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ABSTRACT Due to the recent development of cyber-physical systems, big data, cloud computing, and
industrial wireless networks, a new era of industrial big data is introduced. Deep learning, which brought a
revolutionary change in computer vision, natural language processing, and a variety of other applications,
has significant potential for solutions providing in sophisticated industrial applications. In this paper,
a concept of device electrocardiogram (DECG) is presented, and an algorithm based on deep denoising
autoencoder (DDA) and regression operation is proposed for the prediction of the remaining useful life of
industrial equipment. First, the concept of electrocardiogram is explained. Then, a problem statement based
on manufacturing scenario is presented. Subsequently, the architecture of the proposed algorithm called
integrated DDA and the algorithm workflow are provided. Moreover, DECG is compared with traditional
factory information system, and the feasibility and effectiveness of the proposed algorithm are validated
experimentally. The proposed concept and algorithm combine typical industrial scenario and advance
artificial intelligence, which has great potential to accelerate the implementation of industry 4.0.

INDEX TERMS Cyber-physical systems, deep learning, device electrocardiogram, industrial big data,
industry 4.0.

I. INTRODUCTION
In recent years, the development of Internet of Things (IoT)
[1], [2] and cloud technologies [3], [4] caused deployment
of sensors and line layout in manufacturing environment,
which increased the cost of manufacturing maintenance.
The predictive maintenance, as an important part in man-
ufacturing maintenance, plays a vital role in scheduling,
maintenance management, and quality improvement [5].
In general, the predictive maintenance can be categorized into
experience-based models, physics-based models, and data-
driven models [6].

The experience-based models, which represent the tra-
ditional methods for predictive maintenance, are widely
used. Moreover, the experience-based models can be well
explained and easy debugged using IF-THEN rules and
fuzzy logic. For instance, Jindal and Aggarwal [7] proposed
a user-friendly expert system that is capable to assist the

drivers to cope with their car problems by providing a logical
solution. However, the experience-based models cannot deal
with a large number of queries in expert systems, and they
mostly rely on expert knowledge and engineering experi-
ence. The similar deficiency exits in physics-based models.
The physics-based models require insight in system failure
mechanisms, which are supposed to be converted into math-
ematical expressions. Zhao et al. [8] provided a method for
prediction of remaining useful life (RUL) for gears based on
Bayesian framework, which updates the parameters. Daigle
and Goebel [9] used the particle filters to predict RUL
of solenoid valves. However, in certain cases, the physics-
based models are not appropriate for complicated systems
because the humans cannot understand all failure modes and
behaviors.

Due to increasing data availability, the data-driven
models provide a new approach in predictive maintenance.
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The historical data of equipment, statistical models, reli-
able functions, and artificial intelligence methods, especially
machine learning, are widely used for both RUL estima-
tion and other applications. Namely, the hidden Markov
models (HMMs) [10], grey models [11] and other methods
were successfully applied to predictive maintenance. In 2004,
Gebraeel et al. [12] proposed the use of neural networks in
machine learning to predict the bearing RUL. He et al. [13]
provided a method for prediction of axial piston pump based
on the support vector machines (SVMs) [14], empirical mode
decomposition (EMD) of time series [15], and particle swarm
optimization (PSO) [16]. With the advent of data explosion
era, the deep learning based on layers of neurons [17], which
is evolved from the artificial neural networks, have a strong
learning ability. Namely, the deep learning has improved
the state-of-the-art in many aspects dramatically, especially
in images processing [18] and natural language process-
ing [19]. Due to recent improvements in cyber-physical
systems (CPS) [20], big data [21]–[24], cloud-assisted
equipment [25], software-defined networks [26]–[28], arti-
ficial intelligence [29]–[31], and industrial wireless net-
works [32], [33], there is a variety of applications wherein
a deep learning is employed for environment manufacturing.

In this paper, the device electrocardiogram (DECG) prin-
ciple is introduced, and a new methodology based on deep
learning and DECG is proposed for prediction of RUL of
equipment as well as production line. DECG, which is similar
to monitor the health of the human body, records devices’
cycle time with all its sub-processes. Due to much more
data collected from DECG, it’s possible to introduce deep
learning and fully enhance the performance of deep learning
for specific application. Based on deep learning and a large
number of run-to-failure samples, the proposed algorithm can
provide an accurate prediction of device RUL.

In summary, there are three main contributions of this
paper:

• A concept of DECG in manufacturing environment,
which provides a fine-grained status observation and
reduces dependency on experts’ knowledge greatly,
is proposed.

• A RUL predicting methodology based on regression
and deep denoising auto-encoders (DDA) is proposed
to achieve an automatic feature engineering and a high-
level features extraction.

• The proposed algorithm and traditional factory infor-
mation system are compared, and the experiment is
performed in order to validate the feasibility and effec-
tiveness of proposed algorithm.

The paper is organized as follows. In Section II, the main
idea and details of DECG are presented. In Section III,
the problems are defined and described in detail. The algo-
rithm based on deep learning and industrial big data analy-
sis is proposed in Section IV. In Section V, the experimen-
tal results are provided. Lastly, a brief conclusion is given
in Section VI.

II. DEVICE ELECTROCARDIOGRAM
The existing technologies for industrial maintenance, such
as factory information system (FIS) [34] and prognostic
health management (PHM) [35], are widely used in man-
ufacturing. However, FIS can only detect whether an over
cycle appears, while the specific motion that causes delay
cannot be detected. Additionally, this coarse-grained mon-
itoring method is able only to recognize the critical issues
after they occurred, which means that no sign is detected
before the issue happens. In contrary, PHM can detect early
signs of potential failure of machines, and currently it is
one of the most popular methods. However, many PHM
requires additional sensors, which affects the detection accu-
racy because of installation, calibration, and environmental
issue. On the other hand, PHM cannot detect the cycle end.
Namely, in production scenarios, especially in vehicle pro-
duction, the production cycle which is consisted of thou-
sands of motions is often accomplished within one minute.
Therefore, a lack of detection of cycle end might cause huge
losses.

The DECG for industrial maintenance is similar to phys-
ical examination of human health condition. With fine-
grained monitoring of sub-processes within a production
cycle, DECG can visually represent current or historical pro-
cessing time of the sub-processes for further scheduling and
maintenance.

FIGURE 1. DECG principle.

The DECG principle is presented in Fig. 1. In many man-
ufacturing scenarios, a final product is made by a variety of
processing steps or production cycles. For instance, in vehicle
production, there are often four typical production cycles,
namely stamping, coating, welding, and general assembly.
Each of the listed production cycles is made up with mul-
tiple operations. For each specific operation, a baseline and
appropriate tolerances of working time are set. In DECG,
the working time of each operation in the cycle is recorded in
form of bar chart and colored in green, yellow, orange or red
that corresponds to good, watch, warning or fault respec-
tively. These bar charts are presented in a sequence view and
displayed as a set of cycle operations.
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Unlike many PHM, DECG can avoid sensors installa-
tion and retrieve time information for each operation to the
device or operator level from the programmable logic con-
troller (PLC). Another important DECG advantage is the
great reduction of dependency on experienced experts in
complicated production issues, which significantly reduces
maintenance cost for maintenance stuffs. In addition, unlike
FIS, DECGmonitors all operations within a production cycle
and provides predictive insights in production lines, which
improves operator efficiency and unplanned downtime.

For the aspect of implementation, considering the PLCs’
important role in manufacturing control, additional devices
are required to extract the information (working time of
process and its sub-operations) from PLC. With the OPC
UA Server deployed and directly connected to PLC, data
changes can be attained and the production logs can be gen-
erated. Therefore, OPC UA Sever can be treated as a data
collector for specific application. In summary, the spatially
distributed devices and corresponding OPC UA Servers are
linked together to collect the records and take it as input
for DECG.

III. PROBLEM STATEMENT
In this section, a typical industrial scenario and problem
statement are introduced. In manufacturing process, a very
common scene is that several identical devices do the same
job in parallel. This job usually contains more than one sub-
process. Since multiple similar devices and processes pro-
vide sufficient information support, it is assumed that if the
state data from adequate run-to-failure devices are recorded,
the unplanned downtime of identical or similar devices can
be predicted before failure happened.

Thus, in this study, the problem statement is defined
as follows. There are N identical run-to-failure devices,
D = {d1, d2, . . . , dN }, performing a specific assignment
that contains M sub-processes, P = {p1, p2, . . . , pM }.
In production cycle, the working time of each sub-process is
recorded and these records tend to change gradually accord-
ing to certain rule.Whenever identical devices or devices with
similar processes require the RUL prediction, the correspond-
ing working time within the production cycle is compared
with the recorded working time. Since the recorded working
time is collected from run-to-failure devices, when numerical
value and numerical distribution characteristics of device are
similar to recorded ones, the device RUL can be predicted
based on matched records. Hence, our goal is to predict the
unplanned downtime or RUL of working devices using the
run-to-failure devices.

IV. INDUSTRIAL BIG DATA ANALYTICS
In this section, the algorithm for industrial big data analytics,
data acquisition and preprocessing, is introduced. As it was
mentioned in previous section, in this study, plenty of similar
devices or a group of devices generates a large amount of data.
Data acquisition and preprocessing should be accomplished
before data analysis. In order to achieve higher prediction

accuracy and the best use of cleaned data, the ability of deep
learning to attain insight and knowledge from big data is used.
The algorithm details are presented in the following.

A. DATA ACQUISITION AND PREPROCESSING
The data analytics proposed in this paper is based on a two-
phase prediction of unplanned downtime, which consists of
training phase and predicting phase.

As mentioned in the preceding section, it is sup-
posed that there are N run-to-failure identical devices
D = {d1, d2, . . . , dN }) performing a specific assign-
ment of production cycle, which contains M sub-processes
P = {p1, p2, . . . , pM }. The training of deep neural net-
work is performed with state records of these N run-to-
failure devices. Namely, for each device, the state data
at K time moments before failure T = {t1, t2, . . . , tK }
are recorded. Here, we use Ri, where i = 1, 2, . . . ,N ,
in S = {R1,R2, . . . ,RN } to denote the ith device records
set for K time moments. More specifically, Ri is a set
{Ri1,Ri2, . . . ,RiK }, which contains K records for K time
moments. Furthermore, since each process (record set) con-
sists of M sub processes, the jth (j = 1, 2, . . . ,K ) record
set of ith (i = 1, 2, . . . ,N ) device Rij will embrace M sub-
records for these sub-processesRij = {r

ij
1 , r

ij
2 , . . . , r

ij
M }.When

the information is collected, data cleaning such as feature
discretization, missing data filling are performed for further
operation.

Deep learning is performed with mentioned records, which
are used as input and output data. In prediction phase,
if one or more similar devices are in a sharp wear stage,
the state data of these devices are treated as input of deep
neural network, while network output is the predicted RUL.

B. RUL PREDICTION BASED ON DEEP LEARNING
In recent years, the data-driven models have a very important
role in active maintenance and RUL prediction. However, one
of the most significant model tasks is feature engineering,
which involves several professional data operations, such
as dimensionality reduction, and relies greatly on specific
production scenario. In manufacturing environment, different
types of processing units usually have their own working
mechanisms and maintenance logics. Therefore, it might
be impossible to achieve a large number of correspond-
ing advanced data-driven models for maintenance, which is
unnecessary and causes a resource wasting.

In this paper, we propose deep learning for prediction of
the remaining useful life. One of the most obvious advan-
tages of deep learning is its ability to extract the features
automatically such as convolutional neural network (CNN)
and recurrent neural network (RNN) [36]. Additionally, as the
layer gets deeper, the number of features usually reduces and
obtained features become more abstract. In our application
scenario, the historical data of each process working time
are used for training. Based on the production background
interpreted before, and in order to achieve the best feature
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extraction using deep learning, the integrated deep denoising
auto-encoder (IDDA) is introduced into manufacturing envi-
ronment.

FIGURE 2. IDDA architecture.

The proposed IDDA architecture shown in Fig. 2 consists
of two DDA and a linear regression analysis. As mentioned
before, our goal is to predict the equipment RUL based
on current state, which is in our case, the working time of
equipment processes. Considering that collected data consist
of time series, in order to achieve a better prediction, at each
time moment during the training phase the record is split into
distant records and recent records, and then, they are used as
inputs of two different DDA. The distant records denote the
records that are far away from current time moment, while
the recent records denote records that are close to current
time moment. From our perspective, an accurate prediction
requires reasonable fusion of damage tendency and current
states. Thus, the distant records are used to simulate the
damage trend, while the recent records are used to simulate
the smoothing process of recent change.With the aim to avoid
the overfitting, a famous trick called dropout is applied to data
flow in two deep models. Afterwards, two outputs are fused
and eventual linear regression is performed to transform the
discrete records to equipment RUL. The details of proposed
algorithm and workflow (see Algorithm 1), including both
training phase and predicting phase, are presented in the
following.

When the historical data from K time moments are gath-
ered and cleaned, the first step is to split the data into distant
records and recent records. In this paper, records collected
at K time moments do not have a uniform distribution all
the time. As shown in line 2 of proposed algorithm, time
moments from NO.1 to NO.S have uniform distribution,
which provides a large scale for damage tendency simulation.
On the other hand, the rest of time moments, which form the

Algorithm 1 Algorithm of Integrated Deep Denoising
Auto-Encoder
Training Input: D = {(Ri,Yi)}Ni=1 where Ri and Yi denote
the ith equipment’s records and the remaining useful life,
respectively
Prediction input: distant records Ipd = {Pi}

S
i=1 and recent

records Ipr = {Pi}Ki=S

1. //training phase
2. Split D into Id ← {Rij}Ni=1

S
j=1, Ir ← {Rij}

N
i=1

K
j=S and

Y ← {Yi}Ni=1
3. for i← 1 to N //for each equipment
4. I id ← {Rij}

S
j=1

5. I ir ← {Rij}
K
j=S

6. Output1←DeepDenoisingAuto-encoder1(input← I id )
7. Output2←DeepDenoisingAuto-encoder2(input← I ir )
8. //integrate the outputs of two deep neural networks into
one output
9. Output← Fusion(Output1, Output2)
10. //perform regression to transform the discrete output
into prediction
11. Y1i ← Regression(Output)
12. // calculate Euclidean loss between predictions and
records

13. Loss← 1
2N

N∑
i=1
||Yi − Y1i ||

2
2

14. //use stochastic optimization to update the parameters
of the IDDA
15. // α is the learning rate
16. StochasticOptimization(Loss, α)
17. End for
18. // prediction phase
19. Poutput1 ← DeepDenoisingAuto-encoder1
(input←Ipd )
20. Poutput2 ← DeepDenoisingAuto-encoder2
(input←Ipr )
21. Poutput← Fusion(POutput1,POutput2)
22. Prediction← Regression(POutput)

time interval fromNO.S toNO.N, shrink to embody the recent
characteristic fully. Additionally, since the records have the
same data form, DDAs have the same structure. In the train-
ing phase, after data fusion and regression, the difference
of prediction and recorded values is defined as Euclidean
loss. Moreover, if Adam stochastic optimization is adopted,
faster iterators can be achieved compared with traditional
SGD or batch processing.

V. EXPERIMENTS
A. EXPERIMENTS DESCRIPTION
In this section, the proposed algorithm is validated and com-
pared with FIS. Specifically, these methods were imple-
mented in CNC machining center, which has been working
for a long time and the status information was recorded until
the machining center was exhausted. The machining center
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was used to remove redundant material from the mechanical
connecting rod and it had 32 sub-operations, such as axis
rotating, cutting, tool changing, etc. In order to guarantee the
acquisition and precision of working time of operations, the
OPC UA server was launched over the embedded device and
it was connected directly to PLC of machining center. Using
the Server/Clientmode ofOPCUA,wemanaged to record the
working time of all sub-operations within a production cycle.
Since the production cycle timewas around 52 seconds, it was
possible to obtain a large amount of status information, thus
the generalization ability of complex deep model was greatly
improved.

As it was previously presented, the proposed algorithm
embraces IDDA and numeric regression. Namely, the algo-
rithm first had two DDA with the same structure, which were
supposed to receive the input of distant and recent records
respectively, and to capsule the fused output as an input for
the next regression operation. Then, a regression was added to
predict the RUL. One of the most significant feature of DDA
is that at the training part, there is only one weight matrix
to be trained between two layers ordered by data flow. Once
the farmer weight matrix trained, the next training begins.
Additionally, after training, DDA can represent the features
with less dimension but with little information loss. That’s
because the input and output of weight matrix are artificially
the same, which lead DDA to make the feature another type
of representation (usually the dimension of the output is
less than the input) but with little information loss. In our
experiment, to make the feature transformation smoothly,
we decided to have three weight matrixes where the first two
of them are trained as DDA unit does and a fully connected
layer. Details of DDA are shown in Table 1.

TABLE 1. Parameters of integrated deep denoising auto-encoders.

As it can be seen in Table 1, DDAs have three hidden
layers, which are used to extract high-level features. Although
huge amount of data was obtained, in order to avoid the
overfitting, the drop out operation was implemented, which
represents a popular trick in deep learning that makes some
neurons artificially dead when data flows forward. Addition-
ally, since we trained the model in Caffe [37], Xavier initial-
ization [38] was applied to adjust the weights automatically
based on numbers of input layer and output layer. The training
of DDAswas performed with Softmax activation function and
Gaussian noise was added to improve the model robustness.
At the last hidden layer, instead of drop out and Softmax,
a fully connection was employed and Sigmoid activation

function was used. In the training, after the linear regression,
Euclidean loss layer was introduced to build-in module in
Caffe to calculate the loss. Moreover, in order to make a faster
convergence, Adam Optimization was implemented.

The number of neurons in input layer was chosen according
to number of sub-processes in machining center. Since there
were 30 sub-processes, the input layer consisted of 32 neu-
rons, whose inputs were the working times. In neural network
output layer was a set of four high-level features, which were
used as an input for the following regression operation. With
the aim to simulate the difference between distant records and
recent records, the records at every 15 records and 2 records
were used as distant records and recent records, respectively.
Considering the experiment cost, two similar CNCmachining
centers were used as a provider of training samples and it was
assumed that if the production cycle exceeds the expectation
(52 seconds in this case) by 30%, the machining center is
treated as failed.

B. RESULTS AND ANALYSIS
One of FIS characteristic is that it is able to recognize critical
issues after they occurred, but it cannot determine which
part of production cycle caused the delay. Compared with
FIS, DECG provides a fine-grainedmethodology without any
additional sensors. Moreover, the fusion of DDA and pro-
posed algorithm has less dependence on artificial decisions in
RUL prediction. The snapshot of FIS and DECG taken during
the experiment is presented in Fig. 3.

TABLE 2. Experiment results for FIS and DECG from the first warning to
the failure.

As it is shown in Fig. 3, FIS reflects the coarse-grained state
of specific process, which is composed of time stamp, work-
ing time and evaluation of past process. Namely, FIS is able to
estimate weather the total working time is normal, but it can-
not determine the specific abnormal sub. In contrary, DECG
(lower subs in Fig. 3) is capable to record a fine-grained
information, which discovers the abnormal sub operation and
sends the warning signal. This significant difference between
FIS and DECG has a great impact on RUL prediction. The
time intervals of FIS and DECG from the first warning to
the failure obtained in experiment and the response speed in
equipment abnormal performance are presented in Table 2.
As it is shown in Table 2, the main difference between
FIS and DECG is related to number of warnings before the
failure. In the experiment, DECG recognized the abnormal
operation in one-axis motion 210mins before failure, while
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FIGURE 3. The snapshot of FIS and DECG.

FIS detected the delay just 52 minutes before the failure.
Consequently, FIS had 52 warning times in total, including
a few unexplained warnings around the 62th minute and
frequent warnings that occurred 48minutes before the failure.
In contrary, DECG was warning continuously since the first
warning was sent, which greatly improved the credibility of
failure detection.

The additional experiment was performed in order to vali-
date the prediction accuracy. In order to present the prediction
precision properly, the predictions were recorded at every 5%
of RUL exceeding, and obtained results are shown in Fig. 4.
Usually, the estimated RUL is shorter than true RUL. There-
fore in Fig. 4, the X axis represents the exceeding percentage
of cumulative working time against the estimated RUL.

Similar to previous experiment, this experiment was con-
ducted on two similar CNC machining centers. Regardless
the short production cycle, a large amount of data was

FIGURE 4. Comparison of RUL predicted by proposed model and true RUL.

recorded, but the statistical data from BEET Company [39]
were also considered in order to achieve better validation
of proposed algorithm and to avoid abnormal samples from
limited experimental object. The statistical data were focused
on similar application of a large truck engine. Based on
records in experimental data and statistical data from BEET
Company, the actual RUL, which is labeled as a true RUL in
this paper, of experiment objects had better credibility.

The experimental results are presented in Fig. 4, the error
between predicted and true value is about 20%. In addition,
the contrast demonstrated in Fig. 3 reflects a high accuracy
when DECG is used to refine production cycle and to pre-
dict RUL. From our perspective, DECG both interprets the
trend of operation working time and provides much more
fine-grained training samples, which reduces deep learning
overfitting and improves prediction accuracy significantly.
Additionally, IDDA reduces the dependency on expert expe-
rience and human decision, and the integration with deep
learning provides an automatic feature engineering, which
fully embodies the concept of smart manufacturing.

VI. CONCLUSIONS
In this paper, a new algorithm for RUL prediction based on
DECG and deep learning is presented. Firstly, the concept of
DECG was introduced. Then, the problem statement in man-
ufacturing environment was explained. In addition, in order to
reduce the impact of experts’ experience and human decision
on prediction, a deep learning methodology, which embraces
IDDA and regression operation, was used. The proposed
algorithm was verified by experiments, wherein DECG was
compared with FIS. The experimental result have proven
DECG superiority over FIS in terms of response and reli-
ability. Furthermore, the prediction accuracy of IDDA was
validated by comparison with true RUL. The obtained results
have shown a high effectiveness of proposed algorithm. Nev-
ertheless, the comparison results have indicated superiority
of proposed algorithm and its feasibility to accelerate the
implementation of Industry 4.0.
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