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ABSTRACT In this paper, an iterative search algorithm to maximize system capacity in a time-varying
MIMO distributed antenna system (DAS) is proposed. A common DAS model is employed, in which the
transmit antennas are distributively located and the receiver can move arbitrarily in the region. Due to the
small-scale fading effect and the receiver movement, the transmitters and receiver cannot obtain accurate
channel state information (CSI) or optimize the system capacity. Therefore, we present a time-varying
MIMO DAS model and corresponding channel evolution model to predict the time-varying channel. With
the channel evolution model, the proposed iterative search algorithm can calculate the precoding matrix, and
an iterative search process is employed to determine the optimal precoding matrix from a precoding matrix
set. Meanwhile, error analysis show the error on the instantaneous mutual information with the proposed
algorithm has a close relationship with the element number of the precoding matrix set and small-scale
fading evolution coefficient. We also propose a non-uniform power allocation strategy which can improve
the system capacity. Simulation results are presented to verity the analysis above and demonstrate the
performance of system capacity with the proposed iterative search algorithm.

INDEX TERMS MIMO system, time-varying system, iterative methods, communication system
performance.

I. INTRODUCTION
In the past decades, the capacity of co-locatedMIMO systems
has been extensively explored with different communica-
tion environments and different encoding algorithms [1], [2].
Recently, the distributed antenna systems (DAS) has been
proposed to realize combined gains of MIMO spatial mul-
tiplexing technology and macro-diversity technology. Unlike
the conventional centralized antenna systems (CAS), in the
DAS, multiple transmit antennas, which are connected to
the central processing unit (CPU) by fiber or exclusive
wireless link, are distributively located to reduce the phys-
ical transmission distance between the transmitters and the
receivers [3]–[6]. In [7], the ergodic capacity of CAS and
DAS with antennas uniformly distributed in the cell is ana-
lyzed and the results show that the DAS can improve the
system coverage, enhance the performance of cell-edge users,
and reduce the transmit power. On the other hand, placing a
large number of antennas in different locations can reduce the
correlations of antennas [8], [9], thus improving the spectral
efficiency (SE) of the system.

From literatures, the DAS has attracted considerable atten-
tions from various aspects. In [10], the determinant in the

expression of capacity is expanded as the linear sum of
determinants of quadratic forms, thereby analytic upper and
lower bounds are obtained and are applicable for the DAS
with double-sided correlated Rayleigh/Lognormal fading.
In [11], for a single-cell single-user DAS with arbitrary
antenna topology, the authors analyzed the outage perfor-
mance as well as the diversity and multiplexing gains. In [12],
for multi-cell networks with multiple remote antennas and
one multi-antenna user in each cell, the input covariance
matrices for the users are jointly optimized to maximize the
achievable ergodic sum rate. In [13], several power allocation
strategies with different optimization models are investigated
for achieving maximum energy efficiency (EE) in downlink
DAS and the results show that EE-oriented optimization
achieves a higher system EE compared with the SE-oriented
optimization scheme. For the uplinkDASwith single-antenna
nodes, a simplified Wyner model is considered where
cooperative decoding using codebook information and
oblivious bases stations are studied in [14].

However, the analysis and algorithm in the aforementioned
literatures are mainly based on the case that the transmitters
and receivers both have accurate channel state information.
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While the CSI cannot be obtained accurately, the analysis
for the upper and lower bounds of the system capacity and
the algorithms for achieving maximum SE and EE in afore-
mentioned works do not apply. The time-varying system
model is proposed to deal with the incomplete CSI. In the
time-varying system model. an appropriate channel evolu-
tion model is proposed to simulate the time-varying chan-
nel and some ergodic algorithms are employed to rectify
the error of the channel evolution model. A detailed capac-
ity analysis is performed for a temporally correlated chan-
nel modeled as a first-order Gauss-Markov process in [15].
In [16] and [17], channel tracking strategy based on code-
book is proposed. Furthermore, a time-invariant codebook
for channel tracking in a time-varying channel have been
adopted in [18]. More modified schemes have been proposed
in [19]–[21].

In this paper, a novel time-varying MIMO DAS is pro-
posed. With the discreteness of the transmit antennas and
receive antennas, the time-varying MIMO DAS channel
model cannot be described as a first-order Gauss-Markov
process. Considering the small-scale fading and the loca-
tions of transmitter and receiver, a more complicated chan-
nel evolution model is given. With the proposed channel
evolution model, we propose an iterative search algorithm
with a off-line codebook to maximize the system capacity.
In the proposed iterative search algorithm, only the initial
CSI, correlation coefficient of the small-scale fading and
location information of the transmitters and receivers are
required. To calculate the optimal precoding matrix, the con-
cepts of matrix space and matrix distance are introduced. The
iterative search algorithm can be explained as searching the
optimal precoding matrix on a sphere where the points have
a distance less than a threshold with the optimal precoding
matrix in last iteration in the matrix space. The error analysis
and simulation results show that the difference between the
system capacity with the proposed algorithm and the ideal
system capacity is quite small. Also the power allocation
problem in the time-varying MIMO DAS is discussed in this
paper.

The remaining of the paper is organized as follows. The
time-varying MIMO DAS model and the channel evolution
model are presented in Section II. The optimal problem
of maximizing the system capacity and the iterative search
algorithm are described in Section III. The parameter con-
figuration in the proposed algorithm and error analysis are
provided in Section IV. Simulation results are presented in
Section V. Conclusions are drawn in Section VI.
Notation: Boldface lowercase letters denote vectors, while

boldface uppercase letters denote matrices. We use (·)T ,
(·)∗ to denote the transpose and conjugate transpose of a
matrix or a vector. For a matrix A, tr(A) is its trace and
det(A) stands for its determinant. The symbol IM denotes the
M×M identitymatrix. The symbolE{·} denotes the statistical
expectation operation. The symbol ‖ · ‖F denotes Frobenius
norm of a matrix or a vector. The symbol Re{·} denotes to
extract real component of every element in a matrix.

FIGURE 1. The time-varying MIMO DAS with M BSs and one MS.

II. SYSTEM MODEL
A time-varying MIMO DAS shown in Fig.1 is considered in
this paper. There are M base stations (BS) and one mobile
station (MS) in the cell and the BSs are laid out distributively,
while the MS can move arbitrarily in the cell. Each BS is
equipped with mt antennas and the MS has mr antennas.
Every BS is connected to the CPU through the high-speed
fiber-optic cable and every BS is assumed to have the accurate
information of other BSs all the time. With this system model
above, the downlink receive signal at the MS side can be
expressed as follow,

yt =
√
ρHtFtst + nt (1)

where the subscript t stands for the channel index which
shows the channel evolution. yt ∈ Cmr∗1 is the receive
signal and st ∈ CM∗1 is original data with the unit energy
E{stst∗} = IM. nt ∈ Cmr∗1 stands for the noise and each
element in nt has a distribution as CN (0, 1). Ft ∈ CMt∗M

is the precoding matrix, where Mt = M ∗ mt is the total
number of transmit antennas. The initial precoding matrix F0
can be obtained by the singular value decomposition (SVD)
of the initial channel matrix H0 to maximize the sum rate
and the precoding matrices at other channel index should
be calculated by the iterative search algorithm which will
be described in Section III. The channel matrix at chan-
nel index t is Ht ∈ Cmr∗Mt . With the DAS conception,
the element of channel matrix {ht,q,p} can be modeled as
follow,

ht,q,p = gt,q,p
√
βt,q,p (2)

where gt,q,p ∼ CN (0, 1) represents the small-scale fad-
ing from q-th receiver antenna to p-th transmit antenna and
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βt,q,p ∼ rt,q,p−v is the path loss. rt,q,p is the distance between
q-th receiver antenna and p-th transmit antenna and v ∈ [2, 6]
is the path loss coefficient. With the expression of {ht,q,p},
the channel matrix Ht can be expressed as follow,

Ht = Gt ◦ D
1/2
t (3)

where Gt ∈ Cmr∗Mt is the small-scale fading matrix which
is made up of gt,q,p and the element in the path-loss matrix
Dt ∈ Cmr∗Mt is d t,q,p = γ 2r−vt,q,p. γ is the path loss coef-
ficient which satisfies γ rt,q,p−v/2 equals the path loss value√
βt,q,p. As there is only one MS in the system, the distance

between one certain transmit antenna and any receive antenna
is equal. Then we can have that d t,qi,p = d t,qj,p,∀i, j, and the
equation (3) can be rewritten as,

Ht = GtD
1/2
t (4)

where Dt ∈ CMt∗Mt is a diagonal matrix which can be
expressed by Dt = diag([dt,1, dt,2, . . . , dt,Mt ]) and the
element dt,i = d t,1,i
Considering the time-varying characteristics of time-

varying MIMO DAS, the evolution model of matricesGt and
Dt can be expressed as follow,

Gt = εGt−1 +
√
1− ε2W

Dt = Dt−1ξt−1 (5)

where ε ∈ [0, 1] is the small-scale fading evolution coeffi-
cient which is given by Jakes’ model and W ∼ CN (0, σ I) is
the innovation matrix. Each element in the diagonal matrix
ξt−1 is the rate of the distances between BSs and MS at
channel index t and t−1.With equation (4) and (5), the chan-
nel evolution model of the time-varying MIMO DAS can be
obtained as,

Ht = (εGt−1 +
√
1− ε2W)(Dt−1ξt−1)1/2

= εGt−1Dt−1
1/2ξt−1

1/2
+

√
1− ε2WDt−1

1/2ξt−1
1/2

= εHt−1ξt−1
1/2
+

√
1− ε2WD1/2

t . (6)

In this paper, the initial channel matrix H0, the path-
loss matrix Dt and the small-scale fading evolution coeffi-
cient ε are assumed to be known by the transmitters and
receiver. But due to the randomness, the small-scale fading
matrix Gt and the innovation matrix W cannot be deter-
mined. With the time-varying MIMO DAS channel evolu-
tion model, it can be known that the precoding matrix Ft
should be varied to maintain the system capacity at every
channnel index. Therefore, in the next section, an iterative
search algorithm to calculate the precoding matrix Ft is
introduced.

III. ITERATIVE SEARCH ALGORITHM
A. INSTANTANEOUS MUTUAL INFORMATION
In the time-varying MIMO DAS, the downlink instanta-
neous mutual information between the transmit signal and the

receive signal at channel index t is given by,

I (Ft,Ht) = log2(det(IM +
ρ

M
FtHtH∗t F

∗
t )) (7)

where ρ is the SNR at the transmitter and M is the data
stream number, which is assumed to equal the BS number
in this paper. To maximize the instantaneous mutual infor-
mation, the precoding matrices Ft should be optimized at
every channel index and the optimal precoding matrix is the
right singular matrix of the channel matrix Ht. The initial
precoding matrix can be obtained by the SVD of the initial
channel matrix H0 as,

H0 = U060V∗0
F0 = V0 (8)

where V0 is the first M columns of the right singular
matrix V0. For other channel indexes, as the channel matrix
cannot be obtained accurately due to the innovationmatrixW,
the precoding matrix cannot be calculated by SVD directly.
Then the precoding matrices for other channel indexes should
be obtained based on the initial precoding matrix F0 and the
channel evolution model in equation (6). To calculate the
precoding matrices, the distance between two matrices with
the same scale are considered. For two arbitrary matrices with
the same scale, A ∈ CP∗Q and B ∈ CP∗Q, the distance is
defined as follow,

d(A,B) = ‖A− B‖F (9)

Proposition 1:With the distance definition in equation (9),
we have that with one constant channel matrix and two dif-
ferent precoding matrices, the difference between the instan-
taneous mutual information, I (F1,H) and I (F2,H), have a
positive correlation with the distance between the precoding
matrices, d(F1,F2).

Proof: Without loss of generality, it is assumed that
I (F1,H) is larger than I (F2,H). The difference between
the instantaneous mutual information can be expressed as
follow,

I (F1,H)− I (F2,H)

(a)
= tr(log2(IM+

ρ

M
F1 HH∗F∗1)−log2(IM+

ρ

M
F2 HH∗F∗2))

(b)
≤

1
ln2

tr((IM +
ρ

M
F1 HH∗F∗1)− (IM +

ρ

M
F2 HH∗F∗2))

(c)
=

ρ

Mln2
tr(F1 HH∗F∗1 − F2 HH∗F∗2)

(d)
=

ρ

Mln2
(‖HF1‖

2
F − ‖HF2‖

2
F ) (10)

where in step (a), the fact that log2(det(A)) = tr(log2(A))
while the matrix A is a diagonal matrix or quasi-diagonal
matrix is employed. The fact that log2(a) − log2(b) ≤ 1

ln2
(a−b) if the inequation a ≥ b ≥ 1 is satisfied is considered in
step (b). And in step (d), the equation tr(AA∗) = tr(A∗A) =
‖A‖2F is quoted.
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Ignoring the effort of the coefficient ρ
Mln2 , the factor

(‖HF1‖
2
F − ‖HF2‖

2
F ) in equation (10) can be simplified

as follow,

‖HF1‖
2
F − ‖HF2‖

2
F

= (‖HF1‖F + ‖HF2‖F )(‖HF1‖F − ‖HF2‖F )

≤ ‖H‖2F (‖F1‖F + ‖F2‖F )(‖F1 − F2‖F )

= 2
√
M‖H‖2Fd(F1,F2) (11)

where the inequations ‖AB‖F ≤ ‖A‖F‖B‖F and ‖A‖F −
‖B‖F ≤ ‖A − B‖F are employed. As the matrices F1 and
F2 are the first M rows of unitary matrices, we have that
‖F1‖F = ‖F2‖F =

√
M .

Then it can be known that the difference between the
instantaneous mutual information, I (F1,H)− I (F2,H), has a
positive correlation with the distance between the precoding
matrices, d(F1,F2).
With Proposition 1, an iterative search algorithm to max-

imize the system capacity in a time-varying MIMO DAS is
proposed and the details of the algorithm will be introduced
in next subsection.

B. ITERATIVE SEARCH ALGORITHM
Based on Proposition 1, to maximize the instantaneous
mutual information, the distance between the calculated pre-
coding matrix and the right singular matrix of the channel
matrix should be minimized. At the channel index t , the opti-
mization problem of maximizing the system capacity can be
converted to minimizing the distance between the calculated
precoding matrix Ft and the firstM columns of right singular
matrix, Vt, which can be expressed as follow,

min d(Ft,Vt) (12)

To calculate the precoding matrix Ft, a candidate set of the
precoding matrix {̃Ft} and a modified set {Ṽ0} are required.
The modified set {Ṽ0} is generated by the right singular
matrix of the initial channel matrix, V0, in which the column
vectors are orthogonal with each other. Each matrix Ṽi in the
modified set {Ṽ0} can be generated with M column vectors
of the matrix V0, which can be expressed as follow,

V0 = [v0,1, v0,2, . . . , v0,Mt ]

Ṽi = [v0,i1 , v0,i2 , . . . , v0,iM ] (13)

where i1 6= i2 6= · · · 6= iM , and the maximum matrix num-
ber in the modified set is equal to the combination number
of (i1, i2, . . . , iM ). But considering the system computation
complexity, the matrix number in the modified set should not
be too much. Meanwhile, as the initial precoding matrix is
known accurately, the modified set can be generated off-line,
which can reduce the computation complexity effectively.

The candidate set of the precoding matrix at channel index
t , {̃Ft}, is generated with the modified set and the precoding
matrix at last channel index, Ft−1. And each matrix in the
candidate set is projected into the unitary space CMt∗Mt by

SVD and the first M vectors is chosen to form the new
precoding matrix, which is shown by,

F̃t,i = Ft−1 + αṼi

F̃t,i = Ut,i6t,iV∗t,i
Ft,i = Ut,i (14)

where α is the modify radius, which will be discussed in
section IV-A and Ut,i stands for the first M columns of the
unitary matrix Ut,i.
With the candidate set {̃Ft}, the best precoding matrix can

be chosen by maximizing the instantaneous mutual informa-
tion, which can be shown as follow,

Ft,i
?
= max

Ft,i∈{̃Ft}
I (Ht,Ft,i)

Ft = Ft,i
? (15)

With the obtained optimal precoding matrix Ft and
equation (14), the candidate set for channel index t + 1 can
be generated. The precoding matrix Ft+1 can be calculated
by repeating the algorithm above.

IV. SYSTEM PARAMETER ANALYSIS
A. THE MODIFIED RADIUS
From equation (14), it can be known the modified radius
reflects the distance between the precoding matrices of two
adjacent channel index. Without loss of generality, the dis-
tance between the precoding matrices at channel index t − 1
and t , d(Ft−1,Ft), is discussed in this subsection. It is
assumed that the precoding matrix at channel index t − 1,
Ft−1, is known by the BSs andMSwhile the precodingmatrix
Ft cannot be obtained accurately and should be calculated by
the iterative search algorithm in Section III-B. As the pre-
coding matrices is generated by the right singular matrices,
the distance between two right singular matrices, Vt−1 and
Vt is considered as follow.

d(Vt,Vt−1) = ‖Vt − Vt−1‖F

=
√
tr((Vt − Vt−1)∗(Vt − Vt−1))

=

√
tr(2IMt − V∗tVt−1 − V∗t−1Vt)

=

√
2Mt − 2Re{tr(V∗tVt−1)} (16)

From equation (16), the distance betweenVt andVt−1 have
a negative correlation with tr(V∗tVt−1). To calculate the value
of tr(V∗tVt−1), the matrix HtVt−1 is considered as follow,

HtVt−1 = Ut6tV∗tVt−1 (17)

= (εHt−1ξt−1
1/2
+

√
1− ε2WD1/2

t )Vt−1 (18)

where in equation (17), the SVD of the matrix Ht is
employed and as the matrix V∗tVt−1 is also a unitary matrix,
the equation (17) can be regarded as the SVD of the
matrix HtVt−1 and V∗tVt−1 is the right singular matrix.
In equation (18), the channel evolution model in equation (6)
is considered but as the random matrix W is unknown,
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the accurate value of HtVt−1 cannot be obtained. To elimi-
nate the influence of random matrices, the Hermitian matrix
(HtVt−1)∗(HtVt−1) is considered and it can be decomposed
with SVD of Ht as follow,

(HtVt−1)∗(HtVt−1) = (Ut6tV∗tVt−1)∗(Ut6tV∗tVt−1)

= (V∗tVt−1)∗6∗t 6t(V∗tVt−1) (19)

As the matrix V∗tVt−1 is a unitary matrix and the
matrix 6∗t 6t is a diagonal matrix, equation (19) can be
regarded as the SVD of the Hermitian matrix (HtVt−1)∗

(HtVt−1). Meanwhile, with the channel evolution model in
equation (6), another decomposition of the Hermitian matrix
(HtVt−1)∗(HtVt−1) can be gotten as follow,

(HtVt−1)∗(HtVt−1)

= ε2(Ht−1ξt−1
1/2Vt−1)∗(Ht−1ξt−1

1/2Vt−1)

+ (1− ε2)(WD1/2
t Vt−1)∗(WD1/2

t Vt−1)

+ ε
√
(1− ε2)V∗t−1(ξt−1

1/2H∗t−1WD1/2
t

+ (D1/2
t )∗W∗Ht−1ξt−1

1/2)Vt−1 (20)

To eliminate the influence of the random matrix W,
the expectation of equation (20) is considered. With
W ∼ CN (0, σ I), it can be known that E{H∗t−1W} =
E{W∗Ht−1} = 0 and E{W∗W} = mrσ 2I. We can have that,

E{(HtVt−1)∗(HtVt−1)}

= ε2V∗t−1ξt−1
1/2∗Vt−16

∗

t−16t−1V∗t−1ξt−1
1/2Vt−1

+ (1− ε2)mrσ 2V∗t−1D
1/2∗
t D1/2

t Vt−1 (21)

In equation (21), the expectation of the matrix
(HtVt−1)∗(HtVt−1) can be gotten with the matrices
6t−1,Vt−1,which can be obtained in last iteration, and ξt−1,
Dt, which is supposed to be known at BSs and MS. Mean-
while, in equation (19), the matrices, 6∗t 6t and V∗t−1Vt, can
be gotten by the SVD of the matrix (HtVt−1)∗(HtVt−1).
By the way, as the matrix (HtVt−1)∗(HtVt−1) is replaced
by its expectation in equation (21), there exists an obvious
error so that the matrix Vt cannot calculated directly. Then
the matching search algorithm in equation (15) is employed.
With the accurate channel state information of the channel
Ht−1, the matrix V∗t−1Vt can be calculated as follow.

V∗t−1Vt

= proj{ε2V∗t−1ξt−1
1/2∗Vt−16

∗

t−16t−1V∗t−1ξt−1
1/2Vt−1

+ (1− ε2)mrσ 2V∗t−1D
1/2∗
t D1/2

t Vt−1}

= A (22)

With equation (14) and (16), the modified radius can be
confirmed as follow,

α =
M
Mt

√
2Mt − 2Re{A} (23)

where the coefficient M
Mt

is given based on the relationship
between the precoding matrix and right singular matrix.

B. THE ERROR ANALYSIS
In the iterative search algorithm described in section III-B,
the precoding matrix Ft is determined by maximizing the
system capacity from the candidate set, {̃Ft}. As the number
of the precoding matrices in the candidate set is finite, it is
quite possible that the obtained precoding matrix is unequal
to the right singular matrix of the channel matrix and there is
an error in the iterative search algorithm. In this subsection,
the error between the obtained precoding matrix Ft and the
optimal precoding matrix F?t will be analyzed in detail.
To analyze the error in the iterative search algorithm,

the concept of matrix space is employed. Considering the
definition of matrix distance in equation (9), it can be known
that every unitary matrix with same dimension has the same
distance away from the zero matrix, which can be expressed
as follow,

d(A, 0) =
√
M , A ∈ SM×M (24)

where SM×M stands for the matrix space with the dimension
M × M and A is a unitary matrix in matrix space SM×M .
Then each unitary matrix can be considered as a point on
a high dimension ball with the center 0 and the radius

√
M

in the matrix space SM×M . The iterative search algorithm
in equation (14) can be regarded as a sphere is made with
the center Ft−1 and the radius α

√
M in the matrix space and

the generated matrices on the new sphere are projected to
unitary matrices. And in equation (15), the new precoding
matrix Ft is chosen from the projected unitary matrices.
The error between the obtained precoding matrix and the
optimal precoding matrix is the distance between the chosen
projection point and the point corresponding to the optimal
precoding matrix. To calculate the distance, the spherical sur-
face where the projection points cover should be confirmed.
With the center of sphere Ft−1 and the radius α

√
M , it can

be known that the maximum central angle θ between the
point corresponding to Ft−1 and the projection points on the
spherical surface can be expressed as follow,

θ = arcsin
α
√
M

2r
= arcsin

α

2
(25)

where r is the radius of the high dimension ball, which is
equal to

√
M . With the maximum central angle, the spherical

surface area S can be calculated in equation (26), as shown
at the top of the next page, and n = M ∗ Mt is the number
of the dimension of the matrix space and β(x;P,Q) is the
incomplete beta function which is defined as follow,

β(x;P,Q) =
∫ x

0
zP−1(1− z)Q−1dz, x ∈ [0, 1] (27)

Meanwhile, the element number in the candidate set {̃Ft}

is assumed as M0 and there are M0 corresponding points on
the spherical area S. The M0 points are supposed to obey a
uniform distribution on the area S and the area each point
corresponds to is S

M0
.The area is assumed as a square and

the projection point locates at the center of the square. The
maximal distance between the points corresponding to the
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S =
∫ 2π

0

∫ θ

0
· · ·

∫ θ

0
rn−1 sinn−2 φ1 sinn−3 φ2 · · · sinφn−2dφ1dφ2 . . . dφn−2dθ0

= 2πrn−1
∫ θ

0
sinn−2 φ1dφ1

∫ θ

0
sinn−3 φ2dφ2 · · ·

∫ θ

0
sinφn−2φn−2

= 2πrn−1
(
1
2
β

(
sin2 θ;

n− 1
2

,
1
2

))(
1
2
β

(
sin2 θ;

n− 2
2

,
1
2

))
· · ·

(
1
2
β(sin2 θ;

2
2
,
1
2
)
)

=
2πrn−1

2n−2

n−1∏
i=2

β(sin2 θ;
i
2
,
1
2
) (26)

chosen precoding matrix and the optimal precoding matrix
is given by,

dmax =

√
2
2

√
S
M0

(28)

With the derivation in equation (10) and (11), it can
be known that the upper bound of the difference between
instantaneous mutual information, I (Hi,F?i ) and I (Hi,Fi),
is given by,

1I = I (Hi,F?i )− I (Hi,Fi)

≤
ρ

Mln2
(‖HiF?i ‖

2
F − ‖HiFi‖

2
F )

≤
ρ

Mln2
‖Hi‖

2
F‖F

?
i − Fi‖F (‖F?i ‖F + ‖Fi‖F )

=
2ρ
√
M

Mln2
‖Hi‖

2
Fd(F

?
i − Fi) (29)

With the definition of the channel matrix in equation (4),
it can be known the channel matrix is made of the small-scale
fading matrix G and the path loss matrix D. As the elements
in matrix G has a distribution as CN (0, 1), we can have that,

E{‖Gi‖
2
F } = mrMt (30)

With equation (28), (29) and (30), the upper bound of the
difference between instantaneous mutual information can be
obtained as follow,

1I ≤
2
√
MmrMtρ

Mln2
‖D

1
2
t ‖

2
Fdmax

=

√
2MmrMtρ

Mln2

√
S
M0
‖D

1
2
t ‖

2
F (31)

From equation (31), it can be known that the error is
proportional with the antenna number. When the antenna
number becomes large, the value of the error will increase
exponentially and the value of M0 should be increased to
maintain the accuracy. Meanwhile, it can be known that the
error in the iterative search algorithm has a position correla-
tion with the factor

√
S
M0

. As the small-scale fading evolution
coefficient ε is related to the spherical surface area S andM0
is the element number in the candidate set {̃Ft}, the small-
scale fading evolution coefficient and the element number in
the candidate set {̃Ft} have an effect on the error, which will
be proved from the simulation results in Section V.

C. POWER ALLOCATION STRATEGY
In the time-varying MIMO DAS, as the distances between
each BS and MS are not equal, the transmission power at
each BS should be varied based on the channel between the
BSs and MS to maximize the system capacity. Therefore,
the power allocation should be considered in the time-varying
MIMO DAS, and the receive signal in equation (1) should be
rewritten with the power allocation as follow,

yt = HtPtFtst + nt (32)

where Pt = diag([
√
ρ1,t ,
√
ρ2,t , . . . ,

√
ρMt ,t ]) means the

transmission power of every transmit antenna. With the
receive signal model in equation (32), the instantaneous
mutual information in equation (7) is rewritten as follow,

I (Ht,Ft) = log2[det(IM +
1

Mmrσ 2FtPtHtH∗t P
∗
t F
∗
t )] (33)

To maximize the instantaneous mutual information in
equation (33) is equivalent to maximize the function as
follow,

f (Pt,Ft) = det(IM +
1

Mmrσ 2FtPtHtH∗t P
∗
t F
∗
t ) (34)

Here, to simply the calculation, we define the equivalent
channel Ĥt as follow,

Ĥt = HtPt = GtD
1/2
t Pt = Ût6̂tV̂∗t (35)

With the definition of the equivalent channel in
equation (35) and the optimal precoding matrix Ft, which
is the first M columns of V̂t, the objective function f (Pt,Ft)
can be converted as follow,

f (Ĥt,Ft) = det(IM +
1

Mmrσ 2FtĤtĤ∗t F
∗
t )

= det(IM +
1

Mmrσ 2 6̂t6̂
∗
t )

=

M∏
i=1

(1+
1

Mmrσ 2D
2
i ) (36)

With the derivation in equation (36), it can be known that
to maximize the instantaneous mutual information f (Ĥt,Ft),
the singular values of the equivalent channel, {Di}, should be
discussed. With the definition of the equivalent channel in
equation (35), the equivalent channel Ĥt is determined by the
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small-scale fading channel Gt, the path loss channel Dt and
the power allocation channel Pt. As the elements in the small-
scale fading channel follow a normal distribution CN (0, 1),
to remove the effect of randomness, the elements in matrix
Gt are assumed as 1.
Proposition 2: With the assumptions above, the singular

values, {Di}, can be expressed as follow,

Di =

{√
mr
∑Mt

k=1 γ
2rk−vρk , i = 1,

0, i 6= 1.
(37)

Proof: See Appendix.
With Proposition 2, the objective function in equation (36)

can be simplified as follow,

f (Ĥt,Ft) =
M∏
i=1

(1+
1

Mmrσ 2D
2
i )

= 1+
1

Mσ 2

Mt∑
k=1

γ 2rk−vρk (38)

As the result in equation (38) is a linear function, maximiz-
ing the objective function is equal to maximize the power ρi0
which corresponds the maximal distance factor γ 2r−vi0 . With
the total power restriction

∑Mt
i=1 ρi = ρ and the minimum

power restriction ρj ≥ ρ0, ∀j, the optimal power allocation
can be obtained as follow,

ρi0 = ρ − (Mt − 1)ρ0
ρi = ρ0, i 6= i0 (39)

From the result in equation (39), the proposed power allo-
cation strategy is only determined by the distances between
the BSs and MS, and it means that the proposed power
allocation strategy can be directly obtained by the path loss
matrix Dt, which is assumed to be known by the BSs and MS
in the system.

V. SIMULATION RESULTS
In this section, we perform Monte Carol simulation to inves-
tigate the system capacity performance of the proposed iter-
ative search algorithm in the time-varying MIMO DAS.
As aforementioned in Section II, the small-scale fading coef-
ficient follows Jake’s model ε = J0(2π fDT ). When we
generate ε, the 60GHzmmWave channel model is employed.
The velocity of the MS is set form 1km/h to 25km/h and
fc = 60GHz. Then the small-scale fading coefficient varies
from 0.9997(1km/h) to 0.8185(25km/h).

In Fig.2-3, the performance of instantaneous mutual infor-
mation in a time-varyingMIMODASwith 4 BSs and oneMS
is given. Each BS and MS is equipped with 4 antennas and
the radius of the cell is 500m, while the BSs are deployed
in a circle with the radius 150m in the centre of the cell.
In Fig.2, we perform the instantaneous mutual information
with the transmit SNR 15 and the small-scale fading evolution
coefficient 0.9 while the MS can move arbitrarily in the
cell. From Fig.2, it can be known that with the precoding

FIGURE 2. The performance of instantaneous mutual information with
different precoding matrices (SNR = 15, eps = 0.9).

FIGURE 3. The performance of instantaneous mutual information with
fixed path and random path (SNR = 15, eps = 0.9).

matrix obtained by the proposed algorithm, the instantaneous
mutual information is quite close to the performance with the
ideal precoding matrix and the error is less than 0.3bps/Hz.
However, the instantaneous mutual information with the ini-
tial precoding matrix decreases with the channel index and
after 20 channel indexes, the value of instantaneous mutual
information becomes the value with an arbitrary unitary
matrix. In Fig.3, the instantaneous mutual information where
the MS moves along a random path and a fixed path are
compared. As the elements in the path loss matrix D have
an inverse ratio with the distance between the BS and the
MS, the instantaneous mutual information can have a rapid
increase when the MS moves to the BS. Therefore, in Fig.3,
the instantaneous mutual information with the fixed path has
two peaks while the instantaneous mutual information with
random paths appears to be gentle. From Fig.3, it can be
known that the mobile path of the MS have little influence
on the error between the instantaneous mutual information
with the ideal precoding matrix and that with the calculated
precoding matrix, as the two groups of the instantaneous
mutual information have similar difference.
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FIGURE 4. The performance of the proposed algorithm and the algorithm
in [18] (SNR = 15, eps = 0.9).

In Fig.4, the performance of instantaneous mutual infor-
mation with the iterative search algorithm proposed in this
paper and the algorithm in [18] are compared. From Fig.4(a),
it can be known the proposed iterative search algorithm has an
obvious advance. Meanwhile, in Fig.4(a), the instantaneous
mutual information obtained by the algorithm in [18] has
a decline with the channel index as the algorithm in [18]
does not take the change of matrix D in account and cannot
deal with the movement of the MS. In Fig.4(b), to make
the comparison fair, the location of the MS is invariable and
the performance of instantaneous mutual information with
the algorithm in [18] becomes stable. However, there is a
gap between the instantaneous mutual information with the
proposed iterative search algorithm and the algorithm in [18].

FIGURE 5. The performance of instantaneous mutual information with
different epsilon (SNR = 15, M = 4).

To discuss the effect of the small-scale fading evolution
coefficient, Fig.5 is given. In Fig.5, three groups of simula-
tions with different epsilon are performed with same mobile
path of MS and same innovation matrices. From Fig.5, it can
be known that the error between the instantaneous mutual
information with the ideal precoding matrix and the calcu-
lated precoding matrix will both decrease when the epsilon
becomes larger. Meanwhile, the system can obtain better

instantaneous mutual information with a large epsilon as the
influence of the innovation matrix becomes small. However,
as the MS movement has a significant effect on the channel
matrix evolution, the epsilon only has a weak correlation with
the evolution of channel matrix so that the variation trend of
three groups of simulations are almost coincident.

FIGURE 6. The percentage of the error with different element number in
the candidate set (SNR = 15, M = 4).

In Fig.6, the element number in the candidate set,M0, in the
proposed algorithm is discussed. From Fig.6, it can be known
that the error on the instantaneous mutual information has an
obvious relation with the small-scale fading evolution coeffi-
cient, which verifies the result in Fig.5 again. However, when
the iterative search algorithm adopts a small value of M0,
there exists a significant difference between the percentage
of the error with different epsilon, but as M0 becomes large,
the results with different epsilon become close. When
M0 = 215, there is only a 2% difference between the percent-
ages of the error. For most of the small-scale fading evolution
coefficient, when M0 = 210, there will be a error less than
5% on the system capacity.

FIGURE 7. The percentage of the error with different SNR
(eps = 0.9, M = 4).

In Fig.7, the performance of the error on instantaneous
mutual information with the proposed iterative mutual infor-
mation is analyzed. From Fig.7(a), it can be known the abso-
lute value of the error has a positive correlation with the
SNR, which verifies the error analysis result in equation (31).
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FIGURE 8. The performance of instantaneous mutual information with
different power allocation(eps = 0.9, M = 4).

However, as the value of instantaneous mutual information
becomes larger with a higher SNR, which can be known
from equation (7), the percentage of the error has a decrease
with the SNR in Fig.7(b). In Fig.8, we give the comparison
between the uniform power allocation strategy and the power
allocation strategy proposed in Section IV-C with the same
total transmit power. FromFig.8, it can be known that with the
proposed power allocation strategy, the instantaneous mutual
information has 1bps/Hz increase to that with uniform power
allocation strategy.

VI. CONCLUSIONS
In this paper, an iterative search algorithm to maximize the
system capacity in the time-varying MIMO DAS is consid-
ered.With the proposed iterative search algorithm, the instan-
taneous mutual information with the calculated precoding
matrix is very close to the value with the ideal precoding
matrix, and the error can be less than 5%. With the discus-
sion of the small-scale fading evolution coefficient, it can be
known that epsilon has a close relationship with the error of
proposed algorithm, but it has a weak effect on the stability
of system capacity which is mainly impacted by the relative
location between the MS and BSs. In addition, we give a
power allocation strategy in the time-varying MIMO DAS,
which has an advance to the uniform power allocation strat-
egy on the instantaneous mutual information. In future, more
researches in the time-varying MIMO DAS, such as the
optimal base station number and base station deployment
problem, will be focused.

APPENDIX
With the definition of the equivalent channel in equation (35),
the rank of the equivalent channel Ĥt can be calculated as
follow,

Rank(Ĥt) = Rank(GtD
1/2
t Pt)

≤ min{Rank(Gt),Rank(D
1/2
t ),Rank(Pt)} (40)

As the elements in the random matrix Gt are assumed as
1, the rank of the matrix Gt is 1. Therefore, it can be known

that the rank of the equivalent channel Ĥt is 1 and the same
with the rank of the matrix Ĥ∗t Ĥt.

With the definition of the singular value, it can be known
that the singular values of the matrix Ĥt are the square roots
of the eigenvalues of the matrix Ĥ∗t Ĥt. As the rank of the
matrix Ĥ∗t Ĥt is 1, only one eigenvalue of the matrix Ĥ∗t Ĥt
is not equal to 0, denoted by λ1. With the concept of trace,
we can have that,

λ1 = tr(Ĥ∗t Ĥt) =
mr∑
j=1

Mt∑
k=1

γ 2r−vk ρk=mr
Mt∑
k=1

γ 2r−vk ρk (41)

Then the singular value of the equivalent channel matrix,

D1, corresponding λ1 is
√
mr
∑Mt

k=1 γ
2r−vk ρk , so it can be

known that the singular values of the equivalent channel
matrix, {Di}, are,

Di =

{√
mr
∑Mt

k=1 γ
2rk−vρk , i = 1,

0, i 6= 1.
(42)
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