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ABSTRACT The discounted {0-1} knapsack problem (DKP) extends the classical 0-1 knapsack problem
(0-1 KP) in which a set of item groups is included and each group consists of three items, whereas at
most one of the three items can be packed into the knapsack. Therefore, the DKP is more complicated and
computationally difficult than 0-1KP. TheDKP has been foundmany applications in real economic problems
and other areas. In this paper, the influence of Lévy flights operator and fly straightly operator in the moth
search (MS) algorithm is verified. Nine types of new mutation operator based on the global harmony search
are specially devised to replace Lévy flights operator. Then, nine novel MS-based algorithms for DKP are
proposed (denoted by MS1–MS9). Extensive experiments on three sets of 30 DKP instances demonstrate
the remarkable performance of the proposed nine new MS-based approaches. In particular, it discovers that
MS1–MS3 show better comprehensive performance among 10 algorithms. A variety of analyses indicate the
important contribution of the individual of memory consideration in MS1–MS9.

INDEX TERMS Discounted {0-1} knapsack problem, harmony search, moth search, swarm intelligence.

I. INTRODUCTION
The discounted {0-1} knapsack problem (DKP), as a gen-
eralization of the standard 0-1 knapsack problem (0-1 KP)
[1], [2], is a novel and typical discrete optimization problem
recently proposed by Guldan [3]. The idea of DKP stems
from the promotional discounts activities of real merchants
andmany practical problems, such as investment decision and
resource allocation, can be formulated as the DKP.

As a new variant of the standard 0-1 KP, DKP is more
complex and difficult to tackle than the standard 0-1 KP.
So far there is not much literature on the topic. Guldan [3]
firstly proposed dynamic programming (DP) [4] for solving
DKP. Based on the core concept, an effective DP method
for the DKP is described by Rong et al. [5]. Recently, two
new mathematical models of the DKP are firstly shown by
He et al. [6]. Afterword, a new DP method (NE-DKP) and
three approximate algorithms to this difficult problem are
presented in [7]. Consequently, these algorithms are mainly
exact methods. Very recently, Feng et al. [8] proposed a
multi-strategy monarch butterfly optimization (MMBO) for

DKP and two effective strategies, neighborhood mutation
with crowding and Gaussian perturbation, are introduced into
MMBO. Feng et al. [9] combined monarch butterfly algo-
rithm (MBO) with 7 kinds of differential evolution (DE) [10]
mutation strategy and developed a novel DEMBO algorithm
for DKP. In view of the significance of solving DKP in
practical application and academic research, it is necessary
to apply novel algorithm to this difficult problem.

Swarm intelligence (SI) methods, as a branch of modern
metaheuristic algorithms, start to demonstrate their power
in dealing with tough optimization problems and even
NP-hard problems. Thereinto, particle swarm optimiza-
tion (PSO) [11], and ant colony optimization (ACO) [12]
are two of the most representative paradigms among the
entire family of SI methods. In the past twenty years,
more and more effective SI methods are emerging, some
of them include artificial bee colony (ABC) [13] algorithm,
fruit fly optimization algorithm (FOA) [14], human learning
optimization (HLO) [15], krill herd (KH) [16]–[18],
elephant herding optimization (EHO) [19], animal
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migration optimization (AMO) [20], biogeography-based
optimization (BBO) [21], [22], monarch butterfly opti-
mization (MBO) [23], [24], earthworm optimization algo-
rithm (EWA) [25], and moth search (MS) [26] algorithm.

As a novel bio-inspired metaheuristic algorithm, there are
two important issues in MS [26] algorithm: Lévy flights and
fly straightly of the moths. Owing to the relatively short time
of MS being presented, the applications of MS in solving
practical problems is rare in literature. For all we know,
there is no research work about the MS for solving discrete
optimization problems, especially the DKP problem.

This paper presents highly effective MS methods for
solving DKP. The main contributions of this paper include
the following aspects. Firstly, there are two main opera-
tors, Lévy flights and fly straightly. The influence of two
different operators on the overall performance of MS for
DKP is verified. Secondly, to explore efficiently the com-
prehensive performance of MS, Lévy flights is replaced
by nine types of new mutation operator based on global
harmony search (GHS) [27], [28]. Thirdly, as the basic
MS was proposed to solve the continuous optimization prob-
lem, nine novel binary MS-based (noted MS1-MS9) algo-
rithms and a binary basic MS are specifically designed for
the DKP. Finally, two stage repair and optimization operator
are employed to repair the infeasible solution and further
optimize the feasible solution.

The remainder of the paper is organized as follows.
In Section II, the definition and mathematical formula-
tion of the DKP is presented. In Section III, the basic
MS is described briefly. Then, binary MS for DKP is pre-
sented in Section IV. Section V is dedicated to an extensive
investigation of nine MS variants. Conclusions are drawn
in Section VI.

II. PROBLEM DESCRIPTION AND MATHEMATICAL
MODELS
When The definition of DKP is as follows: given a set of
n item groups N = {0, 1, . . . , n − 1} and each group i
(i ∈ N ) has three items denoted as 3i, 3i + 1, and 3i + 2,
respectively. In each group, item 3i and item 3i + 1 have
the weights w3i, w3i+1 and the profits p3i, p3i+1, respectively.
Item 3i + 2 has the profit p3i+2 and a discounted weight
w3i+2(w3i+2 < w3i + w3i+1). The number of items that can
be packed into the knapsack with capacity C is 0 or 1 in each
group. The objective of the DKP is to find a subset of all the
items that maximizes the total value on condition that the total
weight ≤ C .

max f (X )

= max
∑n−1

i=0
(x3ip3i + x3i+1p3i+1 + x3i+2p3i+2) (1)

subject to x3i + x3i+1 + x3i+2 ≤ 1, ∀i ∈ N (2)∑n−1

i=0
(x3iw3i + x3i+1w3i+1 + x3i+2w3i+2)

≤ C (3)

x3i, x3i+1, x3i+2 ∈ {0, 1}, ∀i ∈ N (4)

where x3i, x3i+1 and x3i+2 are the binary decision variables
such that x3i = 1 or x3i+1 = 1 or x3i+2 = 1 if one of
item 3i, 3i + 1, and 3i + 2 is allocated to the knapsack,
x3i = 0 and x3i+1 = 0 and x3i+2 = 0 otherwise. Constraint
(2) guarantees that at most one item in each group can be
assigned to the knapsack. Constraint (3) requires that the total
weight of items in the knapsack must be no larger than its
capacity C . Constraint (4) requires that each variable takes
the value of 1 or 0.

The DKP generalizes the well-known NP-hard 0-1 KP.
Notice that DKP contains n + 1 inequality constraints,
in which there are n discount constraints (2) and one knapsack
capacity constraint (3), while there is only one inequality
constraint in the classical 0-1 KP. Therefore, DKP is more
complicated than the classical 0-1 KP. Indeed, the DKP
degenerates into the classical 0-1 KP if constraints (2) are
removed.

III. MOTH SEARCH ALGORITHM
Moth search (MS) algorithm [26] is a novel swarm intelli-
gence method inspired by the phototaxis and Lévy flights
of the moths. In MS, the whole population is divided into
two equal subpopulations according to the fitness, subpopula-
tion 1 and subpopulation 2. There are two main optimization
processes: the moths which have a smaller distance from the
best one will fly around the best individual by Lévy flights
and others will fly towards the best one in line. Therefore,
an offspring of subpopulation1 and subpopulation 2 is gen-
erated by performing Lévy flights operator and fly straightly
operator, respectively.

A. LÉVY FLIGHTS
For individual i in subpopulation1, the position can be
updated by (5).

x t+1i = x ti + αL(s) (5)

where x ti and x
t+1
i are the position of individual i at generation

t and t + 1. Parameter α is the scale factor which can be
calculated by (6).

α = Smax/t2 (6)

where Smax is the max walk step and it takes the value 1.0 in
this paper.
L(s) is the step drawn from Lévy flights and it can be

formulated as (7).

L(s) =
(β − 1)0(β − 1) sin(π (β−1)2 )

πsβ
(7)

where 0(x) is the gamma function, parameter β = 1.5 and
s≥0.
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B. FLY STRAIGHTLY
For individual i in subpopulation2, the position movement
from generation t to t + 1 can be expressed as (8).

x t+1i =

λ× (x ti + ϕ × (x tbest − x
t
i )) if rand > 0.5

λ× (x ti +
1
ϕ
× (x tbest − x

t
i )) else

(8)

where λ is a scale factor, ϕ is an acceleration factor and
x tbest is the best moth at generation t .

IV. BINARY MS-BASED METHODS FOR DKP
In this section, we present the design of the binary MS-based
methods for the DKP. Different from the basic MS, first we
outline the global-best harmony search (GHS) algorithm; sec-
ond nine new MS-based methods which consider GHS as
mutation operator are formulated; third we adopt a two-tuples
<X, Y>, in which real vector X is still involved in evolution
and a binary vector Y represents a solution. Besides, two-
stage repair and optimization operator is adopted in the binary
MS-based methods, which not only guarantees the feasibility
of all solutions, but also further improves the quality of all the
feasible solutions.

A. THE GLOBAL-BEST HARMONY SEARCH
Harmony search (HS) [27] is a relatively effective meta-
heuristic algorithm and the optimization process contains
three rules: memory consideration, pitch adjustment and ran-
dom selection. Among many HS-based variants, global-best
harmony search (GHS) [28] can perform efficiently on both
continuous and discrete problems. Essentially, GHS contains
the following three formulas which represents three rules in
HS, respectively.

xki = xkj (j ∼ U (1, . . . ,HMS) if rand ≤ HMCR (9)

xki = xkbest if rand ≤ HMCR ∧ rand ≤ PAR (10)

xki = LBk + rand × (UBk − LBk ) if rand > HMCR

(11)

where HMCR is harmony memory considering rate, PAR is
pitch adjusting rate and HMS is the harmony memory size.
xki is the kth element of individual i. Similarly, xkj , x

k
best

indicate the kth element of individual j and the current global
best individual in the entire population, respectively. Rand is
a uniformly distributed random number in [0,1], and LBk and
UBk are the lower and upper limits for the kth.

B. NINE TYPES OF MUTATION OPERATOR BASED ON GHS
As noted earlier, there are two subpopulations in basic MS.
Naturally, useful information interaction between two sub-
populations should be considered. Additionally, with the aim
of improving the overall performance of MS, the excellent
gene of global best individual should be kept. Based on the
above considerations, nine types of newmutation operator by
the modification of the (9)-(11) are devised to be integrated
into the basic MS. Firstly, five conditions are as follows:

rand ≤ HMCR (12)

rand ≤ HMCR ∧ rand ≤ PAR (13)

rand ≥ PAR ∧ r1 ≥ 0.5 ∧ n1 6= n2 (14)

rand ≥ PAR ∧ r1 < 0.5 ∧ n1 6= n2 (15)

rand > HMCR (16)

Then the basic evolution formulas of the nine types of
mutation operators are as follows:

Type1:

xki =



xkp,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp2,n1 − x

k
sp2,n2) if (14) is satisfied

xkbest − r × (xksp2,n1 − x
k
sp2,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(17)

where xki is the kth element of individual i. xkp,j is the
kth element of individual j randomly chosen from the entire
population. Based on (12), xkp,j is a newly generated individual
in memory consideration process and xkp,j is called memory
consideration individual. xksp2,n1 and xksp2,n2 are the kth ele-

ment of individual n1 and individual n2 in subpopulation 2,
respectively.

Type2: differ from Type1, two differential individuals are
randomly chosen from subpopulation 1 if (14) or (15) is
satisfied.

xki =



xkp,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp1,n1 − x

k
sp1,n2) if (14) is satisfied

xkbest − r × (xksp1,n1 − x
k
sp1,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(18)

where xksp1,n1 and xksp1,n2 are the kth element of individual

n1 and individual n2 in subpopulation 1, respectively.
Type3: differ from Type1, two differential individuals are

randomly chosen from the entire population if (14) or (15) is
satisfied.

xki =



xkp,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xkp,n1 − x

k
p,n2) if (14) is satisfied

xkbest − r × (xkp,n1 − x
k
p,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(19)

where xkp,n1 and xkp,n2 are the kth element of individual

n1 and individual n2which comes from the entire population,
respectively.
Type4: differ from Type1, two differential individuals are

randomly chosen from the entire population if (14) or (15)
is satisfied. In addition, the individual of memory consider-
ation are randomly selected from subpopulation 1 if (12) is
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satisfied.

xki =



xksp1,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xkp,n1 − x

k
p,n2) if (14) is satisfied

xkbest − r × (xkp,n1 − x
k
p,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(20)

Type5: differ from Type1, when (14) or (15) is satisfied,
two differential individuals are both randomly chosen from
subpopulation 1. The individual of memory consideration is
randomly chosen from subpopulation 1 as well when (12) is
satisfied.

xki =



xksp1,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp1,n1 − x

k
sp1,n2) if (14) is satisfied

xkbest − r × (xksp1,n1 − x
k
sp1,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(21)

Type6: differ from Type1, the individual of memory con-
sideration is randomly chosen from subpopulation 1 if (12) is
satisfied.

xki =



xksp1,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp2,n1 − x

k
sp2,n2) if (14) is satisfied

xkbest − r × (xksp2,n1 − x
k
sp2,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(22)

Type7: differ from Type1, when (12) is satisfied, the indi-
vidual of memory consideration is randomly chosen from
subpopulation 2.

xki =



xksp2,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp2,n1 − x

k
sp2,n2) if (14) is satisfied

xkbest − r × (xksp2,n1 − x
k
sp2,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(23)

Type8: differ from Type1, the individual of memory con-
sideration is randomly chosen from subpopulation 2 if (12)
is satisfied and two differential individuals are chosen from
subpopulation 1 if (14) or (15) is satisfied.

xki =



xksp2,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xksp1,n1 − x

k
sp1,n2) if (14) is satisfied

xkbest − r × (xksp1,n1 − x
k
sp1,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(24)

Type9: differ from Type1, the individual of memory con-
sideration is randomly chosen from subpopulation 2 if (12) is
satisfied and two differential individuals are chosen from the
entire population if (14) or (15) is satisfied.

xki =



xksp2,j if (12) is satisfied

xkbest if (13) is satisfied
xkbest + r × (xkp,n1 − x

k
p,n2) if (14) is satisfied

xkbest − r × (xkp,n1 − x
k
p,n2) if (15) is satisfied

LBk + r × (UBk − LBk ) if (16) is satisfied
(25)

C. SOLUTION REPRESENTATION AND EVALUATION
FUNCTION
In the basic MS, each moth individual is represented as a
real vector. Lévy flights operator and fly straightly operator
are defined in continuous space. However, the solution of
DKP is a binary vector. To address this problem, a surjection
function is devised to realize the mapping relationship from
a real vector to a binary vector. Firstly, define a real vector
X = [x1, x2, . . . , xn] ∈ [−a, a]n. Here parameter a is a
positive real number and a = 5.0 in this paper. Parameter
n is the number of item groups. Then define a corresponding
binary vector Y = [y1, y2, . . . , yn]n ∈ {0, 1}n. Finally, define
a correspondence between X and Y as follows:

yi =

{
1 if sig(xi) ≥ 0.5
0 else

(26)

where sig(x) = 1/(1+ e−x) is the sigmoid function.
The quality of any candidate solution Y is evaluated

directly by the objective function f of the DKP. Given a
potential solution Y = {y0, y1, . . . , y3n−1}, the objective
value f (Y) is calculated by the following formula:

f (Y) =
3n−1∑
i=0

yipi (27)

D. TWO STAGE REPAIR AND OPTIMIZATION OPERATOR
DKP is a multi-constraint, discrete nonlinear combinatory
optimization problem. Usually, the emergence of infeasible
solutions is inevitable. For DKP, the probability of a binary
vectorY as an infeasible solution is no less than 1−(1−1/2)n.
Therefore, traditional penalty function method is not suitable
for solvingDKP. In this paper, the following two-stage greedy
repair operator (D-GRO) and greedy optimization operator
(D-GOO) [6], [7] is employed.
In DKP, there exist a weight setW = {w0,w1, . . . ,w3n−1},

a profit set P = {p0, p1, . . . , p3n−1} and the knapsack capac-
ity C. Thus, the profit-weight ratio of each item can be defined
as follows:

ri = pi/wi, i = 0, 1, . . . , 3n− 1 (28)

Before performing D-GRO and D-GOO, firstly, all the
items are sorted with Quicksort method in a non-ascending
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FIGURE 1. Greedy repair operator for DKP.

FIGURE 2. Greedy optimization operator for DKP.

order according to the profit-weight ratio. The index value of
items after sorting are recorded in an array H [0 . . . 3n − 1].
Then, a Boolean array F [0 . . . n−1] is initialized to 0, which
indicates that no item is packed into the knapsack. Given a
binary vectorY = [y0, y1, . . . , y3n−1] ∈ {0, 1}3n, the pseudo-
code ofD-GROandD-GOOare illustrated in Fig. 1 and Fig.2,
respectively.

E. THE MAIN PROCEDURE OF BINARY MS
METHODS FOR DKP
Through the elaborate design above, the main procedure of
binary MS for DKP is illustrated in Fig. 3. Firstly, N moth

FIGURE 3. The main procedure of binary MS for DKP.

individuals as the initial population are generated randomly
and then the population is divided into two subpopulations
according to their fitness. Next, repeat the following evolu-
tionary process until a termination condition is met. At each
new generation, an offspring individual in subpopulation 1 is
generated by Lévy flights operator. Meanwhile, an offspring
individual in subpopulation 2 is updated by fly straightly
operator. Then D-GRO and D-GOO are performed to repair
all the infeasible solution as well as to further optimize all the
feasible solution. Finally, the newly generated two subpopu-
lations is recombined into one population.

V. EXPERIMENTAL ANALYSIS
A. TEST INSTANCES AND EXPERIMENTS SETTING
In this paper, 30 DKP test instances belong to three
different sets: 10 uncorrelated instances (called UDKP1-
UDKP10), 10 weakly correlated instances (called WDKP1-
WDKP10), and 10 strongly correlated instances (called
SDKP1-SDKP10). The above three types of DKP instances
were first generated in [6]. The dimensions of 10 instances
in each type is 300 ∗ n (n = 1, 2 . . . , 10), respec-
tively. The 30 DKP instances can be available at: DOI.
10.13140/RG.2.2.25166.36160

The proposed algorithms in this paper are coded in C++
and in the Microsoft Visual Studio 2015 environment. All
the experiments are run on a PC with Intel (R) Core(TM)
i5-2415M CPU, 2.30 GHZ, 4GB RAM.
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FIGURE 4. Boxplot on 300-dimensional DKP instances.

TABLE 1. The computational results of MS, MS-I, and MS-II.

In this paper, the stopping criteria is maximum number of
iterations which equals to the dimension of each instance.
For each instance, our algorithms were executed 30 times
independently. In addition, the population size of all the
algorithms is 50.

For MS, the max step Smax=1.0, acceleration factor
ϕ = 0.618, and the index β = 1.5.

B. ESTIMATE THE EFFECT OF TWO MAIN OPERATOR
ON THE PERFORMANCE OF BINARY MS
As previously stated, the whole population is divided equally
into two subpopulations based on fitness in the basic MS.
Two main operators: Lévy flights operator and fly straightly
operator are used to update the individuals in subpopula-
tion 1 and subpopulation 2, respectively. After each itera-
tion, the updated two subpopulations are reorganized into
a large population. However, the effect of two main oper-
ators on the performance of binary MS was not estimated
in basic MS. In this subsection, this issue is verified and
then two new methods based on MS: MS-I and MS-II are
proposed. In MS-I, the whole population is updated by Lévy
flights operator. In MS-II, all the individuals are updated by
fly straightly operator. UDKP1, WDKP1, SDKP1, UDKP2,
WDKP2, SDKP2 are selected as test instances. The computa-
tional result is displayed in Table 1 and two boxplots are also
provided in Fig.4 and Fig.5, respectively.

From Table 1, it is clear that the basic MS dominates
the MS-I and MS-II for all the six DKP instances, which
reveals that the cooperative behavior of two operators can
effectively improve the comprehensive performance of MS.
In addition, from Fig.4 and Fig.5, we observe that MS and
MS-II have greater value and less height than those of MS-I.

FIGURE 5. Boxplot on 600-dimensional DKP instances.

FIGURE 6. Comparison of the rank of nine new MS methods with
basic MS.

For WDKP1, SDKP1, WDKP2, and SDKP2, MS and MS-II
are more robust and effective than MS-I. From this a conclu-
sion can be reached that Lévy flights operator has less influ-
ence on MS than fly straightly operator. Based on the above
analysis, Lévy flights operator in the basic MS algorithm is
replaced with (15) - (23), respectively. Then nine types of new
MS-based methods are developed (called MS1, MS2, . . . ,
MS9, respectively).

C. COMPARISONS OF NINE NEW MS APPROACHES
WITH BASIC MS
In this section, the comparative results of nine newMS-based
methods with basic MS on 30 DKP instances are summarized
in Tables 2-4, respectively. For MS1-MS9, HMCR=0.9 and
PAR=0.9. In these three tables, three basic evaluation cri-
teria, i.e., ‘‘Best’’, ‘‘Mean’’, and ‘‘Worst’’ are considered to
evaluate eachmethod. ‘‘Best’’, ‘‘Mean’’, and ‘‘Worst’’ denote
the best value, the average value, and the worst value for
each instance reached by each algorithm among 30 times
independent running. The values in parentheses in the first
column indicate the optimal solution value (Opt) calculated
by DP method [5]. The value in bold in each row indicates
the best value for each DKP instance obtained by all the
algorithms.

From Table 2, we observe that MS1 attains 6 best values,
4 mean values, and 2 worst values on the 10 uncorrelated
DKP instances, which is the largest among the results of
the 10 algorithms in comparison. MS2 attains 2 best values,
while MS3 and MS7 obtain best value once. A conclusion is
that MS1 demonstrates the best comprehensive performance
when solving uncorrelated DKP.
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TABLE 2. Comparisons of nine new MS methods with basic MS on uncorrelated DKP instances.

TABLE 3. Comparisons of nine new MS methods with basic MS on weakly correlated DKP instances.

From Table 3, the ability of MS1 to find good solu-
tions is similar to that of MS2, because they both obtain
3 best values on the 10 weakly correlated DKP instances.

MS3 reaches 2 best values while MS and MS7 both get the
best values once. Additionally, MS attains 8 worst values and
MS9 obtains 5 mean values on 10 WDKP instances.
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TABLE 4. Comparisons of nine new MS methods with basic MS on strongly correlated DKP instances.

From Table 4, MS1 and MS2 still remain excellent per-
formance when solving strongly correlated DKP instances,
which is deduced from that MS1 and MS2 both obtain
3 best values on 10 SDKP instances. We observe MS9 attains
2 best values while MS and MS1 reach the best values once.
In addition, MS9 shows better performance in compared to
other 9 methods in terms of the mean value and the worst
value.

To further assess the performance of 10 methods clearly,
the ranks of each method for 30 DKP instances based on the
best values is displayed in Table 5 and Fig. 6, respectively.
As can be seen from Table 5 and Fig. 6, it is obvious that
MS1 ranks first for all 30 DKP instances among 9 MS-based
new methods and basic MS. MS2 and MS9 are the second
and the third best among 10 methods. Additionally, basic MS
ranks eighth which can be deduced that new mutation opera-
tor based GHS can improve the chance of finding the global
optima as well as the performance of the MS significantly.

Through an in-depth analysis of (15)- (23), MS1,MS2, and
MS3 with better performance have common feature that the
individual of memory consideration are all randomly selected
from the entire population, which fully explain memory con-
sideration plays an important role in the evolution process of
nineMS-based methods. Furthermore, because the individual
comes from the whole population, not just subpopulation 1
or subpopulation 2, MS1, MS2, and MS3 can gain more
useful information from excellent diversified individuals.

As noted earlier, MS1 shows the best overall performance.
Compared with MS2 and MS3, it is not difficult to find
that two differential individuals are randomly selected from
subpopulation 2 in MS1, which can increase the chance of
exchanging significant information between two subpopula-
tions. The rankings of 10 methods based on the best values
are as follows:

MS1 � MS2 � MS9 � MS3 � MS7

� MS8 � MS4 � MS � MS6 � MS5 (29)

To evaluate the similar level of the theoretical optimal value
to the best value gained by each algorithm, the approximation
ratio [29] based on the best value (ARB) is defined as follows:

ARB = Opt/Best (30)

where Opt represents the optimal solution value and Best is
the best approximate solution value.

For a problem of seeking maximum, ARB is obviously a
real value of no less than 1.0. Furthermore, the closer that
the ARB value is to 1.0, the better the quality of a solution.
To show the performance of 10 methods more intuitively,
the comparative results of ARB values of 10 UDKP instances,
10 WDKP instances, and 10 SDKP instances are illustrated
in Figs. 7, 8, and 9, respectively. In Fig. 7, we can see
that MS1 has the smallest ARB for UDKP4-UDKP6 among
10 methods, which is consistent with previous analyses.
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TABLE 5. Ranks of nine new MS methods with basic MS based on the best values.

FIGURE 7. Comparisons of the approximation ratio on UDKP1-UDKP10.

In general, 10 algorithms can be divided into two groups.
MS1, MS2, and MS3 constitute a group with better perfor-
mance, and the other 7 methods form another group. In Fig.8,
all 10 algorithms can obtain very small ARB values which
are less than 1.005 on all 10 WDKP instances except for
WDKP3. It indicates that 9 newMS-based methods and basic
MS are very suitable for solving WDKP instances. In Fig.9,

FIGURE 8. Comparisons of the approximation ratio on WDKP1-WDKP10.

ARB values of 10 methods have no significant difference for
9 SDKP instances except for SDKP2.

To visualize the experimental results of 10 methods from
a statistical perspective, the corresponding boxplots of three
higher-dimensional DKP instances (UDKP10,WDKP10, and
SDKP10) are provided in Figs. 10, 11, and 12, respectively.
From Figs. 10-12, we can make two observations, 1) the
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FIGURE 9. Comparisons of the approximation ratio on SDKP1-SD KP10.

FIGURE 10. Boxplot of the best values on UDKP10 in 30 runs.

FIGURE 11. Boxplot of the best values on WDKP10 in 30 runs.

boxplots of MS1, MS2, and MS3 have greater value but
greater height than the other 7 methods, 2) the 10 methods
can be roughly divided into 4 groups: group1 (MS), group2
(MS1-MS3), group3 (MS4-MS6), group4 (MS7-MS9). The
four groups are exactly corresponding to the above (15)-(23),
in which the individuals of memory consideration in
group2, group3, and group4 are randomly selected from
the entire population, subpopulation1 and subpopulation 2,
respectively.

To gain some insights on the optimization process
of 10methods, the evolutionary curves on three representative
higher-dimensional DKP instances (UDKP10,WDKP10, and
SDKP10) are provided in Figs. 13-15. In these three figures,
all the function values are calculated based on the mean
best values among 30 independent runs. From Fig. 13, three

FIGURE 12. Boxplot of the best values on SDKP10 in 30 runs.

FIGURE 13. The convergence graph of ten algorithms on UDKP10.

FIGURE 14. The convergence graph of ten algorithms on WDKP10.

observations can be obtained: 1) the initial values of MS1,
MS2, and MS3 are greater than those of other 7 meth-
ods, furthermore, they have fast convergence speed to better
global optimum. 2) MS4-MS9 show second good conver-
gence behavior among 10 methods. 3) As the above discus-
sion, MS has the smallest initial value. From Fig. 14, ten
methods demonstrate extremely similar convergence behav-
ior when solving weakly correlated WDKP10 instance. The
same scene appears in Fig. 15 while the difference is the
initial value.

From the above comprehensive analysis, some conclu-
sions can be derived: 1) Nine new MS-based variants show
remarkable performance compared with basic MS. 2) MS1,
MS2, and MS3 exhibit the best overall performance due to
their individuals of memory consideration. 3) The profits
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FIGURE 15. The convergence graph of ten algorithms on SDKP10.

and weights of three types of DKP instances are randomly
generated over a wide range, however, 10 methods in this
paper can obtain better approximate solutions with an approx-
imation ratio approaching 1 quickly. Therefore, 10 effective
new methods are all suitable for solving large-scale difficult
DKP instances.

VI. CONCLUSION
In this paper, 10 novel effective binary MS-based algorithms
(MS1-MS9, MS) are proposed for the discounted {0-1} KP
problem (DKP). DKP is a useful model in practice while
presenting a real computational challenge. The effect of Lévy
flights operator and fly straightly operator on basic MS are
firstly evaluated. Then nine new MS-based algorithms com-
bining GHS-based mutation operator are proposed.

Computational assessments on three sets of 30 DKP
instances indicate that the proposed nine methods have
advanced performance both in solution quality and compu-
tational efficiency compared to the basic MS. For all 30 DKP
instances, MS1 reveal the best performance for it can attain
12 best values and 11 second best values.

Finally, it is expected that the ideas behind the GHS-based
mutation operator developed in this work would be useful
to other constrained knapsack problems, such as multiple-
choice multidimensional knapsack problem (MMKP)
[30], [31], set-union knapsack problem (SUKP) [32], and
more generally combination optimization problems.
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