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ABSTRACT Linearly homomorphic signature schemes allow the performance of linear computations on
authenticated data. They are important primitives for many applications, such as electronic voting, smart
grids, electronic health records, and so on. Proxy signature schemes allow an original signer to delegate
his/her signing power to a proxy signer, so that the proxy signer can sign on behalf of the original signer.
Therefore, a signature scheme offering both of the above signatures’ properties is very desirable. In this
paper, we construct the first linearly homomorphic proxy signature scheme, so the proxy signer can produce
a linearly homomorphic signature on behalf of the original signer. The scheme is provably secure in the
random oracle model. Moreover, the length of signature is short and constant. Linearly homomorphic proxy
signature scheme can be used in applications, such as electronic business and cloud computing.

INDEX TERMS Homomorphic signatures, proxy signature, bilinear pairings, random oracle.

I. INTRODUCTION
The conception of homomorphic signatures was originally
proposed by Johnson et al. [1] in 2002. Homomorphic
signature schemes are important primitives and allow to
validate computation over authenticated data [9], [20]–
[22], [28], [29], [32]–[34]. Informally, a signer holding
a dataset {V(i)

}
l
i=1 can produce corresponding signatures

σi = Sign(SK , V(i)) for i = 1, . . . , l and store the signed
dataset on a remote server. Later the server can publicly com-
pute a succinct valid signature σ on V = f(V(1), . . . ,V(l)).
A keynote feature of homomorphic signatures is that the
homomorphic signature σ can be computed without needing
to know the original secret key. In the last years, various types
of homomorphic signature schemes have been proposed. The
first schemes proposed were only suitable for performing
linear computations on authenticated data [2]–[7]. Then solu-
tions have been developed to support polynomial functions
[8], [9], [16]. Now, without any restrictions on the functions
themselves, leveled fully homomorphic signature schemes

have been designed [17], [18]. Homomorphic signature
schemes can be employed in electronic business and cloud
computing [10]–[15].

The concept of proxy signatures was first introduced by
Mambo et al. [23] in 1996. Proxy signature schemes enable
an original signer to delegate his/her signing capability to a
proxy signer, and then the proxy signer can sign a message
on behalf of the original signer. In 2012, Boldyreva et al. [24]
gave the definition of proxy signatures in detail and for-
malized a model of security for proxy signature schemes.
Furthermore, they specified the adversary’s capabilities and
goals. In their model, a public key infrastructure setting
(PKI) is also assumed, where each entity holds a public
and secret key pair. As usual, each user can sign messages
using the signing algorithm of a standard digital signature
scheme. A provably secure proxy signature scheme was also
proposed in this model. Although the scheme is lack of
efficiency, it can pay attention to the importance of security
model [25]–[27], [30], [31], [35], [36]. According to the
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delegation level, proxy signature schemes can be divided into
full delegation, partial delegation and delegation by warrant.
Proxy signature schemes have shown to be useful in many
applications. Nowadays, various types of proxy signature
schemes have been proposed, and they can offer the mixed
natures of signatures, such as strong proxy signatures [37],
proxy ring signatures [38], [39], and proxy blind signatures
[40], [41]. But up to our knowledge, there are no schemes
which combine the natures of linearly homomorphic signa-
tures and proxy signatures.

In this paper, the concept of linearly homomorphic proxy
signatures (LHPS) is proposed for the first time. It means that
the proxy signer can produce linearly homomorphic signa-
tures on behalf of the original signer. Suppose Alice wants to
produce linearly homomorphic signatures, but she may be on
vocation. So she can delegate Bob to generate signatures on
behalf of her. Anyone can verify the validity of the signatures
and perform linear computations on authenticated data. In a
word, linearly homomorphic proxy signatures can combine
the natures of linearly homomorphic signatures and proxy
signatures.

A. OUR CONTRIBUTIONS
In this paper, we introduce the notion and security model of
linearly homomorphic proxy signature schemes, and design a
new LHPS scheme from bilinear pairings. We prove that our
scheme is secure in the random oracle model. Moreover, our
signature is an element of a circle group, so its length is very
short.

B. ORGANIZATION
The rest of the paper is organized as follows. Section 2 con-
tains some preliminaries about bilinear maps, the short signa-
ture scheme proposed by Boneh, Lynn, and Shacham (BLS),
as well as the framework of linearly homomorphic proxy sig-
nature schemes and the security model. Section 3 gives a new
linearly homomorphic proxy signature, and Section 4 gives
the security and efficiency analysis of the scheme. Finally,
Section 5 concludes this paper.

II. PRELIMINARIES
A. BILINEAR GROUPS
In this section, we briefly review the facts about bilin-
ear maps. Let (G1,G2) be bilinear groups which satisfy
|G1|=|G2|=q for some prime number q.
e : G1 × G1 → G2 is a bilinear map with the following

properties:
(1) Bilinear: ∀g, h ∈ G1,∀a, b ∈ Zq, e(ga, hb) = e(g, h)ab;
(2) Non-degenerate: If g is a generator of G1, then e(g, g) is
a generator of G2. In other words, e(g, g) 6= 1;
(3) Computable: For all g, h ∈ G1, there exists an efficient
algorithm to compute e(g, h).
Now we introduce the Computational Diffie-Hellman

assumption in G1.
Definition 1: (CDH). Given a random generator g ∈ G1,

if there exists no probabilistic polynomial-time (PPT)

algorithm A that on input (g, gx , gy) outputs gxy with non-
negligible probability, we say that the CDH assumption holds
in G1. Here the probability is taken over the uniform choices
of x, y← Zq∗ and the internal coin tosses of A.

B. BLS SHORT SIGNATURE SCHEME
The BLS short signature scheme proposed in [19] consists
of the following algorithms: a key generation algorithm
KeyGen, a signature generation algorithm Sign and a sig-
nature verification algorithm Verify. And it uses a bilinear
map e : G1 × G1 → G2 and a full-domain hash function
H : {0, 1}∗→ G1, and g is a random generator of G1.

KeyGen: The secret key is x ∈ Z∗q , and the public key is
PK = gx .
Sign: Given a secret key x, and a message m, compute the

signature σ = H (m)x .
Verify: Given a public key PK , a message m and a signa-

ture σ , verify if the equation e(σ, g) = e(H (m),PK ) holds,
this algorithm outputs 1; otherwise it outputs 0.
The security of the BLS short signature scheme is based on

the CDH assumption. We refer to [19] for more details.

C. LINEARLY HOMOMORPHIC PROXY SIGNATURE
Definition 2: (LHPS). A linearly homomorphic proxy

signature (LHPS) scheme consists of six algorithms :(Setup,
KeyGen, Delegation, PSign, PVerify, Combine). The algo-
rithms are defined as follows:

• Setup: This algorithm takes a security parameter λ and
an integer l as input, and returns the string params, which
denotes the common scheme parameters. Notice that l
denotes an upper bound for the number of messages
signed in each file.

• KeyGen: This algorithm takes the system parameters as
input and returns a secret/public key pair (SK ,PK ) for a
user in the system.

• Delegation: The original signer A creates a warrantmωB
related to the proxy signer B, then interacts with B by a
series of interactive algorithms forming the delegation
protocol. As a result of the interaction, the final output
of the protocol is a proxy key Sp that the proxy signer
B uses to produce proxy signatures on behalf of the
original signer A.

• PSign: On input a proxy key Sp, a file identifier τ ∈
{0, 1}λ, and a message vector V, this algorithm outputs
the proxy signature σ .

• PVerify: Given the public key PK0 for the original
signer A, the public key PKB for the proxy signer B,
a warrantmωB , a file identifier τ , a message vectorV and
a proxy signature σ , it outputs 1 (accept) or 0 (reject).

• Combine: Given PK0, PKB, a warrant mωB , a file iden-
tifier τ , and a set of tuple {(fi, σi)}li=1, this algorithm
outputs a signature σ (Note that σ is intended to be a

signature on
l∑
i=1

fiV(i), where V(i) denotes the i-th vector

in the list of vectors V(1),V(2), . . . ,V(l)).
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Correctness. For correctness, we require:
(1) For all message vectorV and all file identifier τ ∈ {0, 1}λ,
if σ ← PSign(Sp, τ,V), then

PVerify(PK0,PKB,mωB , τ,V, σ ) = 1.

(2) For all τ ∈ {0, 1}λ, and all sets of triples {(fi, σi,V(i))}
l
i=1,

if it holds that

PVerify(PK0,PKB,mωB , τ,V
(i), σi) = 1

for all i = 1, . . . , l, then

PVerify(PK0,PKB,mωB , τ,
l∑
i=1

fiV(i),

Combine(PK0,PKB,mω, τ, {(fi, σi)}li=1)) = 1.

Security Model:We should consider two types of unforge-
ability in LHPS: Delegation unforgeability and Linearly
homomorphic proxy signature unforgeability. Delegation
unforgeability means that if the adversary does not obtain the
targeted delegation from the original signer, it is hard to out-
put a forgery of the targeted proxy signature. Linearly homo-
morphic proxy signature unforgeability means that, except
the proxy signer, anyone else including the origin signer can-
not generate a valid linearly homomorphic proxy signature on
behalf of the proxy signer. So we can divide the adversaries
into the following two types: Type I, the adversary A has the
key pair (SKj,PKj) for the proxy signer j, but it can not obtain
the delegation from the original signer;Type II, the adversary
obtains the delegation from the original signer, but it has no
secret key of the challenged proxy signer.

Now we introduce the security models in detail as follows:
Definition 3 (Delegation Unforgeability): A LHPS =

(Setup, KeyGen, Delegation, PSign, PVerify, Combine)
has delegation unforgeability if the advantage of any PPT
Type I adversary A in the following security game is neg-
ligible in the security parameter λ (Note that in this model,
the adversary A does not obtain the targeted delegation from
the original signer).

The challenger C sets (SK0,PK0)← KeyGen (1λ) as the
secret/public key for the original signer, then gives PK0 and
the system parameter params to A. The params define a
message space and a signature space. Note that l denotes an
upper bound for the number of messages signed in each file.
Queries: The adversary’s attack capabilities are modelled
by providing it access to a series of oracles, so A can ask a
polynomial number of queries as follows:

1) KRqueries.Given a key pair (SKi,PKi),C first checks
if (SKi,PKi) is a valid key pair. If it is true, then
(SKi,PKi) is stored in a list. Otherwise, C rejects and
outputs a special symbol ⊥.

2) DE queries. Given PK0 and any registered public key
PKi, C returns a warrant mωi and a delegation key Swi
corresponding to the warrant mωi .

3) Signing queries. Given any registered public key PKi,
PK0, a file identifier τ ∈ {0, 1}λ, and a message

vector V, C outputs the signature σ including the cor-
responding warrant mωi .

Output: A outputs a public key PKj, PK0, a warrant mωj ,
a file identifier τ ∗ ∈ {0, 1}λ, a message vector V∗ and a
signature σ ∗.
The adversary wins if PVerify(PK0,PKj,mwj , τ

∗, V∗,
σ ∗) = 1, and it must satisfy that the public key PKj does
not appear in DE queries and signing queries.

The advantage of the adversary is the probability that he
wins the above game.
Definition 4 (Linearly Homomorphic Proxy Signature

Unforgeability): A LHPS = (Setup, KeyGen, Delegation,
PSign, PVerify, Combine) has linearly homomorphic proxy
signature unforgeability if the advantage of any PPT Type II
adversary A in the following security game is negligible in the
security parameter λ (Note that in this model, the adversary
A has no secret key of the challenged proxy signer).

The challenger C sets (SK0,PK0) ← KeyGen (1λ)
as the secret/public key for the original signer and
(SK∗,PK∗)← KeyGen (1λ) as the secret/public key for the
targeted proxy signer. Then C gives (SK0,PK0), PK∗ and the
system parameter params to A. The params define a message
space and a signature space. Similarly, l denotes an upper
bound for the number of messages signed in each file.
Queries: The adversary’s attack capabilities are modelled
by providing it access to a series of oracles, so A can ask a
polynomial number of queries as follows:

1) KRqueries.Given a key pair (SKi,PKi),C first checks
if (SKi,PKi) is a valid key pair. If it is true, then
(SKi,PKi) is stored in a list. Otherwise, C rejects and
outputs a special symbol ⊥.

2) Signing queries. Given the targeted public key PK∗,
PK0, a warrant mω∗ , a file identifier τ ∈ {0, 1}λ, and a
message vector V, C outputs the signature σ .

Output: A outputs the targeted public key PK∗, PK0, a war-
rant mω∗ , a file identifier τ ∗ ∈ {0, 1}λ, a message vector
V∗ 6= 0 and a signature σ ∗.
The adversary wins if PVerify(PK0,PK∗,mω∗ , τ ∗,

V∗, σ ∗) = 1, and the file identifier τ ∗ does not appear in
signing queries.

The advantage of the adversary is the probability that he
wins the above game.

III. THE PROPOSED SCHEME
In this section, we propose a provably secure linearly homo-
morphic proxy signature from bilinear pairings. And our
proxy signature scheme belongs to delegation by warrant.
So the original signer makes a warrant mω before delegation.
The warrantmω contains some explicit information including
the description of the delegation relation.

Now we construct the new scheme as follows:

1) Setup: Let (G1,G2) be bilinear groups satisfying
|G1|=|G2|=q for some prime number q and g be
the generator of G1. The bilinear map is given by
e: G1 × G1 → G2. Define two hash functions
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H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ × Z → G1.
H1 and H2 will be viewed as random oracles in our
security proof. Let [l] = {1, . . . , l}, [N ] = {1, . . . ,N }.
The security parameter is λ. The system parameter
params = (G1,G2, q, g, e, λ,H1,H2). Assume that
params defines the file identifier space ID, where
|ID| = poly(λ).

2) KeyGen: The original signer chooses a secret key
x0 ∈ Z∗q and the public key isPK0 = gx0 . The secret key
of the proxy signer B is xB ∈ Z∗q and the corresponding
public key is PKB = gxB .

3) Delegation: The original signer generates a standard
warrant mω related to the proxy signer B, computes
Sω = H1(mw)x0 , and sends Sω to B. Then B verifies
the equation e(Sω, g) = e(H1(mw),PK0). If the equa-
tion holds, then the proxy signer B gets the proxy key
Sp = (xB, Sω).

4) PSign:Given amessage vectorV= (v1, . . . , vN ) ∈ ZNq ,
a proxy key Sp, and a file identifier τ ∈ ID, it returns
⊥ if

∑
j∈[N ]

vj = 0. Otherwise, the proxy signer B can

compute

σ = Sω

∑
j∈[N ]

vj
· (

∏
j∈[N ]

H2(τ, j)vj )xB

5) PVerify: Given PK0, PKB, a warrant mω, a file identi-
fier τ , a message vector V = (v1, . . . , vN ) ∈ ZNq , and a
proxy signature σ , return 0 if

∑
j∈[N ]

vj = 0. Otherwise,

the verifier checks if

e(σ, g) = e(H1(mw),PK0)

∑
j∈[N ]

vj

· e(
∏
j∈[N ]

H2(τ, j)vj ,PKB)

If the equation holds, output 1; otherwise, output 0.
6) Combine: Given PK0, PKB, a warrant mω, a file iden-

tifier τ and a set of tuple {(fi, σi)}li=1, this algorithm
outputs a signature σ ←

∏
i∈[l]

σ
fi
i .

Correctness:
Given PK0, PKB, a warrant mω, a file identifier τ , a mes-

sage vector V = (v1, . . . , vN ) ∈ ZNq and a proxy signature σ ,
if σ ← PSign(Sp, τ,V), the correctness of the scheme can be
verified by the following equations:

e(σ, g) = e(Sω, g)

∑
j∈[N ]

vj
· e((

∏
j∈[N ]

H2(τ, j)vj )xB , g)

= e(H1(mw),PK0)

∑
j∈[N ]

vj

· e(
∏
j∈[N ]

H2(τ, j)vj ,PKB)

Furthermore, given τ ∈ ID and all sets of triples
{(fi, σi,Vi)}li=1, if σi ← PSign(Sp, τ,V(i)), then by our defi-
nition of Combine, we have σ ←

∏
i∈[l]

σ
fi
i .

Now, we only need to check that σ is a signature on
the V = (v1, . . . , vN ) =

∑
i∈[l]

fiV(i), where V(i) denotes the i-

th vector in the list of vectors V(1),V(2), . . . ,V(l). Suppose
V(i)
= (v(i)1 , . . . , v

(i)
N ), by correctness of individual signature,

we have

e(σi, g) = e(H1(mw),PK0)

∑
j∈[N ]

v(i)j

· e(
∏
j∈[N ]

H2(τ, j)
v(i)j ,PKB).

So by the bilinear property, we have

e(σ, g) =
∏
i∈[l]

e(σi, g)fi

= e(H1(mw),PK0)

∑
i∈[l]

∑
j∈[N ]

fiv
(i)
j

·e(
∏
j∈[N ]

H2(τ, j)

∑
i∈[l]

fiv
(i)
j
,PKB)

= e(H1(mw),PK0)

∑
j∈[N ]

∑
i∈[l]

fiv
(i)
j

·e(
∏
j∈[N ]

H2(τ, j)

∑
i∈[l]

fiv
(i)
j
,PKB)

= e(H1(mw),PK0)

∑
j∈[N ]

vj

·e(
∏
j∈[N ]

H2(τ, j)vj ,PKB)

This completes the proof.

IV. PROPOSED SCHEME ANALYSIS
Theorem 1: Assuming that the type I adversary makes

at most qH1 , qH2 , qD and qS queries to the H1, H2,
Delegation and Signing oracles, respectively, the signature
scheme has delegation unforgeability on adaptively chosen-
message attacks in the random oracle model if the CDH
assumption holds in G1.

Proof: Supposing C is a challenger and A is an adver-
sary, C is given (g, gx , gy) in order to output gxy. In this
model, the adversary A does not obtain the delegation from
the original signer.

First, C runs A on input PK0 = gx as the pub-
lic key of the original signer, then sends the system
params=(G1,G2, q, g, e, λ,H1,H2,PK0) to the adversary A
and responses as follows:

Key registration queries: We assume that the number of
users in the game is qH1 . When A requests to register a new
user i by outputting pair (xi,PKi), C verifies if they are valid
key pairs, then adds (xi,PKi) to the Key-List.
H1−queries: Assuming w.l.o.g A makes qH1 times to

H1−queries and gets the warrant mωi for 1 ≤ i ≤ qH1 from
C before these queries, C randomly chooses s ∈ [1, qH1 ]
and ti ∈ Z∗q for 1 ≤ i ≤ qH1 , where s is the targeted
proxy signer’s number. When A queries mωi to H1−oracle, C
answers H1(mwi ) = gti if i 6= s; Otherwise, H1(mwi ) = gy if
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i = s. Then C adds (mωi , g
ti , ti)i 6=s to the H1−List; If i = s,

C adds (mωs , g
y, ∗) to the H1−List (Note that ∗ means the

corresponding value is unknown).
H2−queries: Assume that A makes qH2 times to

H2−queries. When A queries (τ, j) to H2− oracle, C ran-
domly chooses ατ,j ∈ Z∗q for 1 ≤ j ≤ N and answers
H2(τ, j) = gατ,j . Then C adds ((τ, j), gατ,j , ατ,j) to the
H2−List.

Delegation queries:WhenA requests delegation for user i,
assuming w.l.o.g A has requested H1−queries on mωi ,
C checks the H1−List and computes Sωi = (gti )x = PK ti

0
if i 6= s; Otherwise, C aborts if i = s. Then C adds (i, Sωi ) to
the DG-List.
Signing queries: Given PK0, PKi, a warrant mωi ,

a file identifier τ ∈ ID, and a message vector
V = (v1, . . . , vN ) ∈ ZNq such that

∑
j∈[N ]

vj 6= 0 , assuming

w.l.o.g A has requested the above corresponding queries
for user i, C checks the Key-List, H2−List, DG-List and
responses as follows:
• if i 6= s, C answers the signature

σ = Sωi

∑
j∈[N ]

vj
· (

∏
j∈[N ]

H2(τ, j)vj )xi

= PK 0

ti
∑
j∈[N ]

vj
· (

∏
j∈[N ]

PK
ατ,jvj
i )

• if i = s, C aborts.
Output: A outputs a a signature σ ∗ on a message vector

V∗ = (v∗1, . . . , v
∗
N ) ∈ Z

N
q with respect to PK0, PKi, a warrant

mωi , and a file identifier τ
∗ such that

∑
j∈[N ]

v∗j 6= 0 and

PVerify(PK0,PKi,mωi , τ
∗,V∗, σ ∗) = 1

• If i 6= s, C aborts.
• Otherwise, it holds that σ ∗ can satisfy the verification
equation

e(σ ∗, g) = e(H1(mws ),PK0)

∑
j∈[N ]

v∗j

· e(
∏
j∈[N ]

H2(τ ∗, j)
v∗j ,PKs)

Assuming w.l.o.g A has requested H1−queries on mωs
and H2−queries on τ ∗, C checks H1−List, and gets
H1(mωs ) = gy. Furthermore, C gets H2(τ ∗, j) = gατ∗,j for
j ∈ [N ] from H2−List. Then we have

e(σ ∗, g) = e(gy, gx)

∑
j∈[N ]

v∗j
· e(g

∑
j∈[N ]

ατ∗,jv
∗
j
,PKs)

= e(Sωs

∑
j∈[N ]

v∗j
, g) · e(PKs

∑
j∈[N ]

ατ∗,jv
∗
j
, g)

= e(Sωs

∑
j∈[N ]

v∗j
· PKs

∑
j∈[N ]

ατ∗,jv
∗
j
, g)

So by the non-degenerate property, we have

σ ∗ = Sωs

∑
j∈[N ]

v∗j
· PKs

∑
j∈[N ]

ατ∗,jv
∗
j

C can compute gxy = Sωs = (σ ∗/
∏
j∈[N ]

PK
ατ∗,jv

∗
j

s )
1/

∑
j∈[N ]

v∗j
,

then the CDH problem is solved.
We analyze the probability of success for C. There are

three sceneries in which C will abort. Assume E1means that
i = s in Delegation queries; E2means that i = s in Signature
queries; E3 means that i 6= s in Output period.

We have Pr[E1] = qD
qH1

, Pr[E2] = qS
qH1

, Pr[E3] = 1− 1
qH1

.
So if A is an adversary with success probability ε,C can solve
the CDH problem with probability (1− qD

qH1
)(1− qS

qH1
) 1
qH1
ε.

This completes the proof.
Theorem 2: Assuming that the type II adversary makes

at most qH1 , qH2 and qS queries to the H1, H2 and Signing
oracles, respectively, the scheme has linearly homomorphic
proxy signature unforgeability on adaptively chosen-message
attacks in the random oracle model if the CDH assumption
holds in G1.

Proof: AssumingC is a challenger andA is an adversary,
C is given (g, gx , gy) in order to output gxy. In this model,
the adversary A does not obtain the secret key of the chal-
lenged proxy signer.

First, C runs A on input PK∗ = gx as the public key of the
targeted proxy signer. Moreover, C chooses a random integer
x0 ∈ Z∗q and sets PK0 = gx0 , then sends the system parameter
params=(G1,G2, q, g, e, λ,H1,H2, x0,PK0,PK∗) to A and
responses as follows:

Key registration queries: When A requests to register a
new user i by outputting pair (xi,PKi), C verifies if they are
valid key pairs, and then adds (xi,PKi) to the Key-List.
H1−queries:AssumingAmakes qH1 times toH1−queries,

C randomly chooses ti ∈ Z∗q for 1 ≤ i ≤ qH1 . When A queries
mωi to H1−oracle, C answers H1(mwi ) = gti . Then C adds
(mwi , g

ti , ti) to the H1−List.
H2−queries:Assume that A makes qH2 times to

H2−queries.C randomly chooses s ∈ [N ] and a file identifier
τ ∗ ∈ {0, 1}λ as the target. When A queries (τ, j) to H2−

oracle, C randomly chooses ατ,j ∈ Z∗q for 1 ≤ j ≤ N
and answers H2(τ, j) = gατ,j if (τ, j) 6= (τ ∗, s); Otherwise,
H2(τ ∗, s) = gy. Then C adds ((τ, j), gατ,j , ατ,j)(τ,j)6=(τ∗,s) to
the H2−List. If (τ, j) = (τ ∗, s), then C adds ((τ ∗, s), gy, ∗)
to the H2−List (Note that ∗ means the corresponding value
is unknown).

Signing queries: Given PK0, PK∗, a warrant mω∗ ,
a file identifier τ ∈ ID, and a message vector
V = (v1, . . . , vN ) ∈ ZNq , assuming w.l.o.g A has requested
H1−queries onmω∗ andH2−queries on τ , C checks and gets
the corresponding t∗ from H1−List. Furthermore, if τ 6= τ ∗,
C gets the corresponding ατ,j for j ∈ [N ] from H2−List.
Then C responses as follows:

• if τ 6= τ ∗, C answers the signature

σ = Sω∗

∑
j∈[N ]

vj
· (

∏
j∈[N ]

H2(τ, j)vj )x

= PK 0

∑
j∈[N ]

t∗vj
· PK∗

∑
j∈[N ]

ατ,jvj
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• if τ = τ ∗, C aborts.
Output: A outputs a a signature σ ∗ on a message vector

V∗ = (v∗1, . . . , v
∗
N ) ∈ Z

N
q with respect to PK0, PK∗, a warrant

mω∗ , and a file identifier τ such that V∗ 6= 0 and

PVerify(PK0,PK∗,mω∗ , τ ,V∗, σ ∗) = 1

• If τ 6= τ ∗ or v∗s = 0, C aborts.
• Otherwise, it holds that σ ∗ can satisfy the verification
equation

e(σ ∗, g) = e(H1(mω∗ ),PK0)

∑
j∈[N ]

v∗j

· e(
∏
j∈[N ]

H2(τ ∗, j)
v∗j ,PK∗)

Assuming w.l.o.g A has requested H1−queries on mω∗ and
H2−queries on τ ∗, C checksH1−List,H2−List and gets the
corresponding values. Then we have

e(σ ∗, g) = e(H1(mω∗ ), gx0 )

∑
j∈[N ]

v∗j
· e(g

∑
j 6=s
ατ∗,jv

∗
j
gyv
∗
s , gx)

= e(Sω∗

∑
j∈[N ]

v∗j
, g) · e(PK∗

∑
j 6=s
ατ∗,jv

∗
j
(gxy)v

∗
s , g)

= e(Sω∗

∑
j∈[N ]

v∗j
· PK∗

∑
j 6=s
ατ∗,jv

∗
j
(gxy)v

∗
s , g)

So by the non-degenerate property, we have

σ ∗ = Sω∗

∑
j∈[N ]

v∗j
· PK∗

∑
j 6=s
ατ∗,jv

∗
j
(gxy)v

∗
s

C can compute gxy = (σ ∗/(Sω∗

∑
j∈[N ]

v∗j
·PK∗

∑
j6=s
ατ∗,jv

∗
j
))

1
v∗s , then

the CDH problem is solved.
We analyze the probability of success for C. There are

three sceneries in which C will abort. Assume E1means that
τ = τ ∗ in Signature queries; E2means that τ 6= τ ∗ in Output
period, E3 means that v∗s = 0 in Output period.

We have Pr[E1] = qS
poly(λ) , Pr[E2] = 1 − 1

poly(λ) ,
Pr[E3] = 1

q . So if A is an adversary with success prob-
ability ε, C can solve the CDH problem with probability
(1− qS

poly(λ) )
1

poly(λ) (1−
1
q )ε.

This completes the proof.
Efficiency Analysis:Our scheme has a series of advantages.

Firstly, the delegation uses the BLS short signature scheme,
so the certification is an element in group G1. Secondly, our
linearly homomorphic proxy signature is also an element
in group G1, so the length of the signature is very short.
Our scheme is more efficient and suitable for low-bandwidth
communication environments. Finally, the verification of the
new proxy signature only requires three pair computations,
so it is efficient and practical.

V. CONCLUSION
In this paper, we formally introduce the concept of linearly
homomorphic proxy signatures, which allows a proxy signer
to produce linearly homomorphic signatures on behalf of the
original signer. Moreover, we give the formal security defi-
nition and design a linearly homomorphic proxy signature.
Then we prove the signature is secure against existentially

forgery on adaptively chosen-message attacks in the random
oracle model based on the CDH assumption. The length of
our signature scheme is very short, so our scheme is suitable
for low-bandwidth communication environments. Linearly
homomorphic proxy signature schemes can be used in appli-
cations such as electronic business and cloud computing.
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