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ABSTRACT This paper presents a low-complexity technique for simultaneous determination of modula-
tion types and signal-to-noise ratios (SNRs) in wireless communication systems. The proposed approach
exploits the extracted features of patterns observed in signals’ asynchronous amplitudes histograms, for the
simultaneous determination of these quantities using support vector machine. Features extraction has been
performed by a well-known technique called principal component analysis which is used to extract the most
significant features before being supplied to the artificial intelligent system. Simulations for three commonly-
used modulation types have been conducted under real-world channel conditions. The results conclude that
the presented approach can accurately identify the modulation types with 99.83% accuracy despite the
existence of real-world channel impairments. Furthermore, the algorithm is capable of SNRs estimation
over a broad range of 0–30 dB with average estimation error of 0.79 dB. The proposed paper exploits
the simplicity of generating asynchronous amplitudes histograms to enable cost-effective and reduced-
complexity implementation in cognitive wireless systems.

INDEX TERMS Simultaneous determination, modulation recognition, SNR estimation, support vector
machine, feature-based approach, cognitive wireless systems.

I. INTRODUCTION
The last few decades have witnessed many techniques for the
estimation of signals’ parameters such as modulation type,
signal-to-noise ratio (SNR), bit-rate, transmitted signal power
etc., in wireless communications [1]–[5] . The transmitters in
future wireless networks are anticipated to vary these param-
eters according to the given channel conditions. This, in turn,
will necessitate the receivers employed in these networks to
be effectively prepared of autonomous estimation of vari-
ous signal parameters. Most of the existing solutions focus
on determining a single parameter for e.g., modulation for-
mat [6]–[15] or signal-to-noise ratio (SNR) [16]–[19] rather
than on estimatingmultiple parameters jointly.More recently,
a few techniques for simultaneous determination of multiple
signal parameters have been reported in the literature such as
the asynchronous delay-tap plots (ADTPs)-based technique
proposed in [20] and [21]. One drawback of this technique
is that it requires two sampling devices. Furthermore, the

tap-delay between the two samplers needs to be adjusted
according to the data rates of the transmitted signals which
in turn increases the implementation complexity [22]. The
contributions of this paper lie in two folds; the first one
is to propose a technique that can jointly estimate modula-
tion types and SNRs of received signals in multipath fad-
ing channels using machine learning algorithm. The second
is to reduce the implementation complexity by exploiting
the most important features of asynchronous amplitude his-
tograms (AAHs) the generation of which requires only a
single low-speed asynchronous sampling device. In the pre-
sented algorithm, we employ a supervised learning method
namely support vector machine (SVM) in conjunction with
AAHs. SVMs have proven their superior recognition capa-
bilities as compared to other conventional methods such as
artificial neural networks in several pattern recognition appli-
cations [23], [24]. In this work, we use extracted features of
AAHs using PCA for the training of SVM-based classifier
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and regressor. To analyze the capability of the proposed
approach, numerical simulations have been performed for
three modulation formats namely 2ASK, QPSK and 16QAM
with bit-rates of 250 Mbps, 500 Mbps and 1 Gbps, respec-
tively, and having SNRs vary from 0 to 30 dB. The results
validate successful determinations of modulation types and
SNRs with high estimation accuracies.

FIGURE 1. Principle of AAH by using asynchronous signal envelope
sampling. Tsymbol & Tsampling refer to symbol period and sampling period
respectively.

II. ASYNCHRONOUS AMPLITUDES HISTOGRAMS
Asynchronous amplitude histogram (AAH) is one of
asynchronous sampling-based techniques that offers cost-
effectiveness, low-complexity and flexibility in implemen-
tation. Fig. 1 illustrates how AAH is produced. The steps
of an AAH generation can be described as follows: first,
the received signal envelope is arbitrarily sampled at a sam-
pling rate, that is much lower than but unrelated to its symbol
rate. Then, the samples are ordered according to the magni-
tudes of their voltage amplitudes S = {sn|n = 1, . . . .,N ,
where N is the number of samples. After that, the total range
of voltage amplitudes [VminVmax] is equally split into M
histogram bins as follows:

b = [[Vmin,V1] , (V1,V2] , . . . , (Vm−1,Vm] ,

(Vm,Vm+1] , . . . , . . . , (VM−1,VM ]] (1)

where b describes the voltage amplitude of samples in each
bin, Vmin and Vmax represent the minimum and maximum
voltage amplitude of samples S ∈ [Vmin,Vmax] respectively
and Vm is expressed as:

Vm = Vmin + m(Vmax − Vmin)/M (2)

The sample values S are then mapped onto the bins s(m)

(that is, s(m) is a group of samples that have values within
the range (Vm−1,Vm]). The number of occurrences of the
amplitude samples that lie within each of the bins’ range are
calculated using the formula:

N = [n
(
s(1)
)
, n
(
s(2)

)
, . . . , n

(
s(M)

)
] (3)

where N represents the number of occurrences vector and
n(.) denotes a number of samples that has been mapped
onto s(m). Finally plotting the number of occurrences as a
function of bin number, the amplitude histogram is then
generated [25].

AAHs offer cost-effectiveness and low-complexity due to
the utilization of a single sampler which operates at low sam-
pling speed i.e., the sampling period Tsampling is much longer
than the symbol period Tsymbol. Furthermore, the sampling
rate is totally not associated with the symbol rate. This points
out that the synchronous timing information is inessential.

AAHs exhibit unique statistical attributes which can be
exploited to obtain critical knowledge about different sig-
nals’ parameters such as modulation type and SNR. The
unique signatures reflected by AAHs enable the recognition
of modulation types of different received signals. In addi-
tion, the shapes of AAHs also change when SNR values
are varied, and remain distinguishable from each other. This
means that AAH can be exploited to simultaneously recog-
nize the modulation type and estimate the SNR value. The
simultaneous operation signifies the improvement over most
of the existing work that requires two separate operations to
determine the aforementioned parameters [6]–[19]. Having
a pre-knowledge of the modulation type and SNR, is vital to
receivers in futurewireless communication systems. This cru-
cial information will enable many functions at the receivers
such as supporting the signal’s demodulators and anticipating
the potential changes at the transmitters such as dynamic
power allocation, adaptive schemes of modulations, etc.

FIGURE 2. The conceptual background behind the diversity of
AAHs-based signals. (a) Complex Plane (b). Asynchronous Amplitudes
Histograms.

Fig. 2 illustrates the idea behind the differences in
histogram shape among signals with various modulations
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considered in the proposed work i.e., 2ASK, QPSK and
16QAM. In the left column (a) of the figure, the constellation
diagram for every modulation is shown. 2ASK signal has
two different constellation points (i.e. amplitude levels 0 &
1), hence two distinct peaks in the corresponding AAH will
appear, that is, first peak always represents ‘‘0’’ amplitude
and the other one denotes ‘‘1’’ amplitude. In QPSK diagram,
the four amplitudes labeled 1,2,3,4 are equally distributed
in the real-imaginary coordinates which results in a QPSK
histogram with one common amplitude; therefore its corre-
sponding AAH will consist of a single peak as shown in the
right column (b) of the Fig. 2. The number of AAH-peaks
in 16QAM signal will be higher than the aforementioned
two signals. As shown in the complex plane column (a),
the 16QAM constellation diagram has three unique ampli-
tudes (illustrated in different colors i.e., blue: (1), orange: (2)
and green: (3 and 38). That signifies the existence of three
peaks in 16QAM histogram shape.

FIGURE 3. AAHs for different modulation formats, SNRs, channel
coefficients and path delays.

Fig. 3 illustrates AAHs for three modulation types con-
sidered in this work for two different SNRs. It is obvious
from the figure that the histograms corresponding to different
modulation formats, SNRs, path delays and fading-channel
coefficients are distinguishable from each other.

With the aim of lowering the processing complexity of
the proposed algorithm, the most useful features of the sig-
nals’ histograms are extracted using the PCA technique.

The extracted features are then used to train the SVMs for
the simultaneous determination of the modulation type and
SNR of the detected signal.

III. ALGORITHM MECHANISM
The unique features of these AAHs can thus be exploited
for simultaneous determination of modulation formats and
SNRs by utilizing pattern recognition methods such as SVM-
based systems. In this work, we employ two different types of
SVMs. The first one, called support vector classifier (SVC),
is used for the determination of modulation type while the
second, namely support vector regressor (SVR), is utilized
for SNR estimation. Fig. 4 shows SVM-based classifier and
regressor with AAH bin-count vectors x as inputs of both
SVMs and the determined modulation formats and SNRs as
outputs.

FIGURE 4. SVMs with AAH bin-count vectors x as inputs and determined
modulation formats and SNRs as outputs. The output vector z contains a
‘+1’ element and ‘−1s’ elsewhere.

Each AAH is represented by bin-count vector x and its
corresponding label e and scalar e8. Label vector e contains
two ‘−1’ elements and a single ‘+1’ element whose position
signifies the signal type, whereas scalar e8 indicates the value
of SNR pertaining to that AAH. The outputs z and z8 are
expected to match the corresponding label e and the actual
value e8 respectively.
Both SVC and SVR are trained in a supervised manner by

utilizing bin-count vectors x as inputs while label e and scalar
e8 as targets illustrated in Fig. 4.

In this work, we use one-against-all approach which is a
popular strategy in multi-class SVMs to construct three SVC
models. Each SVC is trained to differentiate a modulation
type (‘+1’) from the other twomodulation types (‘−1’) using
a cubic polynomial kernel. This kernel function maps the
training samples into a higher dimensional space in order
to construct an optimal hyperplane (the maximum margin
between positive and negative classes) which separates sam-
ples of each class from the remaining classes. On the other
hand, for the regression task, the algorithm implements an
epsilon-SVR (ε-SVR). The aim is to obtain a function that
deviates from the label e8 by no more than ε for every train-
ing sample. The performance of the trained-SVM models is
evaluated by utilizing a testing data set which is a part from
the entire data set. In the testing phase, vectors x from the
testing data set are applied simultaneously at both SVMs’
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inputs and corresponding outputs z and z8 are obtained. Due to
the binary nature of SVM classifiers, the SVC output vector z
will have a single ‘+1’ element and ‘−1s’ elsewhere. Hence,
argmax{z}, or the position of ‘+1’ returns the identified
modulation type.

On the other hand, the scalar output z8 of SVR directly pro-
vides SNR estimate. Finally, a comparison is made between
the estimated and actual modulation types and SNRs, and
estimation accuracies are calculated. We performed 50 iter-
ations for the simulation of SNR estimation and then calcu-
lated the mean SNR estimation error.

FIGURE 5. The system model used in simulations.

IV. SYSTEM MODEL
The system model utilized for evaluating the performance of
the proposed technique is illustrated in Fig. 5. Our system
model employs the parameters shown in Table 1.

TABLE 1. Values/ranges of parameters used in the simulations.

Table 1 shows the values and ranges of various simulation
parameters. The Gaussian filters are used for shaping the
signal pulses before transmission over a three-path channel.
To analyze the recognition ability of the proposed algorithm
for diverse modulations, three types of modulation formats
(2ASK, QPSK, 16QAM) are considered since they belong
to various categories of amplitude and phase modulation
schemes. The SNR values of the signals are incremented by
1dB in the interval of 0–30 dB. Each of three paths has a
different coefficient Ci where its value is set in a uniformly
random manner between 0 and 1. Also, each path has a
random delay τi as shown in (4):

τi = TLoS + αiTs (4)

where TLoS is the line-of-sight path’s delay, αi are uniformly-
distributed randomvariables in the interval between 0 and 0.5,

FIGURE 6. A flow diagram for supervised learning algorithm.

FIGURE 7. 10-fold cross-validation technique.

and Ts is the symbol period. At the receiver, non-coherent
detection is performed to detect the envelope of the received
signal. Next, asynchronous amplitude sampling is used to
obtain the samples of signal’s envelope. We acquired a total
of 100,000 samples which are then employed for the synthesis
of histograms with 100 bins.

A large data set consists of 1860 AAHs derived from
3 types of signals, 31 SNRs, and 20 arbitrary combinations of
channel coefficients and path delays (i.e., 1860 = 3 × 31 ×
20). AAHs in the large data set are partitioned into training
and testing data sets by K-fold cross-validation method.

The block diagram in Fig. 6 illustrates the execution pro-
cess of supervised learning algorithm (i.e., SVM) as two
phases. At the first phase, the training dataset with its associ-
ated labels are used to generate a trained SVM model. In the
second phase, the performance of the trained SVM model is
evaluated using a new testing dataset to estimate the required
parameters (i.e., modulation type & SNR value).

In K-fold cross-validation technique, the entire data set is
arbitrarily segregated into a number of equal-size K-subsets.
A K-subset is utilized once for testing process while the
remaining K-1 subsets are combined and utilized for training
the SVM classifier and regressor in order to obtain the trained
model. The cross-validation procedure is recurred K-times
and a K-subset will uniquely act as a testing data set once
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every iteration. Finally, the overall determination accuracy
of the whole K-iterations is calculated. The determination
accuracy is defined as:

Aci =
Cs
Es
× 100% (5)

where Cs is the number of correctly classified samples and Es
is the size of entire testing data set.

In this paper, the data set is partitioned using two types
of cross-validation methods (i.e., 5-fold cross-validation and
10-fold cross-validation) in order to investigate the size’s
effect of testing data set on the overall determination accu-
racy. Fig. 7 illustrates the scenario of 10-fold cross-validation.

As shown in Fig. 7, in each iteration, the entire AAHs
in the large data set are partitioned into training and testing
data sets by arbitrarily choosing 90% (i.e., 1674) and 10%
(i.e., 186) of total AAHs, respectively. These new data groups
are then used for the training and testing processes of SVM
models. Each AAH in the two datasets is represented by a
100 × 1 vector x of bin-counts. In addition, for every AAH
in the training data set, we generated a 3 × 1 label vector
e (containing two ‘−1’ elements and a single ‘+1’ element
whose position signifies the signal type corresponding to that
AAH) and a scalar label e8 which indicates the value of SNR
pertaining to that AAH.

V. FEATURES EXTRACTION USING PRINCIPAL
COMPONENT ANALYSIS
With the aim of extracting the most useful and distinguished
features of the signals’ histograms and lowering the pro-
cessing complexity of the proposed algorithm, a well-known
technique called PCA is utilized in this work. PCA has
become an attractive choice to a wide range of real-world
applications in many disciplines such as feature extraction,
learning algorithms and pattern recognition [26]–[28]. The
purpose of PCA technique’s implementation is to drastically
decrease the dimensionality of the data space and transform
it to a new subspace of descriptive features and maintaining
the general data distribution. This new derived space com-
prises uncorrelated variables named principal components
(PCs) which have highest variances and preserve most of the
important statistics of the original data.

There are many techniques being deployed to extract
the principal components such as eigenvalue decomposition
(ED), the power algorithm, singular value decomposition
(SVD). However, SVD has received a vital attention of many
researchers recently and it has been exploited in many differ-
ent research areas such as image processing and data analysis.
In addition, SVD plays a vital role in subspace estimation,
least squares techniques and finding eigenvectors. Therefore,
we have chosen SVD in this proposed scheme.

In this work, we apply SVD-based PCA technique on the
AAHs in both training and testing data sets to extract the most
significant features. The SVD is utilized in order to extract the
eigenvectors and eigenvalues required to construct the PCs.

The following steps summarize the implementation of
PCA:

1- Consider a matrix Q (n × p) where n represents the
AAHs and p signifies the number of variables. Inmatrix
Q, each vector qi represents an AAH which corre-
sponds to different signal type with various SNRs. The
definition of the mean AAH vector β of the matrix Q
is given by:

β =
1
n

n∑
i=1

qi (6)

2- Obtain the zero-mean matrix Y by subtracting β from
every column of matrix Q, i.e., Y = [y1,y2, . . . .,yn],
where yi = qi− β. We find the covariance matrix C of
Y as follows:

C =
1
n
YY T (7)

where C is symmetric matrix i.e. diagonalizable.
3- Perform SVD algorithm on matrix Y , we get the

decomposition as shown in (8):

Y = USV T (8)

where S is a matrix that includes the singular values si.
By substituting (8) in (7), we obtain:

C = USV T (USV T )
T 1
n
= USV T

(
VSUT

) 1
n

(9)

Since V T .V = I (i.e., orthogonal matrix), therefore:

C = U
S2

n
UT (10)

The relation between the singular values si and the
eigenvalues λi of the covariance matrix is given by:

λi =
S2

n
(11)

However, the eigenvalues can be calculated through the
following equation:

Cγi = λiγ i, i = 1, 2, . . . , p (12)

where p is the number of eigenvectors (PCs) equals
to 100.

The PCs i.e. eigenvectors are sorted from the highest to the
lowest based on their corresponding eigenvalues. A selected
number of eigenvectors R (where R < p) corresponding to
their largest eigenvalues, is chosen for the next training and
testing stages while ignoring the remaining eigenvectors. The
following criterion will determine the selection of R-value:

∇ =

R∑
i=1

λi

/ p∑
i=1

λi > Mc (13)

where the typical determination of Mc value is made to be
larger than 0.9 [28], [29].

The selected PCs are the eigenvectors of the covariance
matrix C , i.e., the columns of matrix U . Finally, these PCs
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FIGURE 8. Eigenvalues λi for some selected PCs are in descending order.

span a new R-dimensional subspace of the original space of
data matrix Q. An approximation of a weighted-sum of the
selected PCs can be represented as a vector y that pertains to
a given AAH (train\test datasets) as shown below:

y ≈
R∑
i=1

xrγ r H⇒ xr = γ Tr y, for r = 1, 2, . . . ,R (14)

Therefore, the feature vector x of a given AAH will
include the weights xr i.e., x = [x1,x2, . . . , xR]T . The relation
between the eigenvalues of chosen significant PCs and their
indices is illustrated in Fig. 8. It can be seen from Fig. 8 that
these eigenvalues λi are graded from the largest to the lowest
and dramatically approaching zero.

FIGURE 9. The relation between parameter

∆

and the selected R principal
components (features).

Fig. 9 presents the relation between the selected R features
and parameter

∆

which varies based on the quantity of the
PCs chosen R.
It is illustrated in the figure that when six features are

chosen (R = 6), the value of parameter

∆

is greater than
0.94. Hence, it proves the efficiency of exploiting a few PCs
rather than utilizing the entire features. This will lead towards
less computational complexity and faster processing for the
implementation of the proposed recognition technique.

FIGURE 10. Actual versus estimated SNRs for the proposed estimation
technique.

FIGURE 11. Actual versus estimated SNRs for (a) 2ASK signal, (b) QPSK
signal, (c) 16QAM signal using the proposed scheme.

VI. SIMULATION RESULTS
Fig. 10 illustrates the results of SNR estimations for the three
signals. As proven in the figure, the estimated SNR values are
quite close to the actual values. The mean SNR estimation
error calculated over the SNR range of 0–30 dB is 0.79 dB
for 186 testing cases.

Fig. 11 illustrates the estimated against the actual SNR val-
ues for every signal i.e., (a) 2ASK, (b) QPSK and (c) 16QAM.
As shown in the figure, the estimated SNR values are quite
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TABLE 2. Recognition accuracies for different modulation types by
employing all features (10-fold cross-validation).

close to the actual ones. The mean SNR estimation errors are
0.61 dB, 1.09 dB, 0.67 dB for 2ASK, QPSK and 16QAM
respectively.

Table 2 summarizes the recognition accuracies for three
signal types by employing all features. The overall recog-
nition accuracy is calculated by taking the average of the
three individual accuracies on the diagonal of Table 2 (in bold
font). The average value of the accuracies of the individual
signal types is 99.83% despite the fact that the signals are
deteriorated by both noise and multipath fading.

The relationship between the number of selected features
and the identification accuracy for two different types of K-
fold cross-validation (K = 5, K = 10) is depicted in Fig. 12.
It is observed from Fig. 12 that the recognition accuracy

increases exponentially with the number of selected fea-
tures. The figure highlights that when utilizing only three
selected features, the classification accuracies approach 70%,
but when utilizing five features and above, the recognition
accuracies attain values higher than 96%. Also as shown in
the figure, if the selected number of features is 5 or higher,
the effect of increasing the chosen number of features on
improving the classification accuracy is slightly noticeable.
It is worth to mention that all these high accuracies have been
realized with the consideration of a real-world scenario, i.e.,
multipath fading channel.

Fig. 13 illustrates the effect of tuning the number of
selected features on the mean SNR estimation error for the
testing data set using 5-fold and 10-fold cross-validation
methods. It is obvious from the figure that both parame-
ters have inversely proportional relationship. In other words,
when the number of selected features increases, the mean
estimation error of SNR decreases and vice versa. When
the most six significant features are selected, the obtained
average estimation errors using both 10 and 5-fold cross-
validation methods are quite similar i.e., 1 dB and 1.02 dB,
respectively. On the other hand, when using more than 6 fea-
tures, the average estimation error values are consistently less
than 1 dB. Moreover, it is clear from the figures 12 & 13 that
there is no significant effect of testing data set’s size on the
overall determination accuracies. In other words, it proves
that there is no biasing to any class of the three modulation
types in the testing data set.

The results shown in Fig. 12 and Fig. 13 are pre-
sented numerically in Table 3 for the 10-fold cross-
validation method. It is observed from the table that when

FIGURE 12. Effect of number of PCs selected on the overall identification
accuracy for two types of K-fold cross-validation methods.

FIGURE 13. Mean estimation error of SNR as a function of the number of
selected features for two types of K-fold cross-validation technique.

TABLE 3. No. of features with recognition accuracies and regression
errors for the 10-fold cross-validation method.

the number of selected features is equal or more than
6 features, the accuracies are high and reasonably stable.
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TABLE 4. Recognition accuracies for different signal types at most six
significant features (10-fold cross-validation).

TABLE 5. Recognition accuracies for different signal types at most fifteen
significant features (10-fold cross-validation).

This proves the effect of exploiting the PCA technique
in extracting the significant features from AAHs while
reducing the complexity in terms of the required input
dimensions.

Tables 4 and 5 present the confusion matrix between
the identified and actual signal types at number of fea-
tures 6 and 15 respectively for the 10-fold cross-validation
method. The overall recognition accuracies are 98.12%
and 99.62% respectively. It is clear that the increment in
classification accuracies is not very significant, therefore
it signifies the necessity of employing features extraction
technique to gain high accuracies with less computational
complexity.

The above results conclude the capability of the proposed
work for joint determination of signal types and SNRs in
multipath fading channels with good accuracies. Moreover,
compared to the existing automatic modulation recognition
(AMR) and SNR regression techniques which use coher-
ent detection [1], [18], [19], [30]–[38], the presented work
offers a simplicity in hardware implementation. This is due
to the utilization of AAHs which essentially requires no
timing knowledge, preceded by an envelope detection stage.
Note that despite having a lower implementation complexity
as compared to ADTPs-based approaches presented in [20]
and [21], the proposed technique offers better estimation
accuracies for signal types and SNRs. Therefore, it can be
considered as an attractive alternative for low-cost multi-
parameter estimation in future wireless networks. It is worth
to mention that the features used in this work can be exploited
using any good machine learning tool. The proposed SVM-
based algorithm, which simultaneously performs both clas-
sification (using SVC) and regression (using SVR) tasks,
produces very comparable results with the work in [20] which

also implements two deep neural networks (DNN-1 & 2) in
order to perform the two tasks.

TABLE 6. A Comparison between the DNN-based algorithm in [20] and
the proposed scheme.

As shown in Table 6, the obtained results by both the DNNs
and the proposed technique are almost similar in modulation
recognition accuracy. In addition, the presented technique
offers less error of SNR prediction i.e., 0.79 dB (in contrast to
1 dB for the DNNs-based technique). Therefore, the proposed
approach gives pretty much the similar performance despite
the fact of using relatively less complexmachine learning tool
(i.e., SVM).

It is worth pointing out that according to the work proposed
in [39], authors concluded that training data associated with
the proposed DNN technique should be large enough to attain
accurate classification results. They also observed that SVM
was faster in approaching very good accuracies than DNN
i.e., sparse auto-encoder (SAE)-based technique when both
learning types are trained with same size of dataset. This
was imputed to the SVM’s flexibility in handling dataset
with small number of training samples. Hence, we considered
SVM in the presented scheme to handle our dataset whichwas
mentioned earlier.

The authors would like to affirm that beyond the consid-
ered modulations pool, the proposed algorithm can also be
exploited for the determination of many other modulation
types as long as their AAHs are unique and distinct from each
other. For example, the pool of signal types in the proposed
technique can be extended to include 8QAM, 32QAM and
64QAM signals. This is due to the uniqueness in number of
their histograms peaks as illustrated in Fig. 14.

It is evident from Fig. 14 that AAHs reflect unique sig-
natures among 8QAM, 32QAM and 64QAM signals. Also,
they are still distinguishable from the signals pool considered
in the proposed algorithm (shown in Fig. 3). Hence, it implies
the capability of the presented work to recognize various
signals (i.e., 2ASK, QPSK, 16QAM, 8QAM, 32QAM and
64QAM). On the other hand, we would like to clarify a
constraint of the proposed scheme that is if the detected signal
is one ofM -PSK types, excludingQPSK signal, the technique
is unable to recognize such types due to the resemblance in
their (AAHs) to QPSK which is already considered in the
modulations pool of the proposed scheme.
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FIGURE 14. AAHs for (a) 8QAM signal, (b) 32QAM signal, (c) 64QAM
signal at SNR = 22 dB.

VII. CONCLUSION
In this paper, we presented a novel technique using AAHs
in combination with PCA and SVMs for joint determina-
tion of modulation types and SNRs in multipath fading
channels. The proposed technique demonstrates good recog-
nition accuracy of 99.83% for the several different modula-
tion types. In addition, it achieves average estimation error
of 0.79 dB for the SNR parameter over a large interval
of 0–30 dB. The presented technique also offering much
lower hardware complexity as compared to existing methods.
Therefore, it is a desirable choice for simple and low-cost
multi-parameter estimation in future wireless communication
systems.
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