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ABSTRACT This paper develops a novel kernel intuitionistic fuzzy rough set (KIFRS) model as a hybrid
model to improve the effects of rule generation based on rough sets. The KIFRS model adopts new kernel
intuitionistic fuzzy clustering (KIFCM) to enhance the performance of rough set theory (RST). To effectively
improve the rule generation based on RST, the proposed hybrid method first adopts KIFCM to cluster
raw data into similarity groups. Based on the KIFCM results, the RST can obtain superior performance in
generating rules. Two benchmark machine learning data sets from the UCI machine learning repository are
used to examine the performance of the developed model. The results show that the KIFRS model achieves
superior performance to those of the traditional decision tree and rough set models.

INDEX TERMS Rule generation, rough set theory, kernel intuitionistic fuzzy clustering.

I. INTRODUCTION
Data mining involves clustering algorithms, classification,
regression analysis and association rule learning [1]. Dis-
covering domain knowledge requires accurately generating
decision rules in data mining. Therefore, this study aims
to develop a KIFRS model to improve the effect of rule
generation based on KIFCM and rough set theory. Clustering
analysis is first employed to group the pattern datasets in
the novel model. This work develops a novel rule gener-
ation model that combines new KIFCM and RST and is
a feasible and promising method of classification and rule
generation. KIFCM can effectively reduce the complexity of
pattern datasets that occurs because of effective clustering.
RST is one of the most popular and important methods in
rule generation. In this study, RST is utilized as the main
rule generation technology together with the KIFCM results.
The proposed KIFRS can improve the traditional RST perfor-
mance. RST ([2], [3]) is an effective and popular model for
analyzing inconsistent decision tables composed of attribute
value data about many objects. RST is a mathematical tool for
handling vagueness and uncertainty. RST can derive optimal
attribute sets with less deterioration of the quality of approx-
imation and can provide optimal decision rules based on
lower/upper approximation. RST has been widely applied in
many fields, such as knowledge acquisition, decision support
systems, and medical information. The recent literature on

rough set-based rule generation technology since 2000 is
summarized in Table 1.

By examining the past RST research listed in Table 1,
some phenomena can be observed: (1) RST can success-
fully be applied in areas such as manufacturing processes,
machining operations, information systems, and power sys-
tem stabilizers; (2) RST-based rule generation can obtain
superior performance to those of other rule generation
methods; and (3) hybrid methods can effectively enhance
the performance of RST. The rest of this study can be
organized as follows. The KIFRS for rule generation is
introduced in Section II. Section III illustrates the exper-
imental results and compares them with the performances
of various other models in standard machine learning data
sets. Finally, section IV presents the conclusions of this
study.

II. PROPOSED KIFRS MODEL
It has been verified that hybrid models can improve tradi-
tional approaches, as in [36], when applied in forecasting
problems. In this study, the novel KIFRS is a hybrid model
that combines KIFCM and RST [37]. The goal is to improve
the accuracy of traditional RST in data mining problems.
A novel KIFCM was proposed by [38] and could effectively
obtain superior performance in machining learning datasets.
This KIFCM utilized the intuitionistic fuzzy sets [39] to
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TABLE 1. Recent literature on rough set-based rule generation
technology since 2000.

TABLE 1. (Continued.) Recent literature on rough set-based rule
generation technology since 2000.

update the intuitionistic fuzzy membership and find better
points in the class.

RST is one data mining tool that can effectively solve
the problem of the vagueness of datasets. RST can form
an approximate definition that includes lower and upper
approximations for a target set in terms of some definable
sets in an uncertain or imprecise target. RST can be found
in ([2] and [3]). Therefore, an RST-based model for rule
generation is adopted in KIFRS. Finally, based on the rough
set decision rules for different groups, the system results can
be obtained and analyzed for users. The illustration of the
novel KIFRS model is shown in Figure 1. Moreover, this
research adopts three measuring indexes. First, M1 is the
accuracy rate, and its formulation is as follows:

M1 = 100×
Ncorrect
T

, (1)

where Ncorrect is the number of correct classifications and
T represents the total amount of data. Second, M2 is the
coverage rate and can be formulated as follows:

M2 =
Ncoverage

T
, (2)

where Ncoverage is the amount of data covered by generating
rules.

The third measure index M is a comprehensive index that
equals M1 +M2.
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FIGURE 1. Structure of the KIFRS model for rule generation and
extraction.

In this study, the KIFRS of rule generation is briefly intro-
duced as follows:
Step 1 (Raw Data Clustering): First, assume that the deci-

sion table is E =< χ , A >, where χ is a nonempty finite set
and A is a nonempty finite set of attributes. F and D = {d1,
d2, . . . , dl} are condition attributes and decision attributes,
respectively. An attribute is a function from χ to the value
set Va. Divide the decision table E =< χ , A > into l tables
Ei =< χi, Ai >, i = 1, . . . , l, which correspond to the l
decision attributes d1, . . . , dl , where χ = χ1 ∪ . . . ∪ χl and
Ai = F ∪ {di} and d /∈ F is the decision variable D.
Xc = {xci1, . . . , xcij} is a set generated by KIFCM in Ei,

i = 1, . . . , l, which has been divided into c clusters. The same
group objects of Xc have more similar characteristics, which
could effectively assist in RST rule generation.
Step 2 (Determining Indiscernibility Relation): Let a ∈

A and P ⊆ A. IP is the indiscernibility relation (a binary
relation) and can be defined as follows:

IP = {(xc, y) ∈ χ : for every a ∈ P, a(xc) = a(y)}.

Then, IP = ∩a∈PIa. If Xc ⊆ χ , the sets {xc ∈ χ : [x]P ⊆ Xc}
and {xc ∈ χ : [x]P ∩ Xc 6= ∅}, [xc]P can be determined to be
equivalence classes of the object with different groups (c)xc ∈
χ relative to IPc. These sets are lower and upper (Pc-lower
and Pc-upper) approximations of Xc in E and are determined
by IXc and IXc, respectively. IfXc isPc-definable, then IXc =
IXc; otherwise, Xc is Pc-rough.
Example 1: Consider the universe of discourse χ = {xc1,

xc2, xc3, xc4, xc5, xc6}, where I is any equivalence relation
in IP which partitions χ into {{xc1, xc2, xc4}, {xc3, xc6},
{xc5}}. Therefore, for any subset Xc = {xc1, xc2, xc3, xc4}
of U , IXc = {xc1, xc2, xc4} and IXc = {xc1, xc2, xc3, xc4,
xc6}. Figure 2 displays the lower and upper approximations
of set Xc.

FIGURE 2. Illustration of the lower and upper approximations of
set Xc [40].

The Pc-positive region of Xc can be defined as {xc1,
xc2, xc4}, and the Pc-negative region of Xc can be defined as
{xc5}. In contrast, consider a subset Yc = {xc3, xc5, xc6} for
which IYc = {xc3, xc5, xc6} and IYc = {xc3, xc5, xc6}. Then,
IYc = IYc, so Yc is Pc-definable.
Step 3 (Dispensable and Indispensable Attributes): Let

f ∈ F . An attribute f is dispensable in E if POS(F−(f ))(D) =
POSF (D), where POSF (D) is

⋃
Xc∈Idi

FXc and FXc is the lower

approximation with different groups. Otherwise, the attribute
f is indispensable in E . If all f ∈ F are indispensable, f is
independent.
Step 4 (Reduct and CORE): Reduct represents the minimal

attribute subset preserving the condition. A set of attributes
I ⊆ F is a reduct of F if the condition, E is independent
and POSi(D) is satisfied. CORE(F) is defined as the set of all
attributes with c groups that are indispensable in F .
Step 5 (Discernibility Matrix): Now, for each reductP =
{p1, . . . , pk}, a discernibility matrix Mdi (P) can be defined
as follows [41]:

fij = {a ∈ P : a(xci) 6= a(xcj)}, (3)

for i, j = 1, . . . , n.
For each object xcj ∈ xci1, . . . , xcib, the discernibility

function k
xcj
di can be defined as follows:

k
xcj
di =

⋂
{

⋃
(fij) : 1 ≤ i, j ≤ n, j < i, fij 6= ∅}, (4)

where k
xcj
di is converted into an equivalent formula (Boolean

logic) and
⋃

(fij) is the disjunction of all members of cij.
Example 2 [42]: Consider a knowledge representation sys-

tem. Let F = {a, b, c, d} and D = {E} be condition and
decision attributes, respectively. {{x11, x12, x13, x14}, {x25,
x26, x27}} is the clustering result of objects. Figure 3 shows
the discernibility matrix.

The element {b, c, d} can be shown as b ∨ c ∨ d if the
elements of the discernibility matrix employ ‘‘OR’’. Further-
more, the connective AND can be employed in the entire
matrix.

III. EXPERIMENTAL RESULTS AND DICUSSIONS
In this section, this study compares ID3 and RST with the
proposed novel two-stage model in various numerical cases.
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FIGURE 3. Illustration of the discernibility matrix based on KIFCM
clustering technique [37].

TABLE 2. Summary statistics and attribute information of selected
machine learning data sets.

This study coded the above models of rule generation with
MATLAB 2010. The machine learning data sets IRIS and
Haberman’s Survival Data were examined. The machine
learning data sets are popular datasets from [43].

A series of experiments was executed with machine learn-
ing data sets using standard ID3, RST and the proposed novel

TABLE 3. Testing measurement indexes of the KM+RST, FCM+RST and
KIFCM+RST models with different Cluster values in the Machine learning
datasets.

KIFRS model. UCI Machine learning data sets were tested,
including IRIS and Haberman’s Survival Data. These data
sets are popular in the machine learning field. Table 2 shows
summary statistics and attribute information for the selected
machine learning data sets. The IRIS data set is a standard
data set in experimental cases. Haberman’s Survival Data Set
has more instances, a higher standard deviation of attributes
and fewer classes. This study adopts these two benchmark
datasets to test whether the KIFRS rule generation model can
obtain better performance than standard and popular models
can.
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TABLE 4. Comparison of the testing measurement indexes with various
methods in Machine learning datasets.

The novel KIFRS model effectively combines fuzzy clus-
tering technologies with RST rule generation. In clustering
technologies, the k-means (KM), FCM and novel KIFCM
models were examined with Cluster values of 2, 3 and 4, and
the standard RST was employed for rule generation.

Table 3 displays the measurement indexes, which are
‘‘Accuracy rate’’, ‘‘Cover rate’’, ‘‘Comprehensive index’’,
‘‘Average of comprehensive index’’, ‘‘Number of rules’’ and
‘‘CPU time’’, of the different Cluster methods with RST
rule generation in the two machine learning datasets. The
results show that the KIFRS model with c = 2 can obtain
higher comprehensive index values of 2 in the IRIS dataset
and that the KIFRS model with c = 3 can achieve higher
comprehensive index values of 1.67 in Haberman’s Survival
dataset.

Table 3 shows that the KIFRS model obtains the minimum
number of rules while testing different Cluster values in the
two machine learning datasets and that it again demonstrates
good, stable performance. Therefore, the KIFRS model can
also be recommended as an alternative rule generation model
in machine learning data sets.

Table 4 shows the performance of the ID3, RST, and
KIFRSmodels in the twomachine learning datasets. The pro-
posedKIFRSmodel demonstrates better performance than do
ID3 and standard RST in terms of the measurement indexes
in the two machine learning datasets. Therefore, these results
verify that our proposed approach can help traditional mod-
els achieve better performance in machine learning datasets.
Based on Tables 3 and 4, the following conclusions were
drawn: (1) the proposed KIFRS model outperformed the
other models in machine learning datasets, and (2) KIFRS
demonstrated superior performance compared to the com-
mon decision tree approach (ID3) and standard RST because
KIFCM effectively divides raw data into similarity groups.

IV. CONCLUSIONS
A KIFRS model for enhancing the effect of rule generation
was developed in this study. The performance of the KIFRS
model was examined in two machine learning datasets. The
results indicated that the KIFRS model offers a promising

alternative for rule generation and can achieve superior and
stable performance. It can be concluded that due to KIFCM,
the KIFRS model may obtain superior similar groups. This
will improve the traditional RST-based rule generation.

Several issues remain for further research. In this paper, the
KIFRS model only examined machine learning datasets. The
KIFRS model may extend its realizable application in indus-
try ([46], [47]). Recent fuzzy set methodologies ([48]–[52])
may be used to improve the performance. Moreover, artificial
intelligence/new clustering algorithms [53] may be consid-
ered in KIFRS.
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