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ABSTRACT The discounted {0-1} knapsack problem (DKP) extends the classical 0-1 knapsack problem
(0-1 KP) in which a set of item groups is included and each group consists of three items, whereas at
most one of the three items can be packed into the knapsack. Therefore, the DKP is more complicated and
computationally difficult than 0-1 KP. The DKP has been found many applications in real economic problems
and other areas. In this paper, the influence of Lévy flights operator and fly straightly operator in the moth
search (MS) algorithm is verified. Nine types of new mutation operator based on the global harmony search
are specially devised to replace Lévy flights operator. Then, nine novel MS-based algorithms for DKP are
proposed (denoted by MS1-MS9). Extensive experiments on three sets of 30 DKP instances demonstrate
the remarkable performance of the proposed nine new MS-based approaches. In particular, it discovers that
MS1-MS3 show better comprehensive performance among 10 algorithms. A variety of analyses indicate the
important contribution of the individual of memory consideration in MS1-MS9.

INDEX TERMS Discounted {0-1} knapsack problem, harmony search, moth search, swarm intelligence.

I. INTRODUCTION

The discounted {0-1} knapsack problem (DKP), as a gen-
eralization of the standard O-1 knapsack problem (0-1 KP)
[1], [2], is a novel and typical discrete optimization problem
recently proposed by Guldan [3]. The idea of DKP stems
from the promotional discounts activities of real merchants
and many practical problems, such as investment decision and
resource allocation, can be formulated as the DKP.

As a new variant of the standard 0-1 KP, DKP is more
complex and difficult to tackle than the standard 0-1 KP.
So far there is not much literature on the topic. Guldan [3]
firstly proposed dynamic programming (DP) [4] for solving
DKP. Based on the core concept, an effective DP method
for the DKP is described by Rong et al. [S]. Recently, two
new mathematical models of the DKP are firstly shown by
He et al. [6]. Afterword, a new DP method (NE-DKP) and
three approximate algorithms to this difficult problem are
presented in [7]. Consequently, these algorithms are mainly
exact methods. Very recently, Feng et al. [8] proposed a
multi-strategy monarch butterfly optimization (MMBO) for

DKP and two effective strategies, neighborhood mutation
with crowding and Gaussian perturbation, are introduced into
MMBO. Feng et al. [9] combined monarch butterfly algo-
rithm (MBO) with 7 kinds of differential evolution (DE) [10]
mutation strategy and developed a novel DEMBO algorithm
for DKP. In view of the significance of solving DKP in
practical application and academic research, it is necessary
to apply novel algorithm to this difficult problem.

Swarm intelligence (SI) methods, as a branch of modern
metaheuristic algorithms, start to demonstrate their power
in dealing with tough optimization problems and even
NP-hard problems. Thereinto, particle swarm optimiza-
tion (PSO) [11], and ant colony optimization (ACO) [12]
are two of the most representative paradigms among the
entire family of SI methods. In the past twenty years,
more and more effective SI methods are emerging, some
of them include artificial bee colony (ABC) [13] algorithm,
fruit fly optimization algorithm (FOA) [14], human learning
optimization (HLO) [15], krill herd (KH) [16]-[18],
elephant herding optimization (EHO) [19], animal
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migration optimization (AMO) [20], biogeography-based
optimization (BBO) [21], [22], monarch butterfly opti-
mization (MBO) [23], [24], earthworm optimization algo-
rithm (EWA) [25], and moth search (MS) [26] algorithm.

As a novel bio-inspired metaheuristic algorithm, there are
two important issues in MS [26] algorithm: Lévy flights and
fly straightly of the moths. Owing to the relatively short time
of MS being presented, the applications of MS in solving
practical problems is rare in literature. For all we know,
there is no research work about the MS for solving discrete
optimization problems, especially the DKP problem.

This paper presents highly effective MS methods for
solving DKP. The main contributions of this paper include
the following aspects. Firstly, there are two main opera-
tors, Lévy flights and fly straightly. The influence of two
different operators on the overall performance of MS for
DKEP is verified. Secondly, to explore efficiently the com-
prehensive performance of MS, Lévy flights is replaced
by nine types of new mutation operator based on global
harmony search (GHS) [27], [28]. Thirdly, as the basic
MS was proposed to solve the continuous optimization prob-
lem, nine novel binary MS-based (noted MS1-MS9) algo-
rithms and a binary basic MS are specifically designed for
the DKP. Finally, two stage repair and optimization operator
are employed to repair the infeasible solution and further
optimize the feasible solution.

The remainder of the paper is organized as follows.
In Section II, the definition and mathematical formula-
tion of the DKP is presented. In Section III, the basic
MS is described briefly. Then, binary MS for DKP is pre-
sented in Section IV. Section V is dedicated to an extensive
investigation of nine MS variants. Conclusions are drawn
in Section VI.

Il. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELS

When The definition of DKP is as follows: given a set of
n item groups N = {0,1,...,n — 1} and each group i
(i € N) has three items denoted as 3i, 3i + 1, and 3i + 2,
respectively. In each group, item 3i and item 3i + 1 have
the weights w3;, w3;41 and the profits p3;, p3i+1, respectively.
Item 3i 4 2 has the profit p3;;» and a discounted weight
w3ir2(W3i2 < w3; + w3it1). The number of items that can
be packed into the knapsack with capacity C is O or 1 in each
group. The objective of the DKP is to find a subset of all the
items that maximizes the total value on condition that the total
weight < C.

max f(X)

n—1
= max Zi:O (X3iP3i + X3i+1P3i41 + X3i42P3i42) ey

subject to x3; + x3i41 + X342 < 1, VieN 2
n—1

Zi*O (x3iw3i + X3i41W3i+1 + X3i42W3i42)
=C 3)

X3i, X3i41, X342 € {0, 1}, VieN “4)
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where x3;, X341 and x3;42 are the binary decision variables
such that x3; = 1 or x3;4+1 = 1 or x3;42 = 1 if one of
item 3i, 3i + 1, and 3i 4 2 is allocated to the knapsack,
x3; = 0 and x3;41 = 0 and x3;42 = 0 otherwise. Constraint
(2) guarantees that at most one item in each group can be
assigned to the knapsack. Constraint (3) requires that the total
weight of items in the knapsack must be no larger than its
capacity C. Constraint (4) requires that each variable takes
the value of 1 or 0.

The DKP generalizes the well-known NP-hard 0-1 KP.
Notice that DKP contains n + 1 inequality constraints,
in which there are n discount constraints (2) and one knapsack
capacity constraint (3), while there is only one inequality
constraint in the classical 0-1 KP. Therefore, DKP is more
complicated than the classical 0-1 KP. Indeed, the DKP
degenerates into the classical 0-1 KP if constraints (2) are
removed.

Ill. MOTH SEARCH ALGORITHM

Moth search (MS) algorithm [26] is a novel swarm intelli-
gence method inspired by the phototaxis and Lévy flights
of the moths. In MS, the whole population is divided into
two equal subpopulations according to the fitness, subpopula-
tion 1 and subpopulation 2. There are two main optimization
processes: the moths which have a smaller distance from the
best one will fly around the best individual by Lévy flights
and others will fly towards the best one in line. Therefore,
an offspring of subpopulationl and subpopulation 2 is gen-
erated by performing Lévy flights operator and fly straightly
operator, respectively.

A. LEVY FLIGHTS

For individual i in subpopulationl, the position can be
updated by (5).

t+1 _ ot
x; 7 =x; +al(s) (®))
where x! and xit *1are the position of individual i at generation

t and ¢t + 1. Parameter « is the scale factor which can be
calculated by (6).

o = Smax /1 (6)

where S,y 1s the max walk step and it takes the value 1.0 in
this paper.

L(s) is the step drawn from Lévy flights and it can be
formulated as (7).

(8 — DI(B — 1)sin(ZE-D)

L(s) = p:

N

where I'(x) is the gamma function, parameter § = 1.5 and
s>0.
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B. FLY STRAIGHTLY
For individual i in subpopulation2, the position movement
from generation ¢ to ¢ + 1 can be expressed as (8).

Ax (xf 4+ x (x),, —xD) if rand > 0.5

t+1
I+l — 1 8
i A X (xf + — X (X}, — X1))  else ®)
%

where A is a scale factor, ¢ is an acceleration factor and
X}, 1s the best moth at generation 7.

IV. BINARY MS-BASED METHODS FOR DKP

In this section, we present the design of the binary MS-based
methods for the DKP. Different from the basic MS, first we
outline the global-best harmony search (GHS) algorithm; sec-
ond nine new MS-based methods which consider GHS as
mutation operator are formulated; third we adopt a two-tuples
<X, Y>, in which real vector X is still involved in evolution
and a binary vector Y represents a solution. Besides, two-
stage repair and optimization operator is adopted in the binary
MS-based methods, which not only guarantees the feasibility
of all solutions, but also further improves the quality of all the
feasible solutions.

A. THE GLOBAL-BEST HARMONY SEARCH

Harmony search (HS) [27] is a relatively effective meta-
heuristic algorithm and the optimization process contains
three rules: memory consideration, pitch adjustment and ran-
dom selection. Among many HS-based variants, global-best
harmony search (GHS) [28] can perform efficiently on both
continuous and discrete problems. Essentially, GHS contains
the following three formulas which represents three rules in
HS, respectively.

xf =x{(G~U(,....,HMS) if rand <HMCR  (9)

l
xf = xp,y, if rand < HMCR A rand < PAR (10)
x¥ = LB* + rand x (UB* — LB*) if rand > HMCR
(11)

where HMCR is harmony memory considering rate, PAR is
pitch adjusting rate and HMS is the harmony memory size.
x{‘ is the kth element of individual i. Similarly, x}‘, x}]jext
indicate the kth element of individual j and the current global
best individual in the entire population, respectively. Rand is
a uniformly distributed random number in [0,1], and LB* and

UBF are the lower and upper limits for the kth.

B. NINE TYPES OF MUTATION OPERATOR BASED ON GHS
As noted earlier, there are two subpopulations in basic MS.
Naturally, useful information interaction between two sub-
populations should be considered. Additionally, with the aim
of improving the overall performance of MS, the excellent
gene of global best individual should be kept. Based on the
above considerations, nine types of new mutation operator by
the modification of the (9)-(11) are devised to be integrated
into the basic MS. Firstly, five conditions are as follows:

rand < HMCR (12)

10710

rand < HMCR A rand < PAR (13)
rand > PAR Ar1 > 0.5 Anl #n2 (14)
rand > PAR Arl < 0.5 Anl #n2 (15)
rand > HMCR (16)

Then the basic evolution formulas of the nine types of
mutation operators are as follows:

Typel:
Xy if (12) is satisfied
xﬁm if (13) is satisfied
xF=1xk 4 x (xfpzﬂ1 — xfpzﬁnz) if (14) is satisfied

k k k
Xpest — T X (xsp2,n1 _xspZ,nZ)

LB* + r x (UB* — LBY)

if (15) is satisfied
if (16) is satisfied
(17)

where xlk is the kth element of individual i. x j is the

kth element of individual j randomly chosen from the entire
population. Based on (12), lej, j is anewly generated individual

k

in memory consideration process and x;f . is called memory
. . C g . k K
consideration individual. X2 nl and Xpo po Ar€ the kth ele-

ment of individual n1 and individual n2 in subpopulation 2,
respectively.

Type2: differ from Typel, two differential individuals are
randomly chosen from subpopulation 1 if (14) or (15) is
satisfied.

x}’;, i if (12) is satisfied
Xt if (13) is satisfied
xlk = xllfest +r x ()cfpl,n1 — xfpl’nz) if (14) is satisfied
xl,jest —r X ()cjfpl’n1 - xé‘plﬂ) if (15) is satisfied
LBF + r x (UB* — LB¥) if (16) is satisfied
(18)
where xfpl, 1 and xpr .o are the kth element of individual

nl and individual n2 in subpopulation 1, respectively.

Type3: differ from Typel, two differential individuals are
randomly chosen from the entire population if (14) or (15) is
satisfied.

xllf’j if (12) is satisfied
Xk if (13) is satisfied
x{‘ = x,];est +r x (x;f’nl —xg’nz) if (14) is satisfied
Xposg =1 X (6 1 = x5 0)if (15) s satisfied
LB* +r x (UB* — LB*)  if (16) is satisfied
19)
where xﬁ’nl and x}inZ are the kth element of individual
nl and individual n2 which comes from the entire population,
respectively.

Typed: differ from Typel, two differential individuals are
randomly chosen from the entire population if (14) or (15)
is satisfied. In addition, the individual of memory consider-
ation are randomly selected from subpopulation 1 if (12) is

VOLUME 6, 2018
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satisfied.
xfplg ; if (12) is satisfied
Xk if (13) is satisfied
X = A xp 7 X (k= xk ) if (14) s satisfied

if (15) is satisfied
if (16) is satisfied
(20)

Type5: differ from Typel, when (14) or (15) is satisfied,
two differential individuals are both randomly chosen from
subpopulation 1. The individual of memory consideration is
randomly chosen from subpopulation 1 as well when (12) is
satisfied.

k k k
Xpest — T X (xp,nl - xp,nZ)
LB* + r x (UB* — LBY)

xfpl i if (12) is satisfied
Xfrost if (13) is satisfied
xlk = xlb‘m +r x ()cfpl’n1 — x;‘pl’nz) if (14) is satisfied

k k k
Xpest — T X (xspl,nl - xspl,nZ)

LBF + r x (UB* — LBY)

if (15) is satisfied

if (16) is satisfied
2D

Type6: differ from Typel, the individual of memory con-

sideration is randomly chosen from subpopulation 1 if (12) is
satisfied.

xfpl i if (12) is satisfied
Xt if (13) is satisfied
xll‘ = xﬁest +r x (xfpz’n] - x_]:pZ,nZ) if (14) is satisfied

k k k
Xpest — 1 X (xspZ,nl - xspZ,nZ)

LB* + r x (UB* — LBY)

if (15) is satisfied

if (16) is satisfied
(22)

Type7: differ from Typel, when (12) is satisfied, the indi-

vidual of memory consideration is randomly chosen from
subpopulation 2.

X, if (12) is satisfied
Xk if (13) is satisfied
xXf = {xfgy xR =Xk )i (14) s satisfied
Xpost =T X (Vo a1 = Xopp)  if (15) is satisfied
LB* + r x (UB* — LBY) if (16) is satisfied
(23)

Type8: differ from Typel, the individual of memory con-
sideration is randomly chosen from subpopulation 2 if (12)
is satisfied and two differential individuals are chosen from
subpopulation 1 if (14) or (15) is satisfied.

x‘guz,j if (12) is satisfied
Xhost if (13) is satisfied
= Ak x Gy =k D) if (14) s satisfied

k k k
Xpest — 1 X (xspl,nl - xspl,n2)

LB* + r x (UB* — LBY)

if (15) is satisfied
if (16) is satisfied
(24)
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Type9: differ from Typel, the individual of memory con-
sideration is randomly chosen from subpopulation 2 if (12) is
satisfied and two differential individuals are chosen from the
entire population if (14) or (15) is satisfied.

X if (12) is satisfied
X st if (13) is satisfied
xf = Ak Frx Gk =k )i (14) s satisfied

if (15) is satisfied
if (16) is satisfied
(25)

k k k
Xpest — T X (xp,nl - xp,nZ)
LBF + r x (UB* — LB)

C. SOLUTION REPRESENTATION AND EVALUATION
FUNCTION

In the basic MS, each moth individual is represented as a
real vector. Lévy flights operator and fly straightly operator
are defined in continuous space. However, the solution of
DKP is a binary vector. To address this problem, a surjection
function is devised to realize the mapping relationship from
a real vector to a binary vector. Firstly, define a real vector
X = [x1,x2,...,x,] € [—a,a]®. Here parameter a is a
positive real number and a = 5.0 in this paper. Parameter
n is the number of item groups. Then define a corresponding
binary vector Y = [y1, y2, ..., yu]" € {0, 1}". Finally, define
a correspondence between X and Y as follows:

yi= 1 if sig(x;) > 0.5 26)
0 else
where sig(x) = 1/(1 4+ ™) is the sigmoid function.

The quality of any candidate solution Y is evaluated
directly by the objective function f of the DKP. Given a
potential solution Y = {yo,y1,...,Y3s—1}, the objective
value f(Y) is calculated by the following formula:

3n—1

f) =" yipi 27)
i=0

D. TWO STAGE REPAIR AND OPTIMIZATION OPERATOR
DKP is a multi-constraint, discrete nonlinear combinatory
optimization problem. Usually, the emergence of infeasible
solutions is inevitable. For DKP, the probability of a binary
vector Y as an infeasible solution is no less than 1 —(1—1/2)".
Therefore, traditional penalty function method is not suitable
for solving DKP. In this paper, the following two-stage greedy
repair operator (D-GRO) and greedy optimization operator
(D-GOO) [6], [7] is employed.

In DKP, there exist a weight set W = {wg, wy, ..., w3,—1},
a profit set P = {po, p1, - - . , p3n—1} and the knapsack capac-
ity C. Thus, the profit-weight ratio of each item can be defined
as follows:

ri=pi/wi, i=0,1,...,3n—1 (28)

Before performing D-GRO and D-GOQO, firstly, all the
items are sorted with Quicksort method in a non-ascending
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Greedy repair operator for DKP

Begin
Step 1:
Input: X = {x,,x,,...

P={p,p, s}, H[0..30-1],C

Step 2: Initialization. The binary vector Y=0, Boole array F=0,
the total weight of items in the knapsack fw=0, the total value
=0, variable i=0.

Step 3: Greedy repair stage

While (fw<C and i < 3n-1)
(xll[l] =DA(fw+ Wy S )
W\ AF HI/3]1=0)

2y, b {0, W= {wy, Wy, wy, )

fw= fw+ Wy -
Vug FILHI/3]1=1
End if
i=i+1.
End while
Step 4: Output: Y ={y,,y,,..., v, } €{0,1}"

End.

FIGURE 1. Greedy repair operator for DKP.

Greedy optimization operator for DKP

Begin
Step 1:
Input: Y ={y,, y,.... 5, } €0, 1" , W ={wp,my,my, 1},

P={p,.ps .05}, H[0..3n-1],C
Step 2: Greedy optimization stage
For i=0 to 3n-1
If (fiw+wy,, <C)and(F[| H[i]/3[]=0)

ﬁ’V = fW+ Werti)
yH[i]:l’F[LH[i] / 3J] =1
End if
End for

Step 3: Calculate the objective function value
For i=0 to 3n-1

Sv=fv+yipi
End for

Step 4: Output: Y ={y,, y,,...,x;,,} €{0,1}"
End.

FIGURE 2. Greedy optimization operator for DKP.

order according to the profit-weight ratio. The index value of
items after sorting are recorded in an array H [0...3n — 1].
Then, a Boolean array F [0...n— 1] is initialized to 0, which
indicates that no item is packed into the knapsack. Given a
binary vector Y = [yo, ¥1, ..., ¥3n—1] € {0, 1}3", the pseudo-
code of D-GRO and D-GOQO are illustrated in Fig. 1 and Fig.2,
respectively.

E. THE MAIN PROCEDURE OF BINARY MS
METHODS FOR DKP

Through the elaborate design above, the main procedure of
binary MS for DKP is illustrated in Fig. 3. Firstly, N moth

10712

The main procedure of binary MS for DKP

Begin

Step 1: Sorting. Sort all p, / W, in non-increasing order

(0<i<3n-1), and the indexes of items are recorded in array
H [0...3n-1].

Step 2: Initialization. Generate N moth individuals randomly
{<X1, Y1>, <X2, Y2>, ooy <XN, YN>} . DlVlde the whole
population into subpopulation 1 and subpopulation 2 according
to their fitness. Set the maximum iteration number MaxGen
and iteration counter G=1; the max step Sma.x=1.0; the

acceleration factor ¢ =0.618, and the index £ =1.5.

Step 3: Fitness calculation. Calculate the initial fitness of
each individual, {Y;), 1<i<N.
Step 4: While G<MaxGen do
Update subpopulation 1 with Lévy flights operator.
Update subpopulation 2 with fly straightly operator.
Perform repair and optimization with D-GRO and D-
GOO.
Evaluate the fitness of the population and record the
<ngest> ngest>~
G=G+1.
Regroup the two newly-generated subpopulations.
Sort the population by fitness.
Divide the whole population into subpopulation 1 and
subpopulation 2.
Step 5: End while
Step 6: Output: the best results.
End.

FIGURE 3. The main procedure of binary MS for DKP.

individuals as the initial population are generated randomly
and then the population is divided into two subpopulations
according to their fitness. Next, repeat the following evolu-
tionary process until a termination condition is met. At each
new generation, an offspring individual in subpopulation 1 is
generated by Lévy flights operator. Meanwhile, an offspring
individual in subpopulation 2 is updated by fly straightly
operator. Then D-GRO and D-GOO are performed to repair
all the infeasible solution as well as to further optimize all the
feasible solution. Finally, the newly generated two subpopu-
lations is recombined into one population.

V. EXPERIMENTAL ANALYSIS
A. TEST INSTANCES AND EXPERIMENTS SETTING
In this paper, 30 DKP test instances belong to three
different sets: 10 uncorrelated instances (called UDKPI-
UDKP10), 10 weakly correlated instances (called WDKP1-
WDKPI10), and 10 strongly correlated instances (called
SDKP1-SDKP10). The above three types of DKP instances
were first generated in [6]. The dimensions of 10 instances
in each type is 300 «* n (n = 1,2...,10), respec-
tively. The 30 DKP instances can be available at: DOL
10.13140/RG.2.2.25166.36160

The proposed algorithms in this paper are coded in C++
and in the Microsoft Visual Studio 2015 environment. All
the experiments are run on a PC with Intel (R) Core(TM)
i5-2415M CPU, 2.30 GHZ, 4GB RAM.

VOLUME 6, 2018
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FIGURE 4. Boxplot on 300-dimensional DKP instances.

TABLE 1. The computational results of MS, MS-1, and MS-II.

UDKP1 WDKP1 SDKP1 UDKP2 WDKP2 SDKP2

Best 80632 83034 93642 154945 138045 159620

MS Mean 79135 82946 93339 151870 137920 159464
Worst 77615 82834 91115 150015 137871 159297

Best 73082 79936 90735 139993 130179 149724

MS-I Mean 71571 78014 89059 136420 128729 148043
Worst 70231 77388 87802 134447 127344 146834

Best 78850 82984 93525 154945 137948 159507

MS-II Mean 76861 82844 93208 151870 137793 159236
Worst 74843 82699 92952 150015 137715 159016

In this paper, the stopping criteria is maximum number of
iterations which equals to the dimension of each instance.
For each instance, our algorithms were executed 30 times
independently. In addition, the population size of all the
algorithms is 50.

For MS, the max step Smax=1.0, acceleration factor
¢ = 0.618, and the index = 1.5.

B. ESTIMATE THE EFFECT OF TWO MAIN OPERATOR

ON THE PERFORMANCE OF BINARY MS

As previously stated, the whole population is divided equally
into two subpopulations based on fitness in the basic MS.
Two main operators: Lévy flights operator and fly straightly
operator are used to update the individuals in subpopula-
tion 1 and subpopulation 2, respectively. After each itera-
tion, the updated two subpopulations are reorganized into
a large population. However, the effect of two main oper-
ators on the performance of binary MS was not estimated
in basic MS. In this subsection, this issue is verified and
then two new methods based on MS: MS-I and MS-II are
proposed. In MS-I, the whole population is updated by Lévy
flights operator. In MS-II, all the individuals are updated by
fly straightly operator. UDKP1, WDKP1, SDKP1, UDKP2,
WDKP2, SDKP?2 are selected as test instances. The computa-
tional result is displayed in Table 1 and two boxplots are also
provided in Fig.4 and Fig.5, respectively.

From Table 1, it is clear that the basic MS dominates
the MS-I and MS-II for all the six DKP instances, which
reveals that the cooperative behavior of two operators can
effectively improve the comprehensive performance of MS.
In addition, from Fig.4 and Fig.5, we observe that MS and
MS-II have greater value and less height than those of MS-I.
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FIGURE 5. Boxplot on 600-dimensional DKP instances.

The average ranking

MS MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9
The ranking value of nine MS-based methods and basic MS

FIGURE 6. Comparison of the rank of nine new MS methods with
basic MS.

For WDKP1, SDKP1, WDKP2, and SDKP2, MS and MS-II
are more robust and effective than MS-I. From this a conclu-
sion can be reached that Lévy flights operator has less influ-
ence on MS than fly straightly operator. Based on the above
analysis, Lévy flights operator in the basic MS algorithm is
replaced with (15) - (23), respectively. Then nine types of new
MS-based methods are developed (called MS1, MS2, ...,
MS9, respectively).

C. COMPARISONS OF NINE NEW MS APPROACHES
WITH BASIC MS
In this section, the comparative results of nine new MS-based
methods with basic MS on 30 DKP instances are summarized
in Tables 2-4, respectively. For MS1-MS9, HMCR=0.9 and
PAR=0.9. In these three tables, three basic evaluation cri-
teria, i.e., “Best”, “Mean”’, and ‘“Worst” are considered to
evaluate each method. “Best’, “Mean”’, and “Worst”’ denote
the best value, the average value, and the worst value for
each instance reached by each algorithm among 30 times
independent running. The values in parentheses in the first
column indicate the optimal solution value (Opt) calculated
by DP method [5]. The value in bold in each row indicates
the best value for each DKP instance obtained by all the
algorithms.

From Table 2, we observe that MS1 attains 6 best values,
4 mean values, and 2 worst values on the 10 uncorrelated
DKP instances, which is the largest among the results of
the 10 algorithms in comparison. MS2 attains 2 best values,
while MS3 and MS7 obtain best value once. A conclusion is
that MS1 demonstrates the best comprehensive performance
when solving uncorrelated DKP.
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TABLE 2. Comparisons of nine new MS methods with basic MS on uncorrelated DKP instances.

MS MS1 MS2  MS3 MS4  MS5 MS6  MS7 MSS8 MS9

Best 80632 84200 84286 84576 84803 84416 84336 85216 84951 85178

UDKPL — yioan 79135 82763 82356 82047 83764 83279 83429 84013 84070 84180
(85740)  worst 77615 81131 79710 79658 81452 80032 81864 81629 81280 82033
Ubkpy  Best 154945 161133 161118 161886 158913 158350 155276 156668 156059 157813
(l3744) Mean ISIST0 158503 158663 158253 157683 156882 153690 154744 154538 155793
Worst 1150015 155911 154760 154918 156779 155828 152546 153267 152898 154232

Best 238755 251954 252939 239173 239903 239055 239489 241369 239978 241751

g{g%gg’) Mean 235192 249646 249141 236276 237747 236803 236978 239200 238478 240340
Worst 233184 244938 246213 234510 236108 235205 234874 238077 237270 238986

Ubkps  Best 317591 332554 327923 318371 320745 319341 320423 321202 321486 322317
(347500) Mean 315365 320776 320549 31S380 318787 317714 3ITS8 319567 319001 320641
Worst 313614 315150 315665 312962 317176 315916 316450 317545 316106 319276

Ubkps  Best 381323 405222 402759 384025 387017 385640 385495 387061 389048 387343
(iposs) Men  I7BI9S 400653 397953 379639 382257 38575 382403 3437 3R0508 385104
Worst 375865 395533 389724 377091 379589 378401 378812 380686 380759 382929

UDkp  BeSt 462859 487014 434623 464864 464961 462448 465223 466920 466486 472212
(536s76) Mean 458733 4BL4OL 480548 459774 462163 460ST6 460946 464207 463354 d6ess
Worst 456086 476628 474558 456869 460437 458315 458849 462573 461171 464922

Upkpy | Best 574220 618146 614942 612998 573473 570923 572037 577668 577452 584711
(635860)  Mean 562736 604287 G068 60SSB4  STO02  S6667  S6R261 574534 ST2301 T8I
Worst 557849 588175 590499 504060 567762 564197 564793 571382 569271 573996
Upkpg  Best 581456 596452 586027  S872S1 586921 584442 585345 589724 SSTISS 590636
(650206) Mean 78208 SE1196  SRIOST  SB0SS6 584865 582292 SKDSS®  SBSIES  SB4GRO  SB6467
Worst 575686 575279 576939 573465 583445 579483 580631 583094 583054 584135

UDkpo Bt 640669 661984 660237 658067 647643 646966 GASIT3  GATSS6 649121 649431
(lgssz) Men  63816S  GS25T2 652380 650236 644431 642643  GA3ISL 645333 G45347 6404l
Worst 636382 644955 645214 642465 642338 640733 641007 643331 643172 644648

Best 709352 719003 724875 719692 713077 712151 710615 713101 715935 713133
UDKPI0  \ean 704405 713858 714802 714992 709777 708066 708305 710298 710395 711297
(779460)  worst 702757 706131 708580 707831 707956 706154 706532 707980 708523 709584

TABLE 3. Comparisons of nine new MS methods with basic MS on weakly correlated DKP instances.

MS MS1 MS2 MS3 MS4 _ MSs MS6  MS7 __ _MS8 __ MS9

WhKpl  Best 83034 83074 83074 83047 83083 83086 83082 83090 83087 83088
(83005, Mean 82946 82047 82026 82002 82875  £2772 82819 82046 82044 82967
Worst 82834 82800 82814 82814 81892 81399 81726 82026 82068 82063

Wokpy  Best 138045 138143 138106 138019 138034 138040 138016 138070 138070 138142
(I3%215) Mean 137920 137989 137993 137918 137947 137913 137927 137970 137970 138031
Worst 137871 137840 137830 137840 137876 137829 137867 137884 137884 137971

Whkps  Best 255187 248982 249734 249166 246412 246165 246494 247143 246966 246703
(sgele) Mean 254883 24318 248237 248086 245587 245380 245420 246039 245998 246129
Worst 254638 247714 247486 247819 244810 244561 244580 245450 245399 245445

WhKps  Best 314617 314905 314901 315041 314715 314612 314665 314693 314653 314902
(l36s7) Mean 314544 314612 314600 314602 314553 314516 314512 314554 314544 3146dS
Worst 314470 314321 314379 314248 314463 314451 314444 314472 314457 314497

WhKps Bt 427250 427530 427847 427593 427353 427245 427205 A2T3I3 427241 427372
(os4pg) Mean 427160 427173 427193 427130 427149 427084 427112 427150 427104 427189
Worst 427064 426876 426914 426879 426987 426986 426987 427015 426988 427031

WhKpe  Bost 464786 464993 464953 465096 464705 464641  4GAGE2  46AT60 464683 464784
(160050) Mean 464612 464701 464656 464690 46461 464540 d6dSds 464559 d64SSs  464sT3
Worst 464530 464383 464401 464376 464468 464437 464426 464477 464432 464448

WDKpy Bt 545260 545607 545528 545584 545321 545319 545252 545308 545311 545311
(S4763) Mean SASI6S  S4SHI S4SSI S4S2SI SSIIE 545109 S4SI09 545122 S4SIS2 54512
Worst 545058 544912 544986 545018 545026 545023 545023 545014 544994 544994

Whkps  Best 575314 575387 575457 575396 575226 575255 S7SI62 575294 575229 575260
($709s9y Mean 57541 STSI26 75137 S7s1l6  SSII2 575094 STS093  STSLIS 75112 75140
Worst 575052 574920 574931 574875 575034 575011 575024 575024 575024 575041

WhKpo  Bost 648962 649059 648977 649035 648951 648947 648939 649000 643918 649049
(650660)  Mean 648870 GASSI3 648709 GARTON 64843 GABSA4 648835 GASSG) 648841 GARS62
Worst 648813 648611 648621 648613 648782 648777 648772 648772 648769 648788

WDKP10  Best 677696 677817 677887 677799 677683 677721 677704 677715 677715 677761
(678967) Mean 677623 677581 677585 677559 677605 677603 677602 677618 677613 677633
Worst 677550 677401 677392 677359 677533 677533 677533 677538 677533 677549

From Table 3, the ability of MSI1 to find good solu-
tions is similar to that of MS2, because they both obtain
3 best values on the 10 weakly correlated DKP instances.

10714

MS3 reaches 2 best values while MS and MS7 both get the
best values once. Additionally, MS attains 8 worst values and
MS9 obtains 5 mean values on 10 WDKP instances.
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TABLE 4. Comparisons of nine new MS methods with basic MS on strongly correlated DKP instances.

MS MS1 MS2 MS3 MS4 _ MS5 MS6 MS7 MSS MS9

Best 93642 94030 93977 93887 93923 93793 93846 93969 93869 94032

(591355’;1) Mean 93339 93695 93650 93681 93608 93582 93510 93506 93452 9366l
Worst 91115 93376 93332 93448 93006 93360 92617 92570 92605 92715

DKpy | Best 139620 159019 158722 158632 156746 156530 156225 157108 156808 157615
(60s0s) Mean 159464 ISS082 ISTT7S 157927 155777 155379 1SS630 156308 156120 156503
Worst 159297 155574 155840 155918 155311 154741 155163 155805 155672 155935
pkps  Bet 236154 236634 236514 236522 236174 236074 236175 236270 236257 236550
(3koy) Mean 235920 236070 236088 236063 235960 23887 235924 236064 236020 236258
Worst 235751 235765 235575 235706 235847 235752 235730 235892 235789 236078

Dkps | Best 337224 337954 337806 337627 337290 337161 337207 337377 337329 337563
(a00z7 Mean 337063 337248 337219 337245 337091 337018 337017 337123 337108 337334
Worst 336934 336834 336907 336864 336922 336917 336874 336928 336958 336898
Best 454627 455491 455476 455244 454930 454796 454567 455144 455113 455530
SDKPS — \lean 453561 454026 454042 453877 454471 454183 454071 454579 454549 454808
(463033)  \worst 452588 452553 450924 451637 453840 453582 453593 453803 454159 453871
SDKpg  Best 460686 461242 461518 461181 460855 460642 460759 460805 460986 461049
(logoo7) Mean 460418 460729 4GO859 460816 460484 460401 460390 460480 460447 460643
Worst 460224 460178 460057 460438 460265 460247 460216 460313 460241 460387
pkp7  Best 609415 609852 610470 609927 610254 609685 G09S 610086 609859 610269
(20446 Mean 608523 GOS7I2  6OS8S3  GOST33 609397 609245 609201  GOO4S0 609335 609712
Worst 607797 604763 606912 606995 608666 608822 608355 609027 608708 609072
Dkpg  Best 663380 663804 663672 663819 663273 663073 663078 663192 663157 663423
Mean 663012 663103 663171 663163 662942 662897 662924 662964 662941 663064
(670697)  Worst 662895 662574 662660 662727 662781 662762 662783 662812 662762 662897
pkpy  Best 730861 731439 731264 731156 730590 730555 730847 730935 730606 731012
(a012) Mean 730547 730654 730667 730717 730455 730431 730474 730526 730457 730602
Worst 730450 730204 730163 730273 730333 730300 730298 730347 730353 730405
Best 757636 757821 757955 757806 757570 757579 757520 757498 757580 757787

SDKPI0  Mean 757390 757466 757479 757491 757372 757331 757345 757400 757391 757511
(765317)  Worst 757290 757158 757101 757208 757250 757197 757202 757291 757235 757327

From Table 4, MS1 and MS?2 still remain excellent per-
formance when solving strongly correlated DKP instances,
which is deduced from that MS1 and MS2 both obtain
3 best values on 10 SDKP instances. We observe MS9 attains
2 best values while MS and MS1 reach the best values once.
In addition, MS9 shows better performance in compared to
other 9 methods in terms of the mean value and the worst
value.

To further assess the performance of 10 methods clearly,
the ranks of each method for 30 DKP instances based on the
best values is displayed in Table 5 and Fig. 6, respectively.
As can be seen from Table 5 and Fig. 6, it is obvious that
MST1 ranks first for all 30 DKP instances among 9 MS-based
new methods and basic MS. MS2 and MS9 are the second
and the third best among 10 methods. Additionally, basic MS
ranks eighth which can be deduced that new mutation opera-
tor based GHS can improve the chance of finding the global
optima as well as the performance of the MS significantly.

Through an in-depth analysis of (15)- (23), MS1, MS2, and
MS3 with better performance have common feature that the
individual of memory consideration are all randomly selected
from the entire population, which fully explain memory con-
sideration plays an important role in the evolution process of
nine MS-based methods. Furthermore, because the individual
comes from the whole population, not just subpopulation 1
or subpopulation 2, MS1, MS2, and MS3 can gain more
useful information from excellent diversified individuals.

VOLUME 6, 2018

As noted earlier, MS1 shows the best overall performance.
Compared with MS2 and MS3, it is not difficult to find
that two differential individuals are randomly selected from
subpopulation 2 in MS1, which can increase the chance of
exchanging significant information between two subpopula-
tions. The rankings of 10 methods based on the best values
are as follows:

MS1 > MS2 > MS9 > MS3 > MS7

> MS8 > MS4 > MS > MS6 > MS5  (29)

To evaluate the similar level of the theoretical optimal value
to the best value gained by each algorithm, the approximation
ratio [29] based on the best value (ARB) is defined as follows:

ARB = Opt /Best (30)

where Opt represents the optimal solution value and Best is
the best approximate solution value.

For a problem of seeking maximum, ARB is obviously a
real value of no less than 1.0. Furthermore, the closer that
the ARB value is to 1.0, the better the quality of a solution.
To show the performance of 10 methods more intuitively,
the comparative results of ARB values of 10 UDKP instances,
10 WDKP instances, and 10 SDKP instances are illustrated
in Figs. 7, 8, and 9, respectively. In Fig. 7, we can see
that MS1 has the smallest ARB for UDKP4-UDKP6 among
10 methods, which is consistent with previous analyses.
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TABLE 5. Ranks of nine new MS methods with basic MS based on the best values.

MS MS1 MS2 MS3 MS4 MSS5 MS6 MS7 MS8 MS9
UDKPI 10 9 8 5 4 6 7 1 3 2
UDKP2 10 2 3 1 4 5 9 7 8 6
UDKP3 10 2 1 8 6 9 7 4 5 3
UDKP4 10 1 2 9 4 8 7 6 5 3
UDKP5 10 1 2 9 6 7 8 5 3 4
UDKP6 9 1 2 8 7 10 6 4 5 3
UDKP7 7 1 2 3 8 10 9 5 6 4
UDKPS 10 1 7 4 6 9 8 3 5 2
UDKP9 10 1 2 3 8 9 6 7 5 4
UDKP10 10 3 1 2 7 8 9 6 4 5
WDKPI 10 7 7 9 5 4 6 1 3 2
WDKP2 6 1 3 9 8 7 10 4 4 2
WDKP3 1 4 2 3 9 10 8 5 6 7
WDKP4 9 2 4 1 5 10 7 6 8 3
WDKP5 8 3 1 2 5 9 7 6 10 4
WDKP6 4 2 3 1 7 10 9 6 8 5
WDKP7 9 1 3 2 4 5 10 8 6 6
WDKPS8 4 3 1 2 9 7 10 5 8 6
WDKP9 6 1 5 3 7 8 9 4 10 2
WDKP10 9 2 1 3 10 5 8 6 6 4
SDKP1 10 2 3 6 5 9 8 4 7 1
SDKP2 1 2 3 4 8 9 10 6 7 5
SDKP3 9 1 4 3 8 10 7 5 6 2
SDKP4 8 1 2 3 7 10 9 5 6 4
SDKP5 9 2 3 4 7 8 10 5 6 1
SDKP6 9 2 1 3 6 10 8 7 5 4
SDKP7 10 7 1 5 3 9 8 4 6 2
SDKP8 5 2 3 1 6 10 9 7 8 4
SDKP9 1 2 3 9 10 7 5 8 4
SDKP10 2 1 3 8 7 9 10 6 4
Mean Rank 7.80 2.33 2.77 4.07 6.53 8.27 8.17 5.23 6.10 3.60
1.18 1.045
ms
1.16 1.04 MS1
ms2
ERRY 3 1035 ms3
g g Ms4
E 1.12 E 1.03
% i % 1.025
§ 1.08 § 1.02
E 1.08 MS5 g 1.015
3 MS6 g Tor
g 1.04 g 1
1.02; Ms9 1.005 I \ » B . .
1 =" Y
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Ten uncorrelated instances

FIGURE 7. Comparisons of the approximation ratio on UDKP1-UDKP10.

In general, 10 algorithms can be divided into two groups.
MSI1, MS2, and MS3 constitute a group with better perfor-
mance, and the other 7 methods form another group. In Fig.8§,
all 10 algorithms can obtain very small ARB values which
are less than 1.005 on all 10 WDKP instances except for
WDKP3. It indicates that 9 new MS-based methods and basic
MS are very suitable for solving WDKP instances. In Fig.9,
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Ten weakly correlated instances

FIGURE 8. Comparisons of the approximation ratio on WDKP1-WDKP10.

ARB values of 10 methods have no significant difference for
9 SDKP instances except for SDKP2.

To visualize the experimental results of 10 methods from
a statistical perspective, the corresponding boxplots of three
higher-dimensional DKP instances (UDKP10, WDKP10, and
SDKP10) are provided in Figs. 10, 11, and 12, respectively.
From Figs. 10-12, we can make two observations, 1) the
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FIGURE 9. Comparisons of the approximation ratio on SDKP1-SD KP10.
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FIGURE 10. Boxplot of the best values on UDKP10 in 30 runs.
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FIGURE 11. Boxplot of the best values on WDKP10 in 30 runs.

boxplots of MS1, MS2, and MS3 have greater value but
greater height than the other 7 methods, 2) the 10 methods
can be roughly divided into 4 groups: groupl (MS), group2
(MS1-MS3), group3 (MS4-MS6), group4 (MS7-MS9). The
four groups are exactly corresponding to the above (15)-(23),
in which the individuals of memory consideration in
group2, group3, and group4 are randomly selected from
the entire population, subpopulationl and subpopulation 2,
respectively.

To gain some insights on the optimization process
of 10 methods, the evolutionary curves on three representative
higher-dimensional DKP instances (UDKP10, WDKP10, and
SDKP10) are provided in Figs. 13-15. In these three figures,
all the function values are calculated based on the mean
best values among 30 independent runs. From Fig. 13, three
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FIGURE 12. Boxplot of the best values on SDKP10 in 30 runs.
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FIGURE 13. The convergence graph of ten algorithms on UDKP10.
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FIGURE 14. The convergence graph of ten algorithms on WDKP10.

observations can be obtained: 1) the initial values of MS1,
MS2, and MS3 are greater than those of other 7 meth-
ods, furthermore, they have fast convergence speed to better
global optimum. 2) MS4-MS9 show second good conver-
gence behavior among 10 methods. 3) As the above discus-
sion, MS has the smallest initial value. From Fig. 14, ten
methods demonstrate extremely similar convergence behav-
ior when solving weakly correlated WDKP10 instance. The
same scene appears in Fig. 15 while the difference is the
initial value.

From the above comprehensive analysis, some conclu-
sions can be derived: 1) Nine new MS-based variants show
remarkable performance compared with basic MS. 2) MS1,
MS2, and MS3 exhibit the best overall performance due to
their individuals of memory consideration. 3) The profits
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FIGURE 15. The convergence graph of ten algorithms on SDKP10.

and weights of three types of DKP instances are randomly
generated over a wide range, however, 10 methods in this
paper can obtain better approximate solutions with an approx-
imation ratio approaching 1 quickly. Therefore, 10 effective
new methods are all suitable for solving large-scale difficult
DKP instances.

VI. CONCLUSION

In this paper, 10 novel effective binary MS-based algorithms
(MS1-MS9, MS) are proposed for the discounted {0-1} KP
problem (DKP). DKP is a useful model in practice while
presenting a real computational challenge. The effect of Lévy
flights operator and fly straightly operator on basic MS are
firstly evaluated. Then nine new MS-based algorithms com-
bining GHS-based mutation operator are proposed.

Computational assessments on three sets of 30 DKP
instances indicate that the proposed nine methods have
advanced performance both in solution quality and compu-
tational efficiency compared to the basic MS. For all 30 DKP
instances, MS1 reveal the best performance for it can attain
12 best values and 11 second best values.

Finally, it is expected that the ideas behind the GHS-based
mutation operator developed in this work would be useful
to other constrained knapsack problems, such as multiple-
choice multidimensional knapsack problem (MMKP)
[30], [31], set-union knapsack problem (SUKP) [32], and
more generally combination optimization problems.
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