$ in (36) can be simplified as

$ =
2c

b+
√
b2 + 4ac

η/Tc+µ

(47)

Then, the following two statements hold
(a) $ is monotonically increasing in µ;

(b) $∞ = lim
µ→∞

$ = c
b =

δ−1+N−
K∑

i=L+1
λi

L∑
i=1

√
Z(i,i)

.

Therefore, one can find that $∞ is irrelevant of η and
$ ≤ $∞. Accordingly, the optimal power in (35) has a
lower bound

q?l ≥
[√

Z (l, l)
$∞

− S (l, l)
]+

(48)

Eq. (48) contains two-fold meanings:
• When the equality is achieved, the required minimum
total power for maximizing EE with training length L is
given by

Pmin =

L∑
l=1

q?l =
L∑
l=1

[√
Z (l, l)
$∞

− S (l, l)
]+
; (49)

• When the total power constraint, P, is less than Pmin,
there is no solution for problem P1. That is to say,
the optimization problem (30) cannot converge.

This completes the proof.
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