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ABSTRACT Over the past few years, active research on algorithm development for the optimal operations
of home energy management systems (HEMSs) has been performed. The objective is to compute optimized
schedules for shiftable home appliances. This is based on the demand response (DR) synergized with
renewable energy sources and energy storage system optimal dispatch (DRSREOD). An improved algorithm
for a DRSREOD-basedHEMS is proposed in this paper. This heuristic-based algorithm considers DR, photo-
voltaic availability, the state of charge and charge/discharge rates of the storage battery and the sharing-based
parallel operation of more than one power source to supply the required load. The HEMS problem has been
solved to minimize the cost of energy (CE) and time-based discomfort (TBD) with conflicting tradeoffs. The
mixed scheduling of appliances (delayed scheduling for some appliances and advanced scheduling for others)
is introduced to improve the CE and TBD performance parameters. An inclining block rate scheme is also
incorporated to reduce the peak load. A set of optimized tradeoffs betweenCE and TBD has been computed to
address multi-objectivity using a multi-objective genetic algorithm (MOGA) with Pareto optimization (PO)
to perform the tradeoff analysis and to enable consumers to select the most feasible solution. Due to the
rapid increase in demand for electricity, developing countries are facing large-scale load shedding (LS).
An innovative algorithm is also proposed for the optimal sizing of a dispatchable generator (DG) that can
supply the DRSREOD-based HEMS during LS hours to ensure an uninterrupted supply of power. The
proposed MOGA/PO-based algorithm enables consumers to select a DG of the optimal size from among
a number of optimal choices based on tradeoffs between the DG size, CE , and TBD.

INDEX TERMS Demand response, home energy management system, advanced and delayed scheduling,
dispatch of renewables and energy storage systems, generator sizing and load shedding, multi-objective
genetic algorithm and Pareto optimization.

I. INTRODUCTION
Over the past few decades, demand for energy has increased
at a drastic pace, while energy generation capabilities have
not been upgraded at a sufficient rate to catch up with
the rising demand. This imbalance between demand and
generation has resulted in power shortfalls. This can place
networks in undesirable situations and can lead to system
instability and load shedding in developing countries [1].
In the past, energy imbalance has conventionally been
addressed by utilities upgrading their centrally located gen-
eration and transmission capacities, in an approach known as

supply-side management. Over the last decade, however,
demand-side management has emerged as an alternative
method of energy management to maintain the balance
between demand and generation while focusing on the con-
sumer side. AHEMS is used to implement demand-side man-
agement in a home. A HEMS achieves its function through
price-based DR and the optimized dispatch of distributed
energy sources, especially RESs [2].

Price-based DR consists of the scheduling of consumer
loads, based on load shifting from peak to off-peak periods,
to achieve a smoother utility demand profile. More than 24%
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TABLE 1. Abbreviations.

of the loads from systems installed in homes in developing
countries are elastic in nature. Load elasticity carries a large
hidden potential to smooth the utility demand profile through
loads shifting via price-based DR [3]. This benefits the utility
by reducing the generation cost through the exclusion of
costly peaking plants from dispatch and by encouraging the
sale of unutilized energy available during off-peak periods.
Utilities encourage consumers to engage in such desired
load shifting by offering lower energy prices during off-
peak hours. Consumers benefit through the reduction in CE
obtained by shifting their loads toward off-peak times.

Environmental concerns and reports on the approaching
exhaustion of fossil reserves have made RESs the unani-
mous choice for a sustainable supply of energy in the future
[4]. Accordingly, PV technology and WTs are the fastest-
growing sources of green energy in the world, since 2010 [5].
Reductions in the prices of RESs have further incentivized
consumers to install local RESs to supply a portion of their
loads and inject excess energy back into the grid for monetary
benefits. This scenario has led to an exponential spread of

TABLE 2. Nomenclature.

RESs throughout the world and motivated research on opti-
mal methods of synergizing them with HEMSs. However,
the power supplied by RESs is intermittent in nature; con-
sequently, an ESS also must be integrated into such a HEMS
to introduce dispatchability. Such a DRSREOD-based HEMS
provides additional benefits to the consumer (and the utility)
by reducing energy bills, reducing peak demands, achieving
overall energy savings and enabling the sale of surplus energy
to the utility. A DRSREOD-based HEMS mainly consists

VOLUME 6, 2018 15551



B. Hussain et al.: Innovative Heuristic Algorithm for IoT-Enabled Smart Homes for Developing Countries

FIGURE 1. HEMS architecture for a smart home.

of HAs, RESs, an ESS, a HEMS controller, a home area
network for local communication and smart meters for two-
way communication between the consumer and the utility
for the exchange of pricing and consumption information.
A general HEMS architecture is shown in Fig. 1. The HEMS
controller is the most vital component. It is based on a con-
trol algorithm that carries all of the computational intelli-
gence required for optimal HEMS operation. For a DR-based
HEMS, the controller computes the optimal schedules for the
SHAs, whereas for a DRSREOD-based HEMS, it computes
the optimal schedules combined with the optimal dispatch
for the RESs, the ESS and the grid to achieve the HEMS
objectives.

Most of the research conducted on HEMSs over the last
decade has been based on DR only [6]–[10]; research on
DR-synergized RESs has been actively pursued only for
the past few years [11]–[13]. Researchers are also currently
pursuing the integration of ESSs into their models to intro-
duce dispatchability for RESs [14]–[19]. In [18], the authors
present an idea regarding an operational strategy for SHAs
and thermostatic air conditioner control for aggregated homes
using locational-marginal-price-based DR. A flow chart for
the dispatch of PV energy from a solar farm and an SB
based on the excess available PV energy, SOC and maxi-
mum charge/discharge rates is also presented. However, load
sharing between the SB and the grid when the load require-
ment exceeds the discharge rate or SOC_min limits is not
formulated/included. Similarly, when excess PV energy is
stored in the SB based on its charge rate and SOC_max,
the remaining energy after the SB has been charged can
also be sold to the utility, and this possibility also is not
formulated/included. Tradeoffs between CE and TBD are not
considered. Furthermore, most of the DR models considered
in present research are based on DS [6], [9], [13]. These
limit scheduling flexibility and opportunities for achieving
the maximum reduction in CE by making use of more off-
peak hours for load shifting, direct use of RESs and more
optimal use of the ESS during peak hours.

This study presents an algorithm for a DRSREOD-
based HEMS that considers the aforementioned

improvements/conditions. The proposed heuristic algorithm
combines DR with optimal dispatch based on the excess
available PV energy, maximum charge/discharge rates and
SOC. PV technology is regarded as the preferred source for
supplying the load. Excess PV energy is stored in the SB
in accordance with the limiting SB parameters (SOC_max,
maximum charge rate), and the rest is sold to the grid. The SB
supplies the load during peak hours in parallel with the grid
in accordance with the limiting SB parameters (SOC_min,
maximum discharge rate). MS is proposed for the SHAs, with
some of them classified asAS (w.r.t. the preferred ending time
for completing their operation) and the others classified as
DS (w.r.t. the preferred start time for starting their operation),
to improve the HEMS performance. A ToU tariff with an IBR
scheme is incorporated to limit the peak load. The proposed
DRSREOD-based algorithm minimizes CE and TBD while
considering the underlying tradeoffs. Most researchers have
previously incorporated tradeoffs between HEMS perfor-
mance parameters by means of the WSM [6], [9], [10].
In this method, the HEMS problem is modified into a single-
objective optimization problem, yielding a tradeoff solution
that does not provide a clear relation between the multi-
ple objectives [23]. Here, a MOGA/PO-based method is
proposed to obtain a direct and clear relation between the
tradeoff parameters. The proposed algorithm based on MS
outperforms a DS-based algorithm for CE and TBD tradeoffs
for DR as well as for a DRSREOD-based HEMS.

In addition, present research on optimizing the size of
hybrid energy systems for HEMSs is primarily focusing on
the new infrastructure to be installed [20]–[22]. The issue of
DG sizing to ensure power availability under LS conditions
for an existing DRSREOD-based HEMS while considering
CE and TBD tradeoffs is seldomly addressed. Due to the rapid
increase in demand, consumers in developing countries are
facing widespread LS due to energy-deficient systems [1].
This study proposes a novel method for the optimal sizing
of a DG that can supply MS loads during LS hours in parallel
with SB and PV power supplies in an existing DRSREOD-
based HEMS. The DG sizing problem considers the HEMS
tradeoffs between CE and TBD(M ) as well as the maximum
scheduled LS hours. To the best of our knowledge, it is rare
to find research on the optimal DG sizing to cope with LS
for an existing DRSREOD-based HEMS infrastructure while
considering the tradeoffs between Pgsize, CE and TBD(M ).

The remainder of the paper is organized as follows. Related
work relevant to the present research that has been performed
in recent years is presented in section II. The system model
is described in section III. The formulations of the DR- and
DRSREOD-based HEMS problems and techniques for solv-
ing these problems are presented in section IV. The proposed
algorithms for DR- and DRSREOD-based HEMSs and for
determining the DG size necessary to cope with LS for a
DRSREOD-based HEMS are presented in section V. Simu-
lations are presented in section IV to validate the proposed
algorithms for the DR- and DRSREOD-based HEMSmodels
for DS and MS, along with a critical analysis of the results.
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Further simulations are presented in section VII to validate
the proposed algorithm for optimal DG sizing to cope with
LS, along with a critical analysis of the sizing parameters.
Conclusions and future work are discussed in section VIII.

II. RELATED WORK
Research on HEMSs over the last decade has mainly focused
on DR only. Various schemes for tariffs and SHAs have been
considered to implement DR. Various objectives, includ-
ing reducing CE , TBD and PAR/peak load, have been for-
mulated, and various optimization techniques, such as LP,
MILP, and advanced heuristic methods, have been adopted
to obtain the optimal solutions. Following the widespread
installation of RESs and ESSs as part of optimal smart
grid operations, researchers have begun to focus on optimal
DRSR- and DRSREOD-based HEMS operations. Various
algorithms have been presented for the integration of RESs
and ESSs into HEMSs. Furthermore, work is also being done
on the optimal sizing of hybrid energy systems (PV/SB/DG)
for HEMSs. Related work on HEMSs is discussed in this
section under the categories of DR, DRSR, DRSREOD and
DRSREOD with optimal DG sizing to cope with LS.

A. DR-BASED HEMSs
In most DR-based HEMSs, SHA scheduling is based on DS
with the starting slot of the SHA operating time range as the
preferred point or delayed/advanced scheduling with an inter-
mediate point in the SHA operating range as the preferred
start time. TBD is computed from the distance between the
actual start time and the preferred point. In [6], the authors
present a method for the DS of SHAs based on a genetic
algorithm in which peak re-emergence is handled through
an IBR scheme. Objectives are combined via the WSM to
achieve CE and TBD tradeoffs. In [7], a DS algorithm based
on particle swarm optimization is presented. The CE per-
formance parameters are compared for RTP and ToU tariffs
using IBR. A multi-stage ToU tariff is found to yield better
results in reducing CE . In [8], a two-level HEMS framework
is presented. SHAs are scheduled for delayed operation to
reduce CE via communication with the operator. The oper-
ator solves a multi-objective problem to minimize the total
load deviation to modify the desired demand from customers.
The rewards offered to customers for each kW of deviation
from the desired load are also minimized. In [9], the authors
segregate the scheduling horizon for the HEMS into 4 win-
dows. Appliances are classified based on their presence in the
home, activity orientation and delay tolerance. The SHAs are
operated in designated windows to increase user comfort by
means of the combined CE and SHA delay results obtained
through the WSM. In [10], an algorithm is presented for
the optimal scheduling of SHAs, the charging/discharging
of electric vehicles and the preferred periods for NSHAs
considering customer preferences. Objectives regarding CE
and the interruption cost of the SHAs are combined using
the WSM. Outages are managed using electric vehicles to
increase satisfaction. This research proposed the idea of MS

for SHAs, classifying them as AS and DS to enable more
SHAs to operate during off-peak/PV availability hours to
reduce CE and TBD. MS not only enhances the satisfaction
of HEMS objectives but also provides more diverse options
to the consumer when shifting the operation of an HA. Our
proposed algorithms demonstrate the advantages of MS over
DS for DR-based HEMSs.

B. DRSR-BASED HEMSs
In [11], an algorithm for the optimal operation of SHAs
and electric vehicles considering predicted RES capacities
and power-purchase agreements with retailers is presented.
A diary of consumption showing interest in the usage of a
SHA/electric vehicle in certain desired time slots for a day
ahead is prepared by the consumer for all possible load pro-
files. To address the large number of possible combinations,
a genetic algorithm is used for optimal scheduling to maxi-
mize the difference between the amount the consumer could
pay and the cost of obtaining that energy. In [12], an algorithm
is proposed for a prosumer-based HEMS simultaneously par-
ticipating in generation and efficient consumption. The past
history of SHA operation is used as the predicted demand.
Related appliances are clustered together for operation in
three time windows. The frustration from delayed/advanced
scheduling of the SHAs and CE are combined. The profit
from selling PV energy and the penalty cost to the consumer
for not providing the promised PV energy are modeled.
In [13], the performances of heuristic HEMS controllers
based on genetic algorithm, particle swarm and ant colony
optimization techniques are evaluated. Appliances are mod-
eled as fixed, shiftable and elastic. The HEMS problem is
formulated as a multiple knapsack problem. For tradeoff
analysis, theWSM is used to combine the objective functions
for CE and TBD. Because the power supplied by RESs is
intermittent in nature, the related dispatch problem is quite
complex if they are used without an ESS.

C. DRSREOD-BASED HEMSs
An ESS is integrated into an RES-based HEMS to introduce
dispatchability. In [14], an algorithm is presented for the
priority-based scheduling of PV/SB/grid sources to maxi-
mize PV usage. In the absence of PV power, the SB is uti-
lized with real-time prioritization of appliances for operation.
HAs are classified as controllable, with user-defined oper-
ating time intervals; semi-controllable, with flexible power
usage; or uncontrollable. In [15], a mechanism for dynamic
HEMS operation is presented. The SB is charged from the
RESs, where SOC indicates the contribution from the RESs.
Grid availability, SOC and the sign of the change in the SOC
value are considered for optimal operation. During discharge,
the operation of lower-priority appliances is shifted toward
off-peak periods, and the air conditioner is operated at a high
setting. In [16], a HEMS algorithm for priority-based SHA
scheduling based on real-time pricing and RES management
is presented. During peak hours, energy from the RESs and
the SB is used to supply appliances, and during off-peak
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hours, the RESs are used to charge the SB while loads are
supplied from the grid. In [17], a collaborative strategy for
DR with offline scheduling for electric vehicle charging and
bi-directional power utilization of the SB/electric vehicles
and PV sources is presented. The DR strategy is based on
the preferred electric vehicle charging time. The net CE in
terms of the difference between the costs of the energy bought
from and sold to grid is minimized. The ESS is charged using
PV energy or energy from the grid during off-peak periods
and is discharged during peak periods. A penalty function is
included to adjust the priority for selling energy in the follow-
ing order: PV energy, SB energy and electric vehicle energy.
In [18], an idea is presented for the participation of aggre-
gated homes in locational-marginal-price-based DR through
the shifting of dryer operation and the control of the target
temperature for air conditioners. All percentiles of the annual
marginal price data are chosen for appliance shifting/control.
To further reduce electricity bills, PV and SB power supplies
are considered to supply the shifted/controlled loads based on
the PV availability, SOC , maximum charge/discharge rates
and marginal prices. In [19], a method is proposed for the
optimal operation of HAs in neighborhood homes with a
two-step optimization strategy subject to power limits to
ensure the fair usage of transformer capacity. All possible
bi-directional power flows from the PV sources, the ESS,
electric vehicles and the grid are considered for each house
and between neighborhood houses. In the first step, a uni-
formly distributed capacity is allocated to each home, and
in the second step, CE is increased only for homes that
require excess capacity allocation. Our proposed algorithm
for a DRSREOD-based HEMS for a prosumer is based on
theMS of SHAs synergized with the shared parallel operation
of PV sources, the SB and the grid to maximize the HEMS
objectives, including CE and TBD. The algorithm demon-
strates the advantages of MS over DS for DRSREOD-based
HEMSs. Direct/clear relations between the objectives are
computed using a MOGA/PO approach for tradeoff analysis,
enabling the selection of the most feasible tradeoff solution
for the consumer. The proposed heuristic-based algorithm
considers the PV availability, the SOC , the charge/discharge
rates and a ToU tariff with an IBR strategy to generate optimal
schedules/operating schemes for the SHAs, the SB and the
grid.

D. DRSREOD-BASED HEMSs WITH OPTIMALLY
SIZED DGs TO COPE WITH LS
Present research is mainly focused on the design of a new
hybrid energy system infrastructure for HEMSs. In [20],
the optimal sizing of PV and SB units for a HEMS is inves-
tigated, incorporating the effect of DR-based load shifting.
PV energy is used to supply the load or is sold to the grid.
Batteries are charged from the grid during off-peak periods
and feed energy to the grid during peak periods. A flat feed-
in tariff equal to 67% of the peak-hour tariff is considered.
Energy is sold in the following order of priority: PV energy,
SB energy and electric vehicle battery energy. This DR-based

PV/SB sizing results in a more economical design compared
with the sizing with unscheduled loads. In [21], a harmony
search algorithm is used for the optimal sizing of a PV/DG
system. The surface area of the PV system and the nomi-
nal power of the DG are treated as the decision variables.
The probability of power supply loss is used as the reli-
ability index for the design of the hybrid energy system.
Three new pitch adjustment mechanisms are introduced to
enhance diversification and intensification in the algorithm.
The results are compared with those obtained using the orig-
inal harmony search algorithm, particle swarm optimization
and a genetic algorithm. In [22], a scheduling algorithm is
presented to minimize CE for energy from the grid while
maintaining user comfort and PAR. Energy constraints are
used to formulate knapsack capacity limits for each time slot
to reduce PAR. Air conditioners are modeled for thermostatic
control, SHAs are shifted using a GA, and fixed appliances
are dispatched to a local DG with the minimum generation
cost. A preferred intermediate position with adequate slots
on both sides is proposed for the operation of each SHA
to evaluate TBD in the advanced and delayed modes. In a
number of developing countries with energy-deficient power
supply networks, utilities are subjecting consumers to load
shedding to balance demand and generation. This research
presents an innovative method for the optimal sizing of a
DG to cope with load shedding for a HEMS, considering
the existing PV/SB infrastructure as well as CE and TBD
tradeoffs.

The recent work related to our research on improved algo-
rithms for DR-based HEMSs with MS, for DRSREOD-based
HEMSs integrating the MS of shiftable appliances with opti-
mal dispatch, and for the optimal sizing of a DG to cope with
LS is summarized in Table 3.

III. SYSTEM MODEL
The proposed HEMS architecture is shown in Fig. 1. The
DR-based HEMS is based on load shifting toward off-peak
hours using dynamic tariffs. In the DRSREOD-based HEMS
model, the load shifting of appliances is synergized with the
optimal dispatch of the PV units, the storage battery and
the grid by means of dynamic tariffs. The HEMS controller
is a vital component that carries all of the computational
intelligence, based on a control algorithm, necessary for
optimizing the HEMS operations. The main objective of the
DRSREOD-based HEMS is to compute the optimal sched-
ules for shiftable appliances based on DS/MS and synergize
with the optimal dispatch of the PV units, the storage battery
and the grid to reduce peak/overall demand for the utility
and reduce CE for the consumer while keeping TBD within
acceptable limits. For the execution of HEMS operations,
a time horizon of 24 hours is adopted. Each shiftable appli-
ance is to be operated once within a proposed interval for
a specified length of time in the scheduling horizon. For
scheduling, the time horizon is divided intoN slots. The value
of CE for energy from the grid decreases with increasing N ;
however, the computational burden simultaneously increases.
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TABLE 3. Related work relevant to the proposed HEMS algorithms for DR, DRSREOD and generator sizing.
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A tradeoff analysis conducted by previous researchers sug-
gests an optimal slot length of 10 minutes, corresponding to
144 slots in a 24-hour scheduling horizon, and the same time
division has been adopted in this optimization model. The
operating scheme focuses on the shared parallel operation
of the PV units, the storage battery and the grid based on
Ppv, SOC and the maximum charge/discharge rates. The
PV units are the preferred source from which to supply the
scheduled loads. Any excess PV energy in a time slot is
stored in the storage battery to be used during peak hours to
reduce CE . Furthermore, the optimal size for a local DG for
a DRSREOD-based HEMS is computed, considering the CE
and TBD tradeoffs. The proposed DG supplies the scheduled
load during load shedding hours in parallel with the PV units
and the storage battery to avoid power interruptions. The grid
is not included in the dispatch scheme during load shedding
hours. The proposed algorithms for optimal HEMS operation
and their unique features are detailed in section V.

FIGURE 2. Time range available for appliance operation in DS.

A. HAs
HAs are modeled based on their DR classes. NSHAs/fixed
loads, e.g., lights and fans, are operated as and when needed
and cannot be scheduled. SHAs can be shifted toward off-
peak hours for optimized scheduling. Each SHA is to be
operated for LOT time slots between two limits given by
Alpha and Beta, as illustrated in Figs. 2-4. The consumer
specifies these parameters based on his own convenience.
SHAs are classified into interruptible and non-interruptible
appliances. Appliances of the former type, e.g., pool pumps,
air conditioners and electric geysers, can be interrupted once
started and hence may be operated in two or more separated
sets of time slots. Those of the latter type, e.g., washing
machines and dryers, need to be operated until completion
without interruption. SHAs, being the most flexibly available
for scheduling, and NSHAs are both included in our model.
We further classify SHAs into groups for AS and DS. In AS,
the operation of an SHA is shifted such that the job will be
completed before the preferred ending time specified by the
consumer (Beta). TBD is computed by measuring the shift
of the actual ending time of SHA operation in advance of

FIGURE 3. Maximum and actual values of the time delay in DS.

FIGURE 4. Time range available for appliance operation in AS.

the preferred ending time. In DS, the operation of an SHA
is shifted such that the start of the job is delayed from the
preferred start time (Alpha). TBD is computed by measuring
the actual time delay of the start of SHA operation relative to
the preferred start time. An MS model is proposed in which
each SHA is explicitly selected for either DS or AS. MS
not only results in greater reductions in CE and TBD while
making more optimal use of the available energy sources (PV
units, the SB and the grid) but also provides the consumer
with more diverse options for scheduling his SHAs on a
time line. As an example, a consumer may select a rice
cooker/oven for AS operation during the evening. In this case,
TBD is calculated based on the advance completion of the job
relative to the specified ending time limit. Reducing the TBD
for the consumer means ensuring the availability of freshly
cooked rice/food for the consumer in the evening as close as
possible to his dining time. The SHAs, with their preferred
operating time intervals, and the NSHAs considered in our
simulations are listed in Tables 4 and 5.

B. ELECTRICITY TARIFFS
Dynamic tariffs are the key to implementing DR/DRSREOD-
based HEMSs. The major types of dynamic tariffs include
RTP, DAP and ToU tariffs. RTP is typically communicated
by the utility to the consumer on an hourly basis, whereas
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TABLE 4. SHAs and scheduling specifications for the DS and MS scenarios.

TABLE 5. NSHAs considered for scheduling.

DAP is communicated on a day-ahead basis. ToU tariffs
comprise two or more rates for electricity during peak,
off-peak and mid-peak hours of the day for a specified period
(typically 3-6 months). In combination with tariffs, utilities
charge higher rates at higher power levels, in a scheme called
IBR, to discourage users from concentrating loads at specific
times, which may lead to the re-emergence of peaks. The ToU
tariff scheme combined with IBR is formulated as follows:

EP = [(EP1,PT1, IBR1), (EP2,PT2, IBR2),

(EP3,PT3, IBR3)] (1)

where EP1, EP2 and EP3 are the normal tariffs at peak,
off-peak and mid-peak times, respectively, and a tariff of
EP× IBR applies above power threshold values of PT1, PT2
and PT3 at the corresponding times. ToU- and DAP-based
algorithms provide solutions that require very little compu-
tation time and are viable for real-time household applica-
tions [24]. A 2-stage ToU tariff scheme with an IBR value
of 1.4 was used in our simulations, consistent with the two
electricity price levels used by British Columbia Hydro [25].
For the application of the IBR factor, a threshold power
demand of 2.4 kW was considered in all scenarios [26].

Although this specific 2-stage ToU tariff scheme was adopted
for the simulations, the proposed algorithm is generic in
nature and works equally well for DAP schemes.

C. RESs
Solar PV units and wind power units are the most widely used
types of RESs in homes [15], [27]. The integration of RESs
into a HEMS results in overall reductions in CE , the demand
supplied from the grid and the peak load. However, the power
they supply is intermittent in nature, and consequently, they
give rise to complex scheduling models [28]. Our model is
based on the forecasted irradiation levels for PV operation.
Most researchers have not included the cost of generations
from local RESs in their models [18], [29], and they have
treated RESs as part of the existing infrastructure. By virtue
of rebate-based incentives and continued research, the cost
of RESs has been greatly reduced, and as electricity prices
have increased, they have now become a popular means of
harvesting energy. The PV units are treated as part of the
existing infrastructure in ourmodel. The power obtained from
the PV units is formulated as follows:

Ppv = Parea × Iirrad × ηpv × ηconv (2)

where
Ppv = PV power in kWh
Parea = PV plate area in meter2

Iirrad = PV irradiation in kWh/meter2

ηpv = PV electrical efficiency
ηconv = Converter efficiency
In the simulations of our model, we included a PV system

with the specifications given in Table 6. Solar irradiation
data as measured by the Pakistan Engineering Council in
Islamabad were used in our simulations [30].

D. ESS
The SB is one of the most popular types of ESS that
is integrated with a PV system to introduce flexibility in
PV dispatch. Normally, surplus energy available from the
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TABLE 6. PV system specifications.

PV system is stored in the SB (or sold to the grid). The
stored energy is later consumed to supply the load when
required or during peak hours to increase economy [29].
When the PV system is unable to fully support the necessary
load, the difference is supplied from the SB and/or the main
grid. With decreasing RES/ESS prices, more consumers are
deploying PV/SB systems for parallel operation with the grid
to improve the economy, reliability and quality of their power
supply.

The inverter and the SB are key components in the pro-
posed DRSREOD-based HEMS. The specifications of these
components that were considered in the simulations are given
in Table 7. The efficiencies of the inverter and the SB are
included in the formulation. The net loss for the SB is
assumed to be 20% and is considered during charging.

TABLE 7. SB and inverter specifications.

E. DG
The PV energy supply is intermittent in nature and lacks
dispatchability. The SB is used to store the excess PV
energy from the RESs for use during peak hours. Therefore,
the amount of energy stored in the SB greatly depends on
the RESs. For energy-deficient/unreliable grids subjected to
LS, an optimally sized DG is proposed for use by a consumer
with an existing DRSREOD-based infrastructure. The DG
participates in dispatch along with the PV system and the
SB during LS hours as described by Eq. 24, and its size
is computed as per Eq. 16. The DG sizing algorithm also
considers the tradeoffs between Pgsize, CE and TBD.

IV. FORMULATING THE HEMS OPTIMIZATION PROBLEM
The HEMS optimization problem is formulated for
one or more objective functions under few constraints.
The problem is solved to obtain a set of inputs/decision

variables that optimize the output values of the performance
parameters while satisfying the constraints. The HEMS prob-
lem is formulated based on the control parameters given
below:
A = [a1, a2, .., ak ] = SHAs available for scheduling
T = [1, 2, 3, ..,N ] = Slot numbers in the scheduling

horizon
Papp = [P1,P2, ..,Pk ] = Per-slot power ratings of the

SHAs
LOT = [LOT1,LOT2, ..,LOTk ]= Lengths of operation of

the SHAs
Alpha = [Alpha1,Alpha2, ..,Alphak ] = Starting slots for

the operating time intervals of the SHAs
Beta = [Beta1,Beta2, ..,Betak ] = Ending slots for the

operating time intervals of the SHAs
EP = [EP1,EP2, ..,EPN ] = ToU electricity prices in

cents/kWh
IBR = [IBR1, IBR2, .., IBRN ] = Factor by which to multi-

ply EP for loads greater than PT
Ts = [Ts1,Ts2, ..,Tsk ]=Decision vector consisting of the

start time for each SHA
In our proposed algorithm, the vector Ts is generated via

a GA. Based on Ts, a decision vector Xa (dim: 1 × N ) is
derived to specify the scheduled power of the ath SHA over
the complete scheduling horizon, as follows:

Xa(i) =

{
Papp(a) : for Ts(a)+ LOT (a) > i ≥ Ts(a)
0 : for Ts(a) > i ≥ Ts(a)+ LOT (a)

Vectors X1, ..,Xk are developed in a similar way for each
SHA, considering the corresponding Ts(a) for each SHA,
numbered as A = 1, 2, .., k .

The decision vectors X1, ..,Xk are combined into a matrix,
denoted by Power_matrix, as follows:

Power_matrix = [X1,X2, . . . ,Xk ]t (3)

Power_matrix is summed in a columnwise manner to
obtain a scheduling vector Pschd_sh that specifies the power
requirement in each time slot in the scheduling horizon.
Accordingly, a power scheduling vector, based on MILP,
is formulated as follows:

Pschd_sh =
N∑
n=1

k∑
a=1

X (a, n) (4)

where X (a, n) is a generalized element of the derived
Power_matrix. The load vector for fixed appliances,
Pload_fix, is added to Pschd_sh to compute the final sched-
uled load vector, Pschd , as follows:

Pschd = Pschd_sh+ Pload_fix (5)

A. OBJECTIVES FOR THE HEMS PROBLEM
The main objectives for a HEMS generally include minimiz-
ing the CE for energy from the grid, minimizing the TBD
for the consumer, reducing the peak load /PAR, and reduc-
ing emissions. To achieve the aforementioned these objec-
tives, the HEMS problem is formulated for SHA scheduling
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while simultaneously computing Pschd and synergizing the
schedulingwith RES, ESS and power grid dispatch forN time
slots over a specified scheduling horizon.

1) MINIMIZATION OF CE
The objective function corresponding to minimizing the cost
of the energy purchased from the utility (CE) for a HEMS
without a PV/SB system is formulated as follows:

Minimize
N∑
n=1

(Pschd × EP) (6)

where Pschd is the scheduling vector as given in Eq. 5 and
the EP is the tariff vector as given in Eq. 1. Because all of
the power is supplied by the grid in this case, Pschd is equal
to Pgrid .

For a DRSREOD-based HEMS with a PV system and an
SB, the vector for Pgrid is formulated as follows:

Pgrid = Pschd − Ppv+ Psold + Pchg− Pdis (7)

In this case, the objective function for minimizing the cost
of the energy purchased from the grid (CE) is formulated as
follows:

Minimize
N∑
n=1

(Pgrid × EP) (8)

where Pgrid and EP are vectors specifying the energy pur-
chased from the utility and its price per kWh, respectively,
for each time slot.

The objective function for maximizing the cost of the
energy sold to the grid (CEsold) is formulated as follows:

Maximize
N∑
n=1

(Psold × EPf ) (9)

where Psold is the amount of energy in kWh sold to the
grid by the consumer and the EPf is the feed-in tariff in
cents/kWh. In our model, we take the value of EPf to be
0.7 × EP. The net bill to be paid to the utility (in cents) is
formulated as follows:

NTbill = CE − CEsold (10)

2) MINIMIZATION OF TBD FOR THE CONSUMER
The average TBD in DS due to delay in the start times of the
SHAs, denoted by TBD(D), is obtained by taking the average
of the normalized delays for all appliances. This quantity is
formulated as follows:

TBD(D)

=

k1∑
a=1

((Ts− Alpha)/ (Beta− LOT − Alpha+ 1))/k1 (11)

swhere Alpha and Beta represent the flexible time ranges
specified by the consumer, indicating the start and end limits
for SHA operation. LOT is a vector consisting of the lengths
of operation time required for each SHA to complete its job.

FIGURE 5. Maximum and actual values of the advance-completion time
in AS.

Ts is the decision vector consisting of the start times for all of
the SHAs, which are the values to be varied to find the optimal
solution. The numerator and denominator in Eq. 11 represent
the actual and maximum delays, respectively, in starting the
operation of an appliance. Meanwhile, k1 is the number of
SHAs designated for DS. Conceptual diagrams illustrating
TBD(D) are shown in Figs. 2 and 3.

The TBD(D) will take its minimum value of 0 when the
corresponding SHA starts operation at Alpha, i.e., the start of
the operating time range specified by the consumer. It will
attain its maximum value of 1 when the Ts(a) is equal to
Beta(a) − LOT (a) + 1, i.e., the latest start time for the SHA
that results in completion of the job at the latest allowed time
Beta(a) specified by the consumer. These limits/bounds must
be respected when selecting Ts and are formulated as follows:

Lb = Alpha and Ub = Beta− LOT + 1 (12)

The average TBD in AS due to the advance completion
of the jobs of the SHAs, denoted by TBD(A), is obtained by
averaging the normalized advance-completion times for all of
the appliances. This quantity is formulated as follows:

TBD(A) =
k2∑
a=1

((Beta− Ts− LOT + 1)/(Beta− LOT

−Alpha+ 1))/k2 (13)

The numerator and denominator in Eq. 13 represent the
actual and maximum forward shifts, respectively, in the job
ending time for an appliance, and k2 is the number of SHAs
designated for AS. The conceptual diagrams illustrating the
TBD(A) are shown in Figs. 4 and 5. The TBD(A) will take its
minimum value of 0 when the corresponding SHA completes
its job at Beta(a), i.e., when Ts(a) + LOT (a) − 1 is equal to
Beta(a). It will attain its maximum value of 1 when Ts(a) is
equal to Alpha(a), i.e., when the ending time for the operation
of the appliance is Alpha(a) + LOT (a) − 1. In this scheme,
the user is concerned with the ending times of the SHA
operation (Beta), and TBD(A) is computed by considering
the distances between the actual and desired ending times

VOLUME 6, 2018 15559



B. Hussain et al.: Innovative Heuristic Algorithm for IoT-Enabled Smart Homes for Developing Countries

of the SHAs, i.e., the distance of Ts + LOT − 1 from Beta.
By contrast, the DS scheme focuses on the start times of
the SHA operation, and the TBD(D) is calculated based on
the distances between the actual and desired start times of
the SHAs, i.e., the distance of Ts from Alpha.

In the MS, some appliances are selected for AS, whereas
the others are designated for DS. The average TBD for a
total of k appliances in the MS mode, denoted by TBD(M ),
is formulated as follows:

TBD(M ) = TBD(D)+ TBD(A) (14)

For the simulation of the MS scheme and its comparison
with the DS scheme, some of the SHAs subjected to DS in
the simple DS scenario were changed to AS mode in the MS
scenario. To model the AS of these appliances, the preferred
Beta values were calculated from the Alpha values for the
same appliances in the DS scenario. Based on these preferred
Beta values, new Alpha values were assigned to these SHAs
corresponding to earlier times, as shown in Table 4.

3) MINIMIZATION OF THE PEAK LOAD
The objective function for minimizing the peak load supplied
from the grid is formulated as follows:

Minimize Peak(Pgrid) (15)

For a DR-based HEMS, Pgrid is equal to Pschd , whereas
for a DRSREOD-based HEMS, Pgrid includes the effects of
the DR as well as the overall demand reduction due to the
optimal dispatch of the RESs and ESS as described by Eq. 7.

4) MINIMAL SIZE OF THE GENERATOR
REQUIRED TO COPE WITH LS
The objective function for minimizing the size of the dis-
patchable generator while maintaining the ability to supply
the required load during LS is formulated as follows:

Minimize Peak(Pgen) (16)

where Pgen is computed by implementing an energy balance
constraint as expressed in Eq. 23.

5) MINIMIZATION OF EMISSIONS
The objective function for minimizing the emissions from
non-RES generation units is formulated as follows:

Minimize
N∑
n=1

(Fcons× EF) (17)

where EF (kg/liter) is the emission factor and Fcons (liters)
is the amount of the consumed fuel. EF depends on the type
of fuel and the engine characteristics [31].

B. CONSTRAINTS FOR THE HEMS PROBLEM
Constraints for the HEMS problem are introduced based on
various components of the HEMS, as described below.

1) HA CONSTRAINTS
Scheduling constraints are imposed on the HAs to satisfy
the user’s preferences; these constraints include defined time
deadlines for the completion of operation (Alpha/Beta) [6]
and non-interruptibility constraints [33]. These constraints
are implemented by introducing the upper and lower bounds
on the Ts vector as per Eq. 12.

2) TARIFF CONSTRAINTS
The tariffs issued by some utilities impose maximum power
consumption limits and offer lower rates for respecting those
limits [34]. Our model is based on a ToU tariff scheme
combined with IBR. For a power demand of > 0.4 kW/slot,
a penalty factor of 1.4 times the regular tariff is applied as the
IBR, as per the practice of British Columbia Hydro [6].

3) SB CONSTRAINTS
The SB is subject to constraints on its SOC , which must be
within certain minimum and maximum allowable levels [35].
These constraints ensure a satisfactory service life of the SB
and are formulated as follows:

SOC_min < SOC < SOC_max (18)

A second set of constraints on the SB pertains to its maxi-
mum charge and discharge rates (Pchg and Pdis), which may
not exceed the maximum permissible rates Pchg_max and
Pdis_max, respectively. These constraints are formulated as
follows:

Pchg ≤ Pchg_max and Pdis ≤ Pdis_max (19)

Furthermore, SOC(i + 1), i.e., the state of charge of the
SB in the next time slot, depends on its SOC(i) in the present
slot and on whether the SB is charging or discharging in the
present slot. Accordingly, the following constraint is imple-
mented for the SB:

SOC(i+1) =

{
SOC(i)+ 0.8× Pchg : when charging
SOC(i)− Pdis : when discharging

(20)

A net energy loss of 20% is assumed for the SB during
charging.

In addition, the SB should be either charging or discharging
in each time slot. To implement this constraint, a binary
variable BS is formulated as follows:

BS =

{
1 : when charging
0 : when discharging

(21)

The following formulation enforces the necessary con-
straints for the charging/discharging status of the SB in each
time slot:

Pchg = Pchg× BS and Pdis = Pdis× (1− BS) (22)
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4) ENERGY BALANCE CONSTRAINT
This constraint ensures that in each time slot, the total
energy generated is equal to the total energy consumed
by the load, or the sum of the energy inputs is equal to
the sum of the energy outputs for the system [36]. This
constraint for a DRSREOD-based HEMS is formulated as
follows:

Pgrid + Ppv+ Pdis = Pschd + Pchg+ Psold (23)

This constraint is implemented in the proposed algorithm 2
for a DRSREOD-based HEMS to compute the optimal sched-
ules and dispatch plans for the loads and energy sources,
respectively.

Meanwhile, for the optimal sizing of a DG for a
DRSREOD-based HEMS, two additional parameters, Pgen
and Pdl, are introduced to reformulate the constraint as
follows:

Pgrid+Pgen+Ppv+Pdis = Pschd + Pchg+ Psold + Pdl

(24)

This constraint is implemented to compute the optimal power
to be supplied by the DG during LS time slots together with
the optimal tradeoff schedules and dispatch plans for the loads
and energy sources, respectively.

C. OPTIMIZATION TECHNIQUES FOR SOLVING
THE HEMS PROBLEM
HEMS optimization is a combinatorial optimization prob-
lem. Most HEMS problems are non-linear, non-convex con-
strained, and multi-dimensional in nature and have a large
number of solutions that grows exponentially for large-scale
problems [11]. Optimization techniques for solving such
problems include both conventional and advanced heuristic
methods.

1) CONVENTIONAL TECHNIQUES
Conventional techniques include LP, convex programming
and MILP. LP is used for linear models. This method
yields a solution in polynomial time (PT) for small-scale
problems only. Furthermore, linear models are not able to
represent most HEMS problems accurately. Convex pro-
gramming is certain to converge if a solution exists. This
method is applied in cases in which the non-linear mod-
els can be transformed into linear ones. MILP is used
for models that include integers as well as continuous
variables, called MILP models, which are NP-complete
in complexity. LP methods have been successfully used
only for small-scale HEMS problems. For large-scale lin-
ear and non-linear problems, conventional methods become
computationally impracticable, and the problems become
NP-hard [37].

2) ADVANCED HEURISTIC TECHNIQUES
Over the last decade, advanced heuristic techniques have
emerged as the single best choice for obtaining near-optimal

robust solutions to complex HEMS problems. Metaheuris-
tics are a general class of heuristics that can be applied to
a large number of problemswith onlyminormodifications for
specific cases. These advanced tools have been used to solve
optimization problems that were believed to be impossible in
the past, such as non-convex and NP-hard problems, in very
short computation times [38]. The renowned metaheuristic
tools used to solve HEMS optimization problems include
GAs, particle swarm optimization, ant colony optimization,
and evolutionary programming. GAs, as an efficient and
robust metaheuristic approach, have been used very success-
fully to solve combinatorial optimization problems. A GA
relies on natural selection and genetics, searches multiple
paths, explores multiple maxima/minima in parallel and can
escape from local minima by means of niching methods [39].
It uses parameter coding instead of actual parameters, thereby
enabling it to develop the next state from the current state
withminimal computation. AGA evaluates the fitness of each
string to guide its search after evaluating the performance of
one or more fitness functions. To handle constraints, a GA
uses chromosome rejection, repair and other genetic opera-
tors [38]. However, such metaheuristic techniques have pri-
marily been used to solve single-objective optimization prob-
lems only. To solve multi-objective optimization problems
with metaheuristics, they have generally been transformed
into single-objective optimization problems.

D. TECHNIQUES FOR HANDLING MULTI-OBJECTIVITY
IN THE HEMS PROBLEM
Most of the HEMS problems encountered in real life
are MOO problems with mutually conflicting objectives.
Minimizing the CE is the main objective in the majority
of the published research [6]–[19]. Minimizing the TBD is
the second most important objective [6, [9], [12], [13, [22]
from the consumer perspective. A tradeoff exists between the
CE and the TBD. The solution to the HEMS problem actually
consists of an optimal set of solutions, each offering some
optimized tradeoff between the objectives. Various meth-
ods have been used to consider important tradeoffs between
objectives. The most widely used approach is the WSM [6],
[9], [10], [13]. This is an apriori method that transforms a
multi-objective HEMS problem into a single-objective opti-
mization problem to obtain a single optimal solution. Such
methods do not provide a clear understanding of the relation
between the objectives to allow a consumer to choose among
specific preferences and do not even enable him to improve
the solution. Potentially better solutions that are feasible for
a specific consumer may be missed because this method does
not allow for any feedback regarding the given preferences.
A tradeoff analysis between the objectives in HEMS prob-
lems is very important because it enables consumers to make
decisions after evaluating a diverse set of available optimal
choices. Pareto-based MOO, a posteriori method, provides a
diverse set of optimal solutions for multiple objectives based
on the concept of Pareto dominance. The MOO problem
for a HEMS with decision vector Ts and m objectives for
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Algorithm 1 Algorithm for a DR-Based HEMS With Either DS or MS for the SHAs

Input: EP, IBR, PT , Papp, Stype, Alpha, Beta, LOT ,
Pload_fix
Output: Optimal tradeoffs for CE and TBD in PF/POS form
with the corresponding set of Ts, minimized CE and related
TBD
1: Initialize input parameters
2: Call MOGA
3: Initialize Ts within bounds using Eq. 12
4: for iter = 1:Ng_max
5: if iter > 1
6: Generate new Ts populations within bounds using
GA operations
7: end
—–Computing Pschd vector for DR-based load
scheduling—–
8: Tend = Ts+LOT-1
9: for i = 1:k
10: for j = 1:N
11: if (j ≥ Ts(i) &&j ≤ Tend(i))
12: Power_matrix(i,j) = Papp(i)
13: else
14: Power_matrix(i,j) = 0
15: end
16: end
17: end
18: Pschd = sum(Power_matrix)+ Pload_fix

—–Computing tariffs with IBR—–
19: for j = 1: N
20: if Pschd(j) > PT
21: EP(j) = IBR × EP(j)
22: end
23: end
—–Computing fitness function for CE—–
24: Compute CE = sum(EP × Pschd)
—–Computing fitness function for TBD—–
25: for a = 1:k
26: if Stype = DS
27: TBD(D)(a) = (Ts(a)-Alpha(a))/(Beta(a)-LOT(a)-
Alpha(a)+1)
28: else
29: TBD(A)(a) = (Beta(a)-Ts(a)-LOT(a)+1)/
(Beta(a)-LOT(a)-Alpha(a)+1)
30: end
31: end
32: Compute TBD(M or D) = (sum(TBD(D))+
sum(TBD(A)))/k
33: end
34: Exit MOGA; return results as CE/TBD tradeoffs and
corresponding Ts
35: Selection of a feasible tradeoff solution by the consumer

Pareto-based optimization is formulated as follows: minimize
the objective vectorF(Ts) = [F1(Ts),F2(Ts), ..,Fm(Ts)] sub-
ject to the given constraints. A solution Ts1 is said to dominate
another Ts2 when Ts1 is better than Ts2 in at least one objec-
tive and is no worse in any other. The set of non-dominated
solutions composes the Pareto-optimal set, or Pareto front.
The recently introduced MOGA includes features for imple-
menting Pareto optimization. POSs/PFs providing optimal
tradeoffs between theCE and the TBD for a HEMS have been
computed in this study by using MOGA with the Pareto opti-
mization features to provide HEMS consumers with diverse
options. A consumer can then choose the best available option
in accordance with his needs. Another objective, namely,
the identification of the minimal DG size necessary to cope
with load shedding, has also been modeled in this study.
The minimal Pgsize is selected based on a POS computed
using MOGA for the tradeoffs between Pgsize, CE and TBD.
This method ensures that no potentially superior solution is
missed. The only disadvantage of this method is its longer
computing time due to additional computations. However,
with deterministic models, ToU/DAP tariffs and the use of
advanced metaheuristics such as MOGA, the technique can
be used very successfully for identifying tradeoff-based solu-
tions to the HEMS problem that are both optimal and feasible,
as validated in this research.

V. ALGORITHMS FOR A DR-BASED HEMS,
A DRSREOD-BASED HEMS AND
OPTIMAL DG SIZING
Three algorithms are proposed in this study:

- Algorithm 1 for a DR-based HEMSwith either DS or MS
of the SHAs

- Algorithm 2 for a DRSREOD-based HEMS with either
DS or MS of the SHAs

- Algorithm 3 for optimal DG sizing to cope with LS in a
DRSREOD-based HEMS with MS

The algorithms are presented in the following subsections.

A. ALGORITHM 1 FOR A DR-BASED
HEMS WITH DS OR MS
This algorithm computes a set of solutions that provide opti-
mal tradeoffs between the CE and the TBD and a solution
with the minimal CE based on SHA scheduling. For optimal
scheduling, Ts is generated heuristically, within the specified
bounds, using MOGA. Tend (the vector of times at which the
SHAs complete their operation) is computed by adding the
LOT values specified by the consumer. A power matrix (dim:
k×N ) is generated with parameter values equal to the power
values of the corresponding SHAs for the time slots from Ts to
Tend . The vector Pschd is obtained by summing up the power
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Algorithm 2 Algorithm for a DRSREOD-Based HEMS With Either DS or MS for the SHAs

Input: EP, IBR, TP, Papp, Stype, Alpha, Beta, LOT ,
Pload_fix, SOC(0),
SOC_max, SOC_min, Pchg_max, Pdis_max, Ppv
Output: Optimal tradeoffs for CE and TBD in PF/POS form
with Ts and minimized CE and TBD
1: Initialize input parameters
2: Call MOGA
3: Initialize Ts within bounds using Eq. 12
4: for iter = 1: Ng_max
5: if iter > 1
6: Generate new Ts populations within bounds using
GA operations
7: end
—-Computing Pschd vector for DR-based load
scheduling—–
8: Compute Pschd using the method given in algorithm 1,
lines 8-18
—–Computing dispatch for the PV system, SB and grid—
–
9: for j = 1:N
10: Pres(j) = Ppv(j)-Pschd(j)
——-Dispatch when PV energy > Pschd——-
11: case (Ppv(j) > Pschd(j)) do
12: if SOC(j) ≥ SOC_max
13: Psold(j) = Pres(j)
14: SOC(j+1) = SOC(j)
15: else
16: Pch(j) = min(Pch_max,Pres(j),SOC_max-
SOC(j))
17: if Pch(j) 6= Pres(j)
18: Psold(j) = Pres(j)-Pch(j)
19: end
20: SOC(j+1) = SOC(j)+0.8* Pch(j)
21: end
22: endcase

——-Dispatch when PV energy ≤ Pschd——-
23: case (Ppv(j) ≤ Pschd(j)) do
24: if (SOC(j) ≤ SOC_min) | ((SOC(j) > SOC_min)
&& (EP(j) ≤ price_set))
25: Pgrid(j) = -Pres(j)
26: SOC(j+1) = SOC(j)
27: elseif ((SOC(j)> SOC_min) && (EP(j)>
price_set))
28: Pdis(j) = min(Pdis_max,-Pres(j),SOC(j)-
SOC_min)
29: if Pdis(j) == Pdis_max
30: Pgrid(j) = Pschd(j)-Ppv(j)- pdis_max
31: elseif Pdis(j) == SOC(j)-SOC_min
32: Pgrid(j) = Pschd(j)-Ppv(j)-(SOC(j)-
SOC_min)
33: end
34: SOC(j+1) = SOC(j)-Pdis(j)
35: end
36: endcase
——-Computing tariffs with IBR———
37: if Pgrid(j)> TP
38: EP(j) = IBR × EP(j)
39: end
40: end
—–Computing fitness function for CE—–
41: Compute CE = sum(EP × Pgrid)
—–Computing fitness function for TBD—–
42: Compute TBD(M or D) using the method given in
algorithm 1, lines 25-32
43: end
44: Exit MOGA; return results as CE/TBD tradeoffs and
corresponding Ts
45: Selection of a feasible tradeoff solution by the consumer

matrix and adding Pload_fix, as shown in lines 9-18. IBR is
applied for slots with Pschd values greater than TP. The CE
and the TBD (forMS orDS) are computed using the equations
specified in lines 24, 27, 29 and 32. Tradeoff solutions for the
CE and the TBD are obtained using MOGA in POS/PF form,
and the solution with the minimal CE is selected as the most
feasible solution as a reference for the consumer.

B. ALGORITHM 2 FOR A DRSREOD-BASED
HEMS WITH DS OR MS
This algorithm computes a set of solutions that provide opti-
mal tradeoffs between the CE and the TBD and a solution
with the minimal CE based on DR-based SHA scheduling
synergizedwith the optimal dispatch of the PV system, the SB
and the grid.

First, the vector Pschd is computed as in algorithm 1. The
PV system is used as the preferred energy source to directly
supply Pschd . The dispatch planning is mainly based on the
excess PV energy in each slot, denoted by Pres, which is the
arithmetic difference between Ppv and Pschd . For each slot
in the scheduling horizon, two main cases arise with regard to
the relative values of these two quantities. In each case, SOC
and the maximum charge/discharge rates play major roles in
the dispatch.

In the first case, in which Ppv is greater than Pschd ,
as shown in line 11, the excess energy is stored in the SB if
the SOC is less than its maximum value; otherwise, it is sold
to the grid. The SB charging state depends on the condition
given in line 16. If a value other than Pres is computed,
as shown in line 17, it indicates that either the maximum
charge rate or the residual capacity of the SB before reaching
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Algorithm 3 Algorithm for Optimal DG Sizing to Cope With LS in a DRSREOD-Based HEMS With MS

Input: EP, IBR, TP, Papp, Stype, Alpha, Beta, LOT ,
Pload_fix, Pgds,
SOC(0), SOC_max, SOC_min, Pchg_max, Pdis_max, Ppv
Output: Optimal tradeoffs for Pgsize, CE and TBD with Ts
and minimized Pgsize
1: Initialize input parameters
2: Call MOGA
3: Initialize Ts within bounds using Eq. 12
4: for iter = 1: Ng_max
5: if iter > 1
6: Generate new Ts populations within bounds using
GA operations
7: end
—-Computing Pschd vector for DR-based load
scheduling—–
8: Compute Pschd using the method given in algorithm 1,
lines 8-18
—–Computing dispatch for the PV system, SB, grid and
DG—–
9: for j = 1:N
10: Pres(j) = Ppv(j)-Pschd(j)
——-Dispatch when PV energy > Pschd——-
11: case (Ppv(j)> Pschd(j)) do
12: if SOC(j)≥ SOC_max
13: if Pgds(j) == 0
14: Pdl = Pres(j)
15: else
16: Psold(j) = Pres(j)
17: end
18: SOC(j+1) = SOC(j)
19: else
20: Pch(j) = min(Pch_max,Pres(j),SOC_max-
SOC(j))
21: if Pch(j)6= Pres(j)
22: if Pgds(j) == 0
23: Pdl = Pres(j)-Pchg(j)
24: else
25: Psold(j) = Pres(j)-Pchg(j)
26: end
27: end
28: SOC(j+1) = SOC(j)+0.8* Pch(j)
29: end
30: endcase

——-Dispatch when PV energy ≤ Pschd——-
31: case (Ppv(j)≤ Pschd(j)) do
32: if (SOC(j)≤ SOC_min) | ((SOC(j)> SOC_min)
&& (EP(j)≤ price_set))
33: if Pgds(j) == 1
34: Pgrid(j) = -Pres(j)
35: else
36: Pgen(j) = -Pres(j)
37: end
38: SOC(j+1) = SOC(j)
39: elseif ((SOC(j)> SOC_min) && (EP(j)>
price_set))
40: Pdis(j) = min(Pdis_max,-Pres(j),SOC(j)-
SOC_min)
41: if Pdis(j) == Pdis_max
42: Pload_d(j) = Pschd(j)-Ppv(j)- pdis_max
43: elseif Pdis(j) == (SOC(j)-SOC_min)
44: Pload_d(j) = Pschd(j)-Ppv(j)-(SOC(j)-
SOC_min)
45: end
46: if Pgds(j) == 0
47: Pgen = Pload_d(j)
48: Pload_d(j) = 0
49: end
50: SOC(j+1) = SOC(j)-Pdis(j)
51: end
52: endcase
53: Pgrid(j) = Pgrid(j)+Pload_d(j)
54: Compute IBR-based tariffs using the method given in
algorithm 2, lines 37-39
55: end
—–Computing fitness functions for CE, TBD and
Pgsize—–
56: Compute CE = sum(EP × Pgrid)
57: Compute TBD(M) using the method given in algorithm
1, lines 25-32
58: Compute Pgsize = Peak(Pgen)
59: end
60: Exit MOGA; return results as Pgsize/CE/TBD tradeoffs
and corresponding Ts
61: Selection of a feasible tradeoff solution for Pgsize as per
Table 9 and Fig. 25

the maximum SOC is restricting the complete storage of the
excess PV energy in the SB. Hence, any excess energy left
after charging the SB is sold to the grid. Notably, 20% of the
energy is lost due to the net SB loss, and hence, the SOC is
increased by only 80% of Pch in line 20.

In the second case, in which Ppv is less than or equal to
Pschd , as shown in line 23, the PV energy is insufficient to
completely supply the load. The residual energy in this case

will be supplied from the grid if the SOC is less than or equal
to its minimum limit or from the SB if the SOC is greater
than its minimum limit. Moreover, the SB still will not be dis-
charged if cheap energy is available from the grid, as shown
in line 24. The discharging state of the SB depends on the
condition given in line 28. If the minimum computed value
is equal to the maximum discharge rate or to the residual
capacity of the SB before discharging to the minimum SOC ,
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then one of these constraints restricts the ability to supply
the full load from the SB, and the remaining load must be
supplied from the grid, as shown in lines 30 and 32. For each
slot in the scheduling horizon, one of the above two cases
will hold, and Pgrid will be computed accordingly. IBR is
applied, and the CE and TBD(D or M ) are computed for each
iteration of MOGA. The tradeoff solutions between these
two objectives are obtained in POS/PF form, along with the
solution with the minimal CE as the most feasible case.

C. ALGORITHM 3 FOR OPTIMAL DG SIZING TO COPE
WITH LS IN A DRSREOD-BASED HEMS WITH MS
This HEMS optimization problem includes the DR-basedMS
of the SHAs synergized with the optimal dispatch of the PV
system, the SB and the grid under normal grid conditions
and the integration of an optimally sized DG for use during
the LS hours. To identify the optimal size for a DG to cope
with the maximum LS, the algorithm solves an optimization
problem to compute the tradeoffs between the CE , TBD(M )
and Pgsize.
First, the vector Pschd is generated. The PV system is

regarded as the preferred source to directly supplyPschd . The
dispatch planning is mainly based on the PV excess energy in
each slot, denoted by Pres, which is the arithmetic difference
between Ppv and Pschd . Two main cases arise with regard to
the relative values of these two quantities, and in each case,
the SOC , the maximum charge/discharge rates, the grid status
and the power from the DG play major roles in dispatch.

In the first case, in which excess PV energy is available,
as shown in line 11, the energy is stored in the SB if the SOC
is less than itsmaximumvalue; otherwise, it is sold to the grid.
However, during LS hours, the excess energy that would be
sold to the grid is instead supplied to a dummy load, as shown
in line 14. The SB charging state depends on the condition
given in line 20. If a value other than Pres is computed,
it indicates that either themaximum charge rate or the limiting
value of the SOC is restricting the complete storage of the
excess PV energy in the SB. Hence, any excess energy left
after charging the SB is sold to the grid, as shown in line 25.
However, during LS hours, the excess energy that would be
sold to the grid is instead supplied to a dummy load.

In the second case, in which Ppv is less than or equal
to Pschd , as shown in line 31, the PV energy is insuffi-
cient to completely supply the load. The residual energy in
this case will be supplied from the grid if the SOC is less
than or equal to its minimum limit or from the SB otherwise.
Moreover, the SB still will not be discharged if cheap energy
is available from the grid, as shown in line 32. However,
during LS hours, the DG will supply the load in place of the
grid, as shown in line 36. The discharging state of the SB
depends on the condition given in line 40. If the minimum
computed value is equal to the maximum discharge rate or to
the residual capacity of the SB before discharging to the
minimum SOC , then one of these constraints is restricting
the ability to supply the full load from the SB, and the
remaining load must be supplied from the grid, as shown in

lines 42 and 44. However, during the LS hour, the DG will
supply the load in place of the grid, as shown in line 47.
For each slot in the scheduling horizon, one of the above
two cases will hold, and the vectors Pgrid and Pgen will be
computed for dispatch accordingly. The CE is computed by
applying IBR, as shown in line 56. The TBD(M ) values for
the MS are computed using algorithm 1, lines 25-32, for each
MOGA iteration. Tradeoff solutions between Pgsize, CE and
TBD are obtained in the form of a Pareto-optimal set using
Table 9 and Fig. 25.

VI. SIMULATIONS FOR THE OPTIMAL OPERATION OF
DR- AND DRSREOD-BASED HEMSs
Simulations were conducted using MATLAB 2015. The
simulations reported in subsections A and B are based on
algorithm 1. They demonstrate the validity of this algorithm
for DR-based HEMSs and enable a comparison of the perfor-
mance parameters between a HEMS with MS and a HEMS
with DS. The simulations reported in subsections C and D are
based on algorithm 2. They demonstrate the validity of this
algorithm for DRSREOD-based HEMSs and similarly enable
a comparison of the performance parameters between the MS
and the DS. Four scenarios, as listed below, are addressed and
critically analyzed:

-A DR-based HEMS with DS (based on algorithm 1)
-A DR-based HEMS with MS (based on algorithm 1)
-A DRSREOD-based HEMS with DS (based on

algorithm 2)
-A DRSREOD-based HEMS with MS (based on

algorithm 2)
For the simulations, a 2-stage ToU tariff scheme was con-

sidered. It consists of a rate of 15 cents/kWh during the peak
hours from 19:00 to 23:00 (slot numbers 115-138) and a rate
of 9 cents/kWh during the rest of the day, as shown in Fig. 6.
The detailed specifications and other information for the
NSHAs, SHAs, PV system, SB and inverter used to imple-
ment the scheduling simulations are given in Tables 4 to 7.

FIGURE 6. Two-stage ToU tariff scheme for August-September 2016.

The hardware and software used for the simulations
include the following:

Machine: Core i7-4790 CPU @3.6 GHz with 16 GB of
RAM
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Platform: MATLAB 2015a
Optimization tool: MOGA/PO with the following

parameters:
Population size: 100
Population type: Double vector
Generation size: 1400
Crossover fraction: 0.8
Elite count: 0.05 x population size
Pareto fraction: 0.35
Pareto plot function: gaplotpareto

FIGURE 7. Tradeoff between CE and TBD(D) for a DR-based HEMS
with DS.

A. SIMULATION OF A DR-BASED HEMS WITH DS
From Fig. 7, which shows the optimal tradeoff solutions for
the CE and the TBD(D) obtained using DR, it is evident that
as the CE decreases, the TBD(D) increases. The user may
select the maximum feasible reduction in the CE based on
the acceptable TBD.

FIGURE 8. Scheduled loads for a DR-based HEMS with DS.

Fig. 8 shows the unscheduled and scheduled load curves.
It is evident that the DR-based DS shifts most of the load
in the forward direction toward the off-peak hour that starts
at 11:00 pm (slots 139-144). However, loads ranging from
0.18 to 0.26 kW/slot are scheduled in the peak time slots
117-128, and loads of 0.34 kW/slot are scheduled in the peak
time slots 133-138 due to the limited number of off-peak slots

available in the delayed direction, as is required for DS, which
restricts any further decrease in the CE .

FIGURE 9. Tradeoff between CE and TBD(M) for a DR-based HEMS
with MS.

FIGURE 10. Scheduled loads for a DR-based HEMS with MS.

B. SIMULATION OF A DR-BASED HEMS WITH MS
Fig. 9 shows the optimal tradeoff solutions for the CE and the
TBD(M ) and reveals that as the CE decreases, the TBD(M )
again increases due to the MS of the SHAs. A user may
select a maximum feasible reduction in the CE based on
his/her maximum bearable discomfort level. It is observed
that a greater reduction in the CE is achieved in the MS
case compared with the DS case for the same TBD. This
is because some of the SHAs that are initially expected to
operate during peak hours continue to operate during peak
hours even after DS due to the limited number of off-peak
hours available in the delayed direction, whereas in the MS
case, some of these SHAs that would otherwise be operating
during peak hours can be designated for AS, thereby enabling
the scheduler to shift them toward off-peak hours in the earlier
direction after other SHAs have been shifted toward off-peak
hours in the delayed direction. Because the scheduler is able
to shift more SHA loads to off-peak hours in MS, a greater
reduction in the CE is achieved in the MS compared with
the DS case for the same TBD. From Fig. 10, it can be seen
that the loads selected for the DS are shifted toward off-peak
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hours in the forward direction (slots 139-144), whereas the
loads designated for AS are shifted toward off-peaks hours
in the backward direction (slots 99-114). Hence, the loads
that continued to operate during the peak time slots 117-
128 in the DS case are instead shifted toward off-peak hours
in the earlier direction. Thus, the 0.34 kW/slot loads operating
during the peak time slots 133-138 in the DS scenario are
reduced to 0.23 kW/slot in the same set of slots. This shifting
of more of the load toward off-peak slots (some in the delayed
direction and some in the earlier direction) in the MS results
in a greater reduction in the CE . Therefore, the MS-based
DR shows better performance compared with the DS-based
model in terms of both the CE and the TBD.

FIGURE 11. Tradeoff between CE and TBD(D) for a DRSREOD-based
HEMS with DS.

C. SIMULATION OF A DRSREOD-BASED HEMS WITH DS
A simulation was performed to validate the performance of a
HEMS based on DR synergized with the optimal dispatch of
the PV system, the SB and the grid to achieve the maximal
reduction in the CE through simultaneous reduction of the
overall demand andminimization of the grid load during peak
hours. Ppv is utilized directly by the loads, and any excess
power from the PV system is stored in the SB to be utilized
during peak hours (or during off-peak hours to avoid an IBR-
based penalty) to reduce the CE . Fig. 11 shows an approxi-
mately linear relation between the CE and the TBD(D), with
a slope of 70.8 cents per unit of TBD(D). From Fig. 12,
it is evident that the PV-SB combination manages to supply
almost all of the load during peak hours by virtue of the SB.
However, a small part of the load must still be supplied by
the grid during peak hours in slots 116-120. The detailed
simulation results presented in Fig. 13 show that the grid
supplies all of the load in the morning during off-peak hours.
At 5:20 (slot 133), the power from the PV system begins to
gradually rise. Some of the load is supplied by the PV system,
while the grid also supplies some power in parallel when
the available PV energy is less than the load demand. If the
available PV energy is greater than the load demand, the SB
is charged. Once the SB is fully charged, any excess PV

FIGURE 12. Scheduled loads for a DRSREOD-based HEMS with DS.

FIGURE 13. Load, PV, SB and energy parameters for a DRSREOD-based
HEMS with DS.

energy is sold to the grid. Beginning in the 103rd slot, the load
demand becomes higher than the PV output, and because this
is an off-peak period, the grid supplies power in parallel with
the PV system to satisfy the load demand. In the 115th slot,
the peak period starts, and the SB is discharged during slots
115-120 (based on the maximum discharge rate) to supply
the load demand to save money while operating in parallel
with the grid and the PV system. In slots 121-132, the load
demand is small and can be almost fully supplied from the
SB until the SB has discharged to its lower limit, at the end
of slot 132. A small amount of power is then supplied by the
grid to support the load during slots 133-138 (peak hours).
Then, the off-peak period starts in the 139th slot, and the grid
again supplies power in the range of 0.225-0.34 kW until the
144th slot. Thus, the grid supplies a small amount of power
in the peak time slots 115-120 and 133-138. Furthermore,
the grid supplies a very low power level of 0.04-0.06 kW/slot
in parallel with the SB during the peak time slots 130-132.
The bar charts shown in Figs. 14 and 15 graphically illustrate
the two sides of the energy balance constraint, i.e., the balance
of the energy generated and the energy consumed in each
slot, as achieved through heuristic algorithm 2 for DS as
per Eq. 23.
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FIGURE 14. Power constraints for Pschd , Pchg and Psold for
a DRSREOD-based HEMS with DS.

FIGURE 15. Power constraints for Pgrid , Ppv and Pdis for
a DRSREOD-based HEMS with DS.

FIGURE 16. Tradeoff between CE and TBD(M) for a DRSREOD-based
HEMS with MS.

D. SIMULATION OF A DRSREOD-BASED HEMS WITH MS
Fig. 16 shows the tradeoff relation between the CE and the
TBD(M ). When the CE decreases, the TBD(M ) increases in
an approximately linear fashion, with a slope of 80 cents per
unit of TBD(M ), somewhat greater than the corresponding
value of 70.8 in DS. This finding indicates that the consumer
can achieve a faster/greater reduction in CE in the MS case
than in the DS case for a given increase in TBD.

FIGURE 17. Scheduled loads for a DRSREOD-based HEMS with MS.

FIGURE 18. Load, PV, SB and energy parameters for a DRSREOD-based
HEMS with MS.

From Figs. 17 and 18, it can be seen that some of the loads
that were operated during peak hours in slots 115-120 in the
DS scenario are shifted toward off-peak hours in the earlier
direction (slots 104-115) to achieve a greater reduction in
CE . Furthermore, the rest of the aforementioned load and the
peak-hour load in slots 133-138 can be completely supplied
by the SB in this scenario, unlike in the DS-based scenario,
in which some of this load is supplied from the grid. Thus,
the SB can fully supply the load for almost the entire time
during peak hours, unlike in the corresponding DS scenario.
Furthermore, the system can supply some of the peak load
that is shifted in the earlier direction directly through the
PV power (instead of selling that excess energy from the PV
system to the grid at a cheap rate), as is evident from Fig. 18.

Figs. 19 and 20 graphically illustrate the two sides of the
energy balance constraint, i.e., the balance of the energy
generated and the energy consumed in each slot, as achieved
through the heuristic algorithm 2 for MS as per Eq. 23.

E. CRITICAL ANALYSIS OF HEMS SCHEDULING (A-D)
The simulation results for the various scenarios are compared
in Table 8 in terms of the maximum reduction in the CE ,
the corresponding TBD, the net bill and the peak load reduc-
tion. The reduction in the CE with the application of the
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TABLE 8. Comparison of the maximum reductions in CE , the net bill, and the peak load for different HEMS categories.

FIGURE 19. Power constraints for Pschd , Pchg and Psold for
a DRSREOD-based HEMS with MS.

FIGURE 20. Power constraints for Pgrid , Ppv and Pdis for
a DRSREOD-based HEMS with MS.

proposed HEMS algorithms is computed as follows, taking a
base CE value of 218.99 cents/day for the unscheduled load
scenario:

%RHEMSCE = (218.99− CE)/(218.99) (25)

Eqs. 10 and 15 are used to compute the net bill paid by the
consumer and the peak load that must be supplied by the grid.

It is concluded that the MS results in a much larger
reduction in the CE compared with the DS in a DR-based
HEMS. Similarly, the MS also results in a larger reduction
in the CE and in the net bill compared with the DS for
a DRSREOD-based HEMS. In a DR-based HEMS, the TBD

is much lower in the MS scenario than in the DS scenario,
even at the minimal CE . In a DRSREOD-based HEMS,
the TBD incurred in the MS case for the maximal reduction
in the CE is slightly higher; however, for the same TBD
of 0.27, the CE value for MS is only 81 cents/day, compared
with 107 cents/day for the DS. This result reveals that for
the same level of TBD, a much greater reduction in the CE
can be achieved in the MS scenario than in the DS scenario.
An excellent reduction in the peak load is also achieved in
both the MS- and DS-based HEMSs. Thus, the MS approach
is recommended to achieve the maximal reduction in CE ,
a lower TBD, a greater peak load reduction and enhanced user
convenience by means of diverse scheduling options.

VII. SIMULATIONS FOR DG SIZING TO COPE WITH
LS IN A DRSREOD-BASED HEMS WITH MS
Simulations based on algorithm 3, presented in section V,
were run to investigate the optimal sizing of a DG for a
consumer already participating in an energy-deficient power
supply network in a developing country via a DRSREOD-
based HEMS. The algorithm computes the optimal size of a
DG to cope with a scheduled LS enforced by the utility while
synergizing price-based DR with the optimal dispatch of the
PV system, the SB, the grid and the DG. The scheduled LS on
an hourly basis for a maximum of 4 hours applied at 10:00,
16:00, 20:00 and 23:00 was considered in the simulations.
MOGA/POSwas used to obtain optimal tradeoff solutions for
Pgsize, the percentage reduction in the CE and the value of
TBD(M ) under optimal HEMS operation. The loads supplied
from the grid with and without a DRSREOD-based HEMS
with a DG for the minimal CE are shown in Fig. 21. Fig. 22
presents the corresponding detailed loads and generation
parameters under LS with the application of a DRSREOD-
based HEMS with a DG for the minimal CE . Figs. 23 and 24
graphically illustrate the two sides of the energy balance
constraint, i.e., the balance of the energy generated and the
energy consumed in each slot, as achieved through heuristic
algorithm 3 by incorporating a DG into the dispatch planning
during LS hours as per Eq. 24. A very small fraction of power
is dissipated in the dummy load only when surplus PV energy
is available after all HAs have been supplied and the SB has
been charged to its maximum SOC during LS hours.
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FIGURE 21. Power supplied from the grid with and without a
DRSREOD-based HEMS with an additional DG to cope with LS.

FIGURE 22. Load, Ppv , Pchg, Pdis, Pgen and energy parameters for
a DRSREOD-based HEMS with a DG to cope with LS.

FIGURE 23. Power constraints for Pschd , Pchg, Psold and Pdl for
a DRSREOD-based HEMS with an LS-compensating generator.

Tradeoff solutions for Pgsize, CE and TBD(M ) for a
DRSREOD-based HEMS with a DG are graphically pre-
sented in Fig. 25. The data are classified based on the
CE /TBD tradeoffs to assist the consumer in selecting an
optimal and feasible solution for the size of the DG. Table 9
further elaborates on the data classification for the optimal
selection of a DG to cope with the LS in a DRSREOD-based
HEMS.

FIGURE 24. Power constraints for Pgrid , Ppv , Pdis and Pgen for
a DRSREOD-based HEMS with an LS-compensating generator.

FIGURE 25. Generator size classification based on CE/TBD(M) tradeoffs.

A. CRITICAL ANALYSIS OF DG SIZING TO COPE WITH
LS IN A DRSREOD-BASED HEMS WITH MS
First, five alternative scenarios (numbered I-V and described
below) are discussed to investigate the appropriate sizes for
DGs to cope with LS in a home with no load scheduling
as well as for smart homes with load scheduling via DR-/
DRSREOD-based HEMSs as presented in section VI (A-D),
without considering the tradeoffs between Pgsize, CE and
TBD. The DG sizes computed in these scenarios are then
used as references/base cases to validate the benefits of the
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TABLE 9. Generator sizing based on CE/TBD(M) tradeoffs.

proposed algorithm for optimal DG sizing in a DRSREOD-
based HEMS considering the aforementioned tradeoffs.
Scenario I: In this scenario, unscheduled house loads are

considered, and the consumer selects a DG to supply the
necessary load during LS hours when he/she is neither par-
ticipating in DR nor using a PV/SB system. When hourly
scheduled LS at 10:00, 16:00, 20:00 and 23:00 is assumed,
a peak load of 2.04 kW occurs during LS at 20:00 (121st slot),
and hence, the DG should be sized for 2.04 kW.When the LS
schedule is shifted toward peak hours of 7-11 p.m., the peak
load reaches 3.66 kW in the 115th slot. Thus, a DG that can
supply a maximum of 3.66 kV can be safely chosen in this
scenario.
Scenario II: The consumer is participating in DR based

on DS. Under scheduled LS, a peak load of 2.04 kW occurs
during LS hours at 23:00 (139th slot), and the DG should
accordingly be sized for 2.04 kW.
Scenario III: The consumer is participating in DR based

on MS. A peak load of 2.34 kW occurs during LS hours at
16:00 (100th slot), and the DG should accordingly be sized
for 2.34 kW.
Scenario IV: The consumer is participating in the energy

network via a DRSREOD-based HEMSwith DS tomaximize
the reductions in the CE and the TBD (without considering
the DG requirements and LS effects). A peak load of 2.04 kW

occurs during LS hours at 23:00, and the DG should accord-
ingly be sized for 2.04 kW.
Scenario V: The consumer is participating in the energy

network via a DRSREOD-based HEMS with MS to maxi-
mize the reductions in the CE and the TBD (without con-
sidering the DG requirements and LS effects). A peak load
of 1.35 kW occurs during LS hours at 23:00, and the DG in
this scenario should accordingly be sized for 1.35 kW.
Scenario VI: This is the actual scenario for computing the

appropriate size for a DG to cope with LS in a DRSREOD
based HEMS. The algorithm for this scenario was developed
based on scenario V. All of the computations for scenario V
are performed. Additionally, 4 imposed LS hours and the
dispatch of the DG during these LS hours are included in
the algorithm. The DG size is included as a third fitness
function, along with the CE and the TBD, in determining
the POS. This scenario for DG selection using the pro-
posed tradeoff-based classification given in Fig. 25 is of
immense interest for comparison with scenarios I-V. The
maximum supply capacity of the DG required in scenario
VI ranges from 0.41 to 1.95 kW for the various classes, far
less than the required DG capacities of 3.65 kW, 2.04 kW,
2.34 kW and 2.04 kW in reference scenarios I-V, respectively.
When comparing scenario VI with reference scenario V, the
consumer finds that scenario VI offers a great flexibility
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(multiple choices providing diverse options) in selecting the
DG size, with capacities ranging from 0.41 to 1.95 kW based
on theCE /TBD tradeoffs, compared with the fixed DG capac-
ity requirement of 1.35 kW in scenario V. Based on Fig. 25
and Table 9, the salient features of the proposed method and
the underlying classification for the selection of a DG to cope
with LS in a DRSREOD-based HEMS based on scenario
VI can be summarized as follows:
Class I: In this class, the percentage reduction in the CE

ranges from 49.63 to 57.32, with corresponding TBD levels
from 0.17 to 0.22 and a DG sized for 0.41 kW. Consumers
opting for this class may enjoy a cost reduction of up to
57.32% with the lowest TBD levels of up to 0.22. The DG
size necessary to manage the power supply interruptions is
also the lowest, i.e., with a power supply capacity of 0.41 kW.
Therefore, comfort-conscious consumers should choose this
class, with its minimal TBD, reasonable reduction in the CE
and a minimum capital cost for a DG to ensure an uninter-
rupted supply of power.
Class II: In this class, the percentage reduction in the CE

ranges from 57.50 to 62, with corresponding TBD levels from
0.23 to 0.34 and a DG sized for 1.11 kW. Consumers opting
for this class can achieve a cost reduction of up to 62%
(greater than in class I) with an accompanying increase in
TBD up to 0.34 (also greater than in class I). A DG power
supply capacity of almost 2.71 times that in class I is required
to ensure an uninterrupted supply of power. This class seems
less attractive for consumers due to the larger required DG
size compared with class I.
Class III: In this class, the percentage reduction in the

CE ranges from 62.86 to 66.51, with corresponding discom-
fort levels from 0.30 to 0.48 and a DG sized for 1.52 kW.
Consumers opting for this class can achieve a maximum cost
reduction of 66.51% (greater than in class II) with a TBD level
of 0.48 (also greater than in class II). Consumers may opt
for this class to achieve a greater reduction in the CE with a
mildly increased TBD. However, this class is expected to be
more attractive if the DG sizes available in the market for this
class overlap with those sized for class II.
Class IV: In this class, the percentage reduction in CE

ranges from 67 to 70.85, with corresponding TBD levels
from 0.33 to 0.50 and a DG sized for 1.95 kW. Consumers
opting for this class will achieve a maximum cost reduction
of 70.85% (the largest in all classes) accompanied by a
maximum TBD level of 0.50 (also the largest in all classes).
Consumers who are not concerned about the TBD should
choose this class to achieve the maximum possible reduction
in CE . This class may be more attractive to consumers if the
DG sizes available in the market for this class overlap with
those sized for class III.

Alternatively, when the TBD is placed on the x axis,
as in Fig. 26, a different set of classes for selecting an optimal
DG size is obtained that is predominantly based on the TBD.
It is observed that in class I, a maximum TBD of 0.23 is
incurred to achieve a cost reduction of up to 57% with a DG
sized for 0.9 kW. Similar trends are observed for class II

FIGURE 26. Generator size classification based on TBD(M)/CE tradeoffs.

and class III. This TBD-focused classification will be of
greater interest to comfort-conscious consumers.

VIII. CONCLUSIONS AND FUTURE WORK
A heuristic algorithm for a DRSREOD-based HEMS for the
optimal sharing-based parallel operation of the PV system,
the SB and the grid is presented and validated. A scheme
for the MS of SHAs is proposed and incorporated into the
algorithm. A higher reduction in the CE with a lower TBD is
achieved with MS as compared with the DS scenario for both
DR- and DRSREOD-based HEMSs. The peak load for the
HEMS is reduced by using an IBR scheme with ToU tariffs.
UsingMS andMOGA/PO, an aposteriori method of handling
multi-objectivity, provides more scheduling flexibility and
diversity in decision-making for the consumer.

For a DR-based HEMS, a 15.5% reduction in the CE is
achieved with the MS, compared with 9.3% in the DS case.
This maximum reduction in the CE that is achieved with the
MS is also accompanied by a lesser TBD than in the DS
scenario, with values of 0.26 and 0.40 forMS and DS, respec-
tively. For a DRSREOD-based HEMS, a 65.92% reduction in
theCE is achievedwithMS, comparedwith 50.68% in theDS
case. At this minimum CE , the MS results in a slightly higher
value of the TBD than that in the DS scenario, with values
of 0.45 and 0.27 for MS and DS, respectively. However, for
the same TBD level of 0.27, the MS outperforms the DS
in terms of the CE , with costs of 88 and 107 cents/day for
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the MS and the DS, respectively. Considering the energy
sold to the utility in a DRSREOD-based HEMS, the net bill
paid to the utility is 48.37% less in the MS scenario than in
the DS scenario. Although the reduction in the CE varies
widely when different architectures/parameters are used for
modeling, the 65.9% reduction in the CE achieved in this
research is even greater than the maximum reduction of 65%
achieved in [17] and [32] for DRSREOD-basedHEMSs using
LP and MILP, respectively.

An algorithm for selecting the optimal size of a DG
to cope with the LS in a DRSREOD-based HEMS in a
developing country, considering the tradeoffs between the
CE , TBD and Pgsize, is also developed and validated. The
required DG power supply capacities as identified directly,
without any tradeoff analysis, for HEMS classes designated
as unscheduled, DR (with DS), DR (with MS), DRSREOD
(with DS) and DRSREOD (with MS) are 3.66, 2.04, 2.34,
2.04 and 1.35 kW, respectively. The proposed algorithm for
DG sizing provides the consumer with multiple choices for
DG selection from among a set of tradeoff-based classes
with DG supply capacities ranging from 0.41 to 1.95 kW.
The problem of optimal DG sizing to cope with the LS in
a DRSREOD-based HEMS considering the CE and TBD
tradeoffs has vital applications for consumers participating
in energy-deficient power supply networks in developing
countries.

Future work will address improvements in the performance
parameters, including CE , TBD and Pgsize, and the com-
putation time for a DRSREOD-based HEMS through the
following means:

-Varying the slot length from 10 minutes up to 60 minutes
-Using a hybrid function with MOGA while reducing the

population/generation sizes
-Varying the crossover fraction from 0.2 to 1 instead of

using the default value of 0.8
-Varying the crossover function type from the default

‘‘crossover scattered’’ type to other available options
-Using parallel processing and vectorized options in

MOGA
-Introducing emissions as a fitness function for DG

selection
-Comparing the performance of MOGA with the perfor-

mance of other metaheuristic and hybrid methods for HEMS
analysis.
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