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ABSTRACT This paper investigates a framework for the application of robust and smooth second order
sliding mode control to a class of underactuated mechanical systems for the realization of high performance
control applications. First, using input and state transformations, the dynamics of the class are transformed
into a normal form which consists of a set of reduced order nonlinear subsystems and a set of reduced order
linear subsystems. Then we present nonlinear sliding manifold and sliding mode control for the reduced
order nonlinear subsystem known as the Lagrangian zero dynamics such that stability of the overall system
is guaranteed. The control design procedure is illustrated for the Furuta Pendulum, the Overhead Crane,
and the Beam-and-Ball system. Numerical simulations verify the effectiveness of the proposed framework.
Additionally, we design swingup control law for the Furuta Pendulum to overcome the limitation of the
sliding mode control law and achieve global stabilization in the presence of external disturbance.

INDEX TERMS Nonlinear systems, second order sliding mode control, swingup control, underactuated
mechanical systems.

I. INTRODUCTION
The last two decades have seen a great deal of inter-
est and active research in the control and analysis of
underactuated mechanical systems. Main reasons that have
contributed to this interest and research are: i) increased
usefulness of these systems in applications of practical impor-
tance such as robotics, mechatronics, industry, and aerospace
and marine systems; ii) development and inventions of new
types of underactuated mechanical systems such as flexible
link robots and miniaturized robots for various purposes;
iii) a pursuit for the ever demanding benefits such as reduc-
tion of cost, weight, complexity, and power consumption;
iv) research in nonlinear control theory, many of these sys-
tems are used as benchmark nonlinear systems for compar-
ing and evaluating different control design techniques, for
examples, the TORA system [1], [2], the Beam-and-Ball
system [3], and the Cart-Pole system [4] are the subjects of
excellent research works.

Underactuation, i.e., less number of control inputs than
the number of degrees to be controlled, causes great diffi-
culties in the realization of high performance control design
for these systems. The reason is that the matured and well
established nonlinear control techniques, for example, feed-
back linearization [5] and in many cases direct backstepping,

cannot be applied to these systems. Due to underactuation,
only partial feedback linearization (PFL) [6], [7] is possible
which leave the control design problem still complicated due
to control coupling in the actuated and unactuated parts of
the dynamics. Normal forms [8] were developed to decouple
the actuated and unactuated parts of the dynamics in the
control. In most works on underactuated mechanical systems,
for example, [4], [9], PFL and normal forms have been used
as initial simplifying techniques. Apart from the traditional
energy based methods such as [10], methods based on the
Lagrangian/Hamiltonian properties of the mechanical system
are developed to address the control design problem for
underactuated mechanical systems in general, for example
IDA-PBC [11] and controlled Lagrangian [12], [13].
Approximate input-output linearization [3] is an other tech-

nique applicable to such systems such as the Beam-and-Ball.
Higher order compensating slidingmode control (HOCSMC)
[14] is based on the concepts of [3]. In [14], a linear sliding
manifold is used neglecting the higher order terms which are
then compensated in the control law. We will compare our
results to this method for the Beam-and-Ball case.

Due to the complex dynamics of underactuatedmechanical
systems and the uniqueness of the required design approach,
in most cases, a system by system control design approach is
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used, for example, the Furuta Pendulum [15]–[19], the Over-
head Crane [20]–[26], and the Beam-and-Ball system [3],
[14], [27]. In some excellent works, a class based general
control design approach is used that encompasses many sys-
tems in a specific class, for example, equivalent-input dis-
turbance [4], energy based [10], IDA-PBC [11], controlled
Lagrangian [12], [13], sliding mode [9], [28]–[30], terminal
sliding mode [31], dynamic surface control [32], output feed-
back stabilization [33] and adaptive [34]. The present work is
a contribution to the general approaches and applies to a class
of systems.

Control design for underactuated systems is also important
from actuator/sensor fault point of view. Actuator failure
in a fully actuated system renders the system underactu-
ated and failure in an already unactuated system increases
the degree of underactuation and the system can be con-
sidered as an underactuated system. Similarly, sensor fault
causes no or delayed feedback signal and hence leads to
ineffective control. Detecting and isolating such faults and
designing fault tolerant control laws is an important area of
research [35], [36] and sliding mode techniques can effec-
tively address this issue [37]–[40].

Mismatch between a real system and its mathematical
model on which control synthesis is based always gives rise
to uncertainties. Furthermore, there are always unanticipated
and unknown external disturbances in real world applications.
Designing control laws that are robust to internal model
uncertainties and unknown external disturbances has been the
top most priority and ever demanding objective in high per-
formance control applications. Sliding mode control (SMC)
techniques are well known for robustness against internal
uncertainties and external disturbances. The other important
ones are H∞ which are well known for robustness against
external noise and disturbances. In some recent applica-
tions [41]–[43], a combination of the two is used for improved
performance.

Recent developments in SMC techniques have led to their
vast applications in high performance control applications.
Capability to control complex nonlinear systems and robust-
ness to uncertainties and external disturbance are the two
main reasons making SMC a first choice for the control of
nonlinear uncertain systems. Fast response, simple design,
and order reduction are extra desirable features. However,
the simple two steps SMC design procedure [28] of: i) choos-
ing a stable linear sliding manifold, and ii) finding a control
law to enforce sliding mode in the manifold along system
dynamics, is not directly applicable to underactuatedmechan-
ical systems. The dynamics of underactuated mechanical sys-
tems are complex and a successful application of SMC needs
some novel approach.

The application of standard SMC to underactuated
mechanical systems was first considered in the most impor-
tant works of [28] and then in [9]. In [9], two different sliding
surfaces were defined depending on whether the relative
degree of the system is 1 or 2 and, accordingly, standard
SMC laws were selected to enforce sliding mode in

the manifold. In essence, the two sliding surfaces defined
in [9] are state space equivalent to the sliding surfaces defined
in [28]. The two sliding surface approach complicates the
design procedure and the standard SMC laws used in [9] suf-
fer from undesired chattering and are not suitable for practical
control applications, especially, involving mechanical control
systems. In the proposed control design framework, a single
sliding surface is used that makes the control design simple.
Furthermore, the selected control laws used to enforce sliding
mode in the manifold are second order sliding mode that
are both smooth and robust. The need of a novel control
design framework for the successful application of robust and
smooth second order sliding mode control to underactuated
mechanical systems using a single sliding manifold provides
a strong basis for this paper.

With the motivation mentioned just above, in this article,
we consider smooth second order sliding mode control of a
class of underactuated mechanical systems. The dynamics of
the class are first transformed into a cascade nontriangular
quadratic normal form [7]. The resulting form consists of a
reduced order nonlinear subsystem and a linear subsystem.
The proposed framework greatly simplifies control design
for systems in the nontriangular quadratic normal form what
would otherwise be quite challenging. We design nonlinear
sliding manifold and sliding mode control for the reduced
order nonlinear subsystem known as the Lagrangian zero
dynamics such that stability of the overall system is also
guaranteed. Additionally, swingup control law is designed
in the case of Furuta Pendulum. The designed swingup
and sliding mode control law achieve global stabilization
of the Furuta Pendulum from the downward stable equilib-
rium position to the upward unstable equilibrium position
in the presence of external disturbance. Illustrative design
examples and numerical simulations of the Furuta Pendu-
lum, the Overhead Crane and the Beam-and-Ball system
verify the effectiveness of the proposed control design
framework.

Organization of the rest of the article is as follows. Prob-
lem formulation is presented in Section II and the proposed
control design framework in Section III. Section IV presents
examples illustrating the design procedure. Simulation results
are discussed in Section V and Section VI concludes the
paper.

II. PROBLEM FORMULATION
The equations of motion of a mechanical control system with
n degrees of freedom are given as:

M (q)q̈+ C(q, q̇)q̇+ G(q) = F(q)(τ + d(q, q̇, t)) (1)

where q ∈ <n is the generalized configuration vector,
M (q) ∈ <n×n is the positive definite symmetric inertia
matrix, C(q, q̇) ∈ <n×n contains Coriolis and centrifugal
terms, G(q) ∈ <n×1 contains the gravitational terms, F(q) ∈
<
n×p is the control input matrix, τ ∈ <p is the control

input vector and d(q, q̇, t) ∈ <p represents the matched
uncertainties. The case, p = rank(F) = n, represents fully
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TABLE 1. Parameters in Eq. (2) for the design examples.

actuated system and the case, p = rank(F) < n, represents
underactuated system.

We consider a class of systems described by (1) withM (q2)
and F(q) = [Ip, 0]T . Partitioning the configuration vector
q ∈ <n into actuated q1 ∈ <p and unactuated q2 ∈ <n−p

configuration vectors, the nominal dynamics in (1) take the
form:

m11(q2)q̈1 + m12(q2)q̈2 + c1(q, q̇)+ g1(q1, q2) = τ (2a)

m21(q2)q̈1 + m22(q2)q̈2 + c2(q, q̇)+ g2(q1, q2) = 0 (2b)

Remark 1: The Furuta Pendulum, the Overhead Crane,
the Beam-and-Ball system, the Cart-Pole system, and the
Pendubot are well known benchmark underactuated systems
described by (2) with n = 2, p = 1.

In general, the dynamics in (2) are a set of n coupled second
order nonlinear subsystems. The difficulty of the problem
is, that, due to underactuation, the dynamics in (2) are not
exact feedback linearizable [5] and only partial linearization
is possible that leaves the dynamics still coupled in the control
input. Moreover, in general, these dynamics are strongly
nonlinear (see Table 1 for the dynamics of design examples)
and the direct state space form of (2) is not design friendly
even in the absence of uncertainties. For the successful and
novel realization of sliding mode control, first, the dynamics
in (2) are decoupled in the control input and transformed
into a canonical form. We use control input and nonlinear
state transformation to achieve this simplifying objective
first.

Using the following noncollocated partial feedback lin-
earizing control

τ = (m12 − m11m
−1
21 m22)w+ c1 + g1 − m11m

−1
21 (c2 + g2)

(3)

where w is a new control input, and, the nonlinear coordinate
transformation [7]

z1 = q1 + ψ(q2)

z2 = m21(q2)q̇1 + m22(q2)q̇2
ξ1 = q2
ξ2 = q̇2

ψ(q2) =
∫ q2

0
m−121 (θ )m22(θ )dθ (4)

transforms the dynamics in (2) into the following nontrian-
gular quadratic normal form:

ż1 = m−121 (ξ1)z2

ż2 = −g2(z1 − ψ(ξ1), ξ1)+
ḿ11(ξ1)

2m2
21(ξ1)

z22

+

(
m2
22(ξ1)

2m2
21(ξ1)

ḿ11(ξ1)−
m22(ξ1)
m21(ξ1)

ḿ21(ξ1)

)
ξ22

+

(
ḿ21(ξ1)
m21(ξ1)

−
m22(ξ1)ḿ11(ξ1)

m2
21(ξ1)

)
z2ξ2 +

1
2
ḿ22(ξ1)ξ22

ξ̇1 = ξ2

ξ̇2 = w (5)

Equation (5) can be written as:

z̈ = −m−121 (ξ )g2(z− ψ(ξ ), ξ )

+
1
2
ḿ11(ξ )m

−1
21 (ξ )

(
ż− m−121 (ξ )m22(ξ )ξ̇

)2
−m−221 (ξ )ḿ21(ξ )m22(ξ )ξ̇2 +

1
2
m−121 (ξ )ḿ21(ξ )ξ̇2

ξ̈ = w (6)

where´denotes d/dq2.
In general, the normal form (6) comprises a block of

(p) second order nonlinear actuated z−subsystems and a
block of n−p second order linear unactuated ξ−subsystems.
The beauty of the normal forms is, that, with ξ as output
with global uniform relative degree two, the first block rep-
resents the Lagrangian zero dynamics for the second block.
Treating ξ as control input for the first block, the form reduces
the control of the original underactuated nonlinear system (1)
to the control of the reduced order z−subsystem in (6).
Remark 2: The explicit transformation (4) applies to

two degrees of freedom underactuated mechanical systems.
Higher order systems can be reduced to form (6) through the
procedure outlined in [7].
Remark 3: It is well known that control design for the

nontriangular quadratic normal form (5) or (6) is a challeng-
ing problem using traditional design methods. The proposed
sliding mode approach solves this challenging problem with
much ease and also provides a unified design framework.

To stabilize the nonlinear underactuated dynamics in
Eq. (1), we design sliding manifold and sliding mode control

VOLUME 6, 2018 7761



I. Shah, F. u. Rehman: Smooth Second Order Sliding Mode Control of a Class of Underactuated Mechanical Systems

to stabilize their transformed normal form in (6) rewritten as:

z̈ = f (z, ż, ξ, ξ̇ ) (7a)

ξ̈ = w+ D(z, ż, ξ, ξ̇ , t) (7b)

where z ∈ <(p), ξ ∈ <n−p, and D(z, ż, ξ, ξ̇ , t) represents the
lumped uncertainties after transformation.

The following assumptions are taken into account in the
design of sliding manifold and sliding mode control.
Assumption 4: The origin in the system state space is an

equilibrium point of the open loop Lagrangian zero dynamics
subsystem (7a) i.e., f (0, 0, 0, 0) = 0.
The existence of well defined relative degree requires the

following assumptions:

Assumption 5:
∂f

∂ξ̇
6= 0.

Assumption 6:
∂f
∂ξ
6= 0.

In addition, we have,
Assumption 7: The transformed uncertainties D(z, ż, ξ,

ξ̇ , t) is bounded as
∣∣D(z, ż, ξ, ξ̇ , t)∣∣ ≤ D0.

Remark 8: Most underactuated mechanical systems have
natural (open loop) equilibrium points including the origin
and it is reasonable to expect that Assumption 4 will hold for
these system. Assumptions 5, 6 are related to system dynamics
and must be checked for the system in case. The loss of well
defined relative degree at the origin for the Beam-and-Ball
system is well known. This is discussed in Section IV-C for the
Beam-and-Ball system. Assumption 7 is reasonable to hold in
any practical scenario.

The next section presents the design of sliding manifold
and sliding mode control for the stabilization of system (7).

III. MAIN RESULTS: SLIDING MANIFOLD AND
SLIDING MODE CONTROL LAW
Here we assume that stabilization of (7b) does not imply
stabilization of the overall system (7). This is true in gen-
eral and for underactuated mechanical systems in specific.
Hence, we investigate stabilization of (7) through stabiliza-
tion of (7a).

To make the z−subsystem (7a) stable, the following con-
dition is needed to be satisfied

f (z, ż, ξ, ξ̇ ) = −αż− βz (8)

with α > 0, β > 0 as design constants. To meet condition (8)
we design the sliding manifold as:

σ = f (z, ż, ξ, ξ̇ )+ αż+ βz (9)

When sliding mode is established, σ = 0, in (9), condition
(8) is met and the dynamics in (7a) become

z̈+ αż+ βz = 0 (10)

which is a stable linear system for α > 0, β > 0 and hence z,
ż converge to zero with convergence rate determined by the
choice of design constants α, β.

To achieve the desired dynamics (10) for the z−subsystem
we need a sliding mode control law to enforce sliding mode
in the manifold (9). The design of sliding mode control law
depends on the relative degree of system (9). The relative
degree is determined whether sliding variable σ or the func-
tion f explicitly depends on ξ̇ or not as investigated below.

A. THE SLIDING VARIABLE σ EXPLICITLY DEPENDS ON ξ̇

In this case, the relative degree of system (9) is 1. We take the
time derivative of σ in (9) along the dynamics (7) to get:

σ̇ = a(z, ż, ξ, ξ̇ )+ u (11)

where

a(z, ż, ξ, ξ̇ ) =
(
∂f
∂z
+ β

)
ż+

(
∂f
∂ ż
+ α

)
f (z, ż, ξ, ξ̇ )

+
∂f
∂ξ
ξ̇ +

∂f

∂ξ̇
D(z, ż, ξ, ξ̇ , t) (12)

u = b(z, ż, ξ, ξ̇ )w (13)

b(z, ż, ξ, ξ̇ ) =
∂f

∂ξ̇
(14)

One choice for the control law to enforce sliding mode
in relative degree 1 system (11) is the following standard
SMC law

u = −
((

∂f
∂z
+ β

)
ż+

(
∂f
∂ ż
+ α

)
f (z, ż, ξ, ξ̇ )

+
∂f
∂ξ
ξ̇ +

∣∣∣∣ ∂f∂ξ̇
∣∣∣∣D0sign(σ )+ K sign(σ )

)
(15)

where K is a strictly positive design constant.
The above standard SMC law, which consists of an equiv-

alent control term and a discontinuous term, can be achieved

by taking the Lyapunov function candidate V =
1
2
σ 2 for

(11) and taking its time derivative along the dynamics (7).
However, the standard SMC law (15) suffers from chatter-
ing which is undesired, especially, for mechanical control
systems. Moreover, the above standard SMC law can not be
applied if the relative degree of the system is greater than 1.

To avoid chattering. we need a control law that is smooth.
Furthermore, to deal with internal uncertainties and external
disturbances, the control law must be robust. We choose
the following well known smooth second order sliding
mode (SSOSM) control law [44] to enforce sliding mode in
relative degree 1 system (11):

u = −s1 − K1|σ |
m/(m+1)sign(σ )+ u0

u̇0 = −K2|σ |
(m−1)/(m+1)sign(σ ) (16)

where m ≥ 1 and K1 > 0, K2 > 0 are design constants.
The term s1 = â(z, ż, ξ, ξ̇ ) in (16) is used to cancel the the

uncertain bounded term a(z, ż, ξ, ξ̇ ) in (11) and is estimated
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via the following observer [44] (m = 2):

ṡ0 = v0 + u

v0 = −λ0|3|1/3|s0 − σ |2/3sign(s0 − σ )+ s1
ṡ1 = v1
v1 = −λ1|3|1/2|s1 − v0|1/2sign(s1 − v0)+ s2
ṡ2 = −λ2|3|sign(s2 − v1) (17)

where λ0, λ1, λ2 are design parameters and3 > 0 is Lipshitz
constant of ȧ(z, ż, ξ, ξ̇ ).
Theorem 9: The closed loop system (11), (16), (17) is finite

time stable and hence σ , σ̇ converge to 0 in finite time.
Proof: The proof can be found in [44]. �

Once sliding mode is established, σ = 0, condition (8) is
met and z, ż converge to zero in accordance with (10). With
(z = 0, ż = 0) the Lagrangian zero dynamics are given
by (7a):

f (0, 0, ξ, ξ̇ ) = 0 (18)

If the first order zero dynamics in (18) are stable (see
Assumption 4) then stabilization of the z−subsystem (7a) will
render the overall system (7) stable.
Remark 10: Eqs. (11), (13) and (14) and hence the control

laws (15) and (16) needs the validity of Assumption 5.

B. THE SLIDING VARIABLE σ DOES NOT EXPLICITLY
DEPEND ON ξ̇

In this case the relative degree of system (9) is 2. We take
twice the time derivative of σ in (9) along the dynamics (7)
to achieve:

σ̈ = a(z, ż, ξ, ξ̇ )+ u (19)

where

a(z, ż, ξ, ξ̇ ) =
∂2f
∂z2

ż2 +
∂2f
∂ ż2

f 2 +
∂2f
∂ξ2

ξ̇2 + 2
∂2f
∂z∂ ż

f ż

+ 2
∂2f
∂z∂ξ

żξ̇ + 2
∂2f
∂ ż∂ξ

f ξ̇ +
(
∂f
∂z
+ β

)
f

+

(
∂f
∂ ż
+ α

)(
∂f
∂z
ż+

∂f
∂ ż
f +

∂f
∂ξ
ξ̇

)
+
∂f
∂ξ
D(z, ż, ξ, ξ̇ , t) (20)

u = b(z, ż, ξ, ξ̇ )w (21)

b(z, ż, ξ, ξ̇ ) =
∂f
∂ξ

(22)

We choose the following smooth second order sliding
mode (SSOSM) control law [45] to enforce sliding mode in
relative degree 2 system (19):

u = −s2 − K1|σ |
(ρ−2)/ρsign(σ )− K2|σ̇ |

(ρ−2)/(ρ−1)sign(σ̇ )

(23)

where ρ ≥ 2 and K1 > 0, K2 > 0 are design constants.

The term s2 = â(z, ż, ξ, ξ̇ ) in the control law (23) is used
to cancel the the uncertain bounded term a(z, ż, ξ, ξ̇ ) in (19)
and is estimated via the observer [45] (m = 2):

ṡ0 = s1
ṡ1 = v1 + u

v1 = −λ2|3|1/3|s1 − σ̇ |2/3sign(s1 − σ̇ )+ s2
ṡ2 = −λ1|3|sign(s2 − v1) (24)

where λ2 and λ1 are design parameters and3 > 0 is Lipshitz
constant of ä(z, ż, ξ, ξ̇ ). Further the observer also estimate σ̇
as s1 = ˆ̇σ .
Theorem 11: The closed loop system (19), (23), (24) is

finite time stable and hence σ , σ̇ converge to 0 in finite time.
Proof: The proof can be found in [45]. �

Once sliding mode is established, σ = 0, condition (8) is
met and z, ż converge to zero in accordance with (10). With
(z = 0, ż = 0) the Lagrangian zero dynamics are given
by (7a):

f (0, 0, ξ ) = 0 (25)

which is an algebraic equation. By Assumption 4
f (0, 0, 0) = 0 and the solution to this equation is ξ = 0 and
hence ξ tends to zero as well and, consequently, the overall
system (7) becomes stable.
Remark 12: Eqs. (19), (21) and (22) and hence the control

law (23) needs the validity of Assumption 6.
Remark 13: The convergence rate of the proposed algo-

rithm can be controlled at two levels: i) by the choice of
controller gains K1, K2 in the control laws (16) and (23) for
the desired convergence rate of the sliding variable σ ; and,
ii) by the choice of design constants α, β in the sliding
variable (9) for the desired convergence rate of the zero
dynamics (10).
Remark 14: To use the SSOSM control law (16) and

observer (17), the order of an n degrees of freedom under-
actuated mechanical system increases from 2n to 2n + 4.
In the case of SSOSM control law (23) and observer (24),
the order increases from 2n to 2n + 3. This over-
head in computational cost can be overlooked keeping
in view the overall high performance the control laws
offer and their implementation in today’s high performance
platforms.

The next section presents illustrative design examples.

IV. DESIGN EXAMPLES
We illustrate the design procedure for the Furuta Pendulum,
the Overhead Crane, and the Beam-and-Ball system as exam-
ples of the class. Fig. 1 shows the schematics and parameters
in the equation of motions are shown in Table 1. Each of these
systems is unique in its dynamics and has been the subject of
excellent research works mostly standalone.

A. THE FURUTA PENDULUM
The Furuta Pendulum is shown in Fig. 1a. It consists of an
inverted pendulum and a rotating arm. The control ojcetive
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FIGURE 1. Schematics of design examples. (a) The Furuta Pendulum. (b) The Overhead Crane. (c) The Beam-and-Ball system.

FIGURE 2. The Furuta Pendulum - response with SSOSM control u (23), q(0) = [−5,0,0.45,0]T , applied disturbance d (t) = 0.5 sin(0.4πt) from
t = 10 (s) to t = 20 (s). (a) Arm angle q1 (rad). (b) Pendulum angle q2 (rad). (c) Sliding surface σ . (d) Control effort τ (N-m).

is to stabilize the inverted pendulum at the upward unstable
equilibrium position q2 = 0 by applying control torque τ
to the rotating arm. Some excellent research works can be
referred to as [7] and [15]–[19].

Physical parameters of the Furuta Pendulum are chosen as
in [7] as:
m1 = 1.0 (kg), L1 = 1.0 (m), `1 = 0.5 (m),m2 = 1.0 (kg),

L2 = 1.5 (m), `2 = 0.75 (m) and g = 9.8 (m.s−2).

The dynamics of the Furuta Pendulum are:(
J1 + m2

(
L21 + `

2
2 sin

2(q2)
))

q̈1 + m2L1`2 cos(q2)q̈2

+ 2m2`
2
2 sin(q2) cos(q2)q̇1q̇2 − m2`2L1 sin(q2)q̇22 = τ

(26a)
m2L1`2 cos(q2)q̈1 +

(
I2 + m2`

2
2

)
q̈2

−m2`
2
2 sin(q2) cos(q2)q̇

2
1 − m2`2g sin(q2) = 0 (26b)
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FIGURE 3. The Furuta Pendulum - response with swingup control wswingup (36), q(0) = [−5,0, π,0]T , applied disturbance d (t) = 0.5 sin(0.4πt) from
t = 10 (s) to t = 20 (s). (a) Arm angle q1 (rad) and velocity q̇1 (rad/s). (b) Pendulum angle q2 (rad) and velocity q̇2 (rad/s). (c) Swingup control
wswingup. (d) Control effort τPFL (N-m).

where q1 is the arm angle in radians and q2 is the pendulum
angle in radians as shown in Fig. 1a.

Using transformations (3) and (4), the normal form (6) for
the Furuta Pendulum is:

z̈ =

(
k1 + k2

(
ż− k3ξ̇

)2
cos(ξ )

+ k4
ξ̇2

cos(ξ )

)
tan(ξ ) (27a)

ξ̈ = w (27b)

where k1 =
g
L1

, k2 =
1

m2
2L

3
1`2

, k3 =
(
I2 + m2`

2
2

)
and

k4 =
(I2 + m2`

2
2)

m2L1`2
.

Remark 15: Eq. (27a) shows that for the Furuta Pen-
dulum: Assumption 4 holds; Assumption 5 does not hold
and hence control laws (15) and (16) can not be applied;
Assumption 6 holds and hence control law (23) can be
applied.

The dynamics in (27a) show that, after z converges to
zero, the ξ−dynamics are governed by the algebraic equation
tan(ξ ) = 0. We note that in (27a), the term in the parenthesis
in front of tan(ξ ) is strictly positive for −

π

2
< ξ <

π

2
, and

hence, to achieve the stable system in (10), we choose the

sliding manifold as:

σ = tan(ξ )+ αż+ βz (28)

The relative degree of σ is 2 and the design procedure in
Section III-B is applicable. The derivative of σ is

σ̇ = α
(
k1 + k2

(
ż− k3ξ̇

)2 sec(ξ )+ k4ξ̇2 sec(ξ )) tan(ξ )
+ ξ̇ sec2(ξ )+ β ż (29)

In terms of coordinates (q1, q̇1, q2, q̇2) of system (26)we have

σ = αq̇1 + αk4q̇2 sec(q2)+ βq1
+βk4ln (sec(q2)+ tan(q2))+ tan(q2) (30)

σ̇ = αk2 (αq̇1 + αk4q̇2 sec(q2)− k3q̇2)2 sec(q2) tan(q2)

+αk1 tan(q2)+ αk4q̇22 sec(q2) tan(q2)+ q̇2 sec
2(q2)

+αβq̇1 + αβk4q̇2 sec(q2) (31)

In Eq. (21), b(z, ż, ξ, ξ̇ ) in terms of (q1, q̇1, q2, q̇2) is:

b(z, ż, ξ, ξ̇ ) = sec2(q2)+ 2αq̇2(k4 + k2k23 ) sec(q2) tan(q2)

− 2αk2k3(q̇1 + k4q̇2 sec(q2)) sec(q2) tan(q2)

(32)

The final control τ for the system (26) is given by (3) with
w given by (21) and u given by (23) and (24). Fig. 2 shows
simulation results for the Furuta Pendulum (26).
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FIGURE 4. The Furuta Pendulum - swing up with wswingup (36) and balancing with u (23), q(0) = [−5,0, π,0]T , applied disturbance
d (t) = 0.5 sin(0.4πt) from t = 10 (s) to t = 20 (s). (a) Arm angle q1 (rad) and velocity q̇1 (rad/s). (b) Pendulum angle q2 (rad)
and velocity q̇2 (rad/s). (c) Disturbance d (t) = 0.5 sin(0.4πt). (d) Control effort τ (N-m).

Swingup Control Law: The controller u in (23) cannot sta-
bilize the Furuta Pendulum globally first due to the assump-
tion −

π

2
< ξ = q2 <

π

2
in its synthesis and second due to

a singularity in the PFL control in (3) at q2 =
π

2
. For global

stabilization we design swingup control law.
We partially linearize the dynamics of Furuta Pendulum

with respect to q1. Solving Eq. (2b) for q̈2 as

q̈2 = −m
−1
22 (c2 + g2 + m21q̈1) (33)

putting the result in (2a) and using the following collocated
Partial Feedback Linearizng control

τPFL = (m11 − m12m
−1
22 m21)wswingup − m12m

−1
22 (c2 + g2)

+ c1 + g1 (34)

where wswingup is a new control to be designed, the dynamics
of the Furuta Pendulum become:

q̈1 = wswingup (35a)

m22q̈2 + c2 + g2 = −m21wswingup (35b)

To stabilize (35a), we choose the following state feedback
control law

wswingup = −Kd q̇1 − Kpq1 (36)

with Kd > 0, Kp > 0 as design constants. Once q1 is stabi-
lized, wswingup becomes zero and the q2−dynamics become:(

I2 + m2`
2
2

)
q̈2 − m2`2g sin(q2) = 0 (37)

Fig. 3 shows closed loop response of the Furuta Pendulum
(26) with wswingup (36) with Kd = 8, Kp = 10 for the initial
condition q(0) = [−5, 0, π, 0]T . The pendulum behavior
in (37) is shown in Fig. 3b. Fig. 4 shows a successful swing up
from q2 = π to q2 = 0 usingwswingup (36) and then balancing
with u (23) in the presence of external disturbance.

B. THE OVERHEAD CRANE
The Overhead Crane is shown in Fig. 1b. It consists of a
trolley of massM and a payload of mass m suspended with a
massless (assumed) rope of length L. The control task is the
fast and precise transportation of the payload with minimum
swing. Some works can be referred to as [20]–[26].

The physical parameters of the Crane are chosen as in [20]:
M = 30.0 (kg), L = 2.0 (m), m = 20.0 (kg), and g =
9.8 (m.s−2). The dynamics of the Overhead Crane are:

(M + m)q̈1 + mL cos(q2)q̈2 − mL sin(q2)q̇22 = τ (38a)

mL cos(q2)q̈1 + mL2q̈2 + mLg sin(q2) = 0 (38b)
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FIGURE 5. The Overhead Crane - response with SSOSM control u (23), applied disturbance d (t) = 5 sin(0.4πt) from t = 15 (s) to t = 20 (s). (a) Crane
Trolly position q1 (m) and velocity q̇1 (m/s). (b) Payload swing angle q2 (rad) and velocity q̇2 (rad/s). (c) Sliding surface σ . (d) Control effort τ (N).

where q1 is the trolley position (meters) and q2 is the payload
angle (radians) as shown in Fig. 1b.

Using transformations (3) and (4), the normal form (6) for
the Overhead Crane becomes:

z̈ =
(
−g+ L

ξ̇2

cos(ξ )

)
tan(ξ ) (39a)

ξ̈ = w (39b)

Remark 16: Eq. (39a) shows that for the Overhead Crane:
Assumption 4 holds; Assumption 5 does not hold and hence
control laws (15) and (16) can not be applied; Assumption 6
holds and hence control law (23) can be applied.

The dynamics in (39a) show that, after z converges to
zero, the ξ−dynamics are governed by the algebraic equation

tan(ξ ) = 0. We note that in (39a), the term
(
−g+ L

ξ̇2

cos(ξ )

)
is not strictly positive or negative. To solve this problem we
present the following assumptions and explanation.

First, for practical crane systems, the payload swing angle
q2 = ξ is usually less than

π

18
radians and the payload

swing velocity |q̇2| = |ξ̇ | < 1 radians/second and hence
ξ̇2

cos(ξ )
� 1. Second, we assume L < g. Therefore(

−g+ L
ξ̇2

cos(ξ )

)
can be assumed to be strictly negative.

With the above assumptions and explanation in hand,
to achieve the stable system in (10), we choose the sliding
manifold as

σ = tan(ξ )− αż− βz (40)

The relative degree of σ is 2 and the design procedure in
Section III-B is applicable. The derivative of σ is

σ̇ = ξ̇ sec2(ξ )− α
(
−g+ L ξ̇2 sec(ξ )

)
tan(ξ )− β ż (41)

In terms of coordinates (q1, q̇1, q2, q̇2) of system (38)we have

σ = −αq̇1 − αLq̇2 sec(q2)− βq1
−βLln (sec(q2)+ tan(q2))+ tan(q2) (42)

σ̇ = sec2(q2)q̇2 − α
(
−g+ Lq̇22 sec(q2)

)
tan(q2)

−βq̇1 − βLq̇2 sec(q2) (43)

In Eq. (21), b(z, ż, ξ, ξ̇ ) in terms of (q1, q̇1, q2, q̇2) is:

b(z, ż, ξ, ξ̇ ) = sec2(q2)− 2αLq̇2 sec(q2) tan(q2) (44)

The final control τ for system (38) is given by (3) withw given
by (21) and u given by (23) and (24). Fig. 5 shows simulation
results for the Overhead Crane (38).

C. THE BEAM-AND-BALL SYSTEM
Fig. 1c shows the well known system of Beam-and-Ball [3].
The control objective is to bring the Ball from an initial
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FIGURE 6. The Beam-and-Ball - response with SSOSM control u (23), q(0) = [−0.6,0,1.0,0]T , applied disturbance d (t) = 0.25 sin(0.4πt) from
t = 10 (s) to t = 15 (s). (a) Beam angle q1 (rad) and velocity q̇1 (rad/s). (b) Ball position q2 (m) and velocity q̇2 (m/s). (c) Sliding surface σ .
(d) Control effort u (N-m).

position to the origin, the center of beam. The Beam-and-Ball
has been studied in numerous excellent research works for
example [3], [7], [11], [14], [27], and [46]–[50].

For the Beam-and-Ball system, we chose the physical
parameters as in [3] and [14]: m = 0.05 (kg), I1 =
0.02 (kg.m2), I2 = 2×10−6 (kg.m2), r = 0.01 (m), g =
9.8 (m.s−2). The dynamics of the Beam-and-Ball system are:

(
I1 + mq22

)
q̈1 + 2mq̇1q2q̇2 + mgq2 cos(q1) = τ (45a)(

m+
I2
r2

)
q̈2 − mq2q̇21 + mg sin(q1) = 0 (45b)

where q1 represents the Beam angle (radians) and q2 repre-
sents the Ball position (meters) as shown in Fig. 1c.

Using the control input transformation

τ =
(
I1 + mq22

)
w+ 2mq̇1q2q̇2 + mgq2 cos(q1) (46)

where w is a new control input and writing [z1, z2, ξ1, ξ2]T =
[q2, q̇2, q1, q̇1]T , the normal form for the Beam-and-Ball sys-
tem (45) can be written as:

ż1 = z2

ż2 =
1

1+ I2
mr2

(
z1ξ22 − g sin(ξ1)

)

ξ̇1 = ξ2

ξ̇2 = w (47)

The normal form (47) can be rewritten in the form of (7) as

z̈ = k0ξ̇2z− k0g sin(ξ ) (48a)

ξ̈ = w (48b)

where k0 =
1

1+
I2
mr2

= 0.7143.

Remark 17: Eq. (48a) shows that for the beam-and-ball:
Assumption 4 holds; Assumption 5 does not hold and hence
control laws (15) and (16) can not be applied; Assumption 6
holds and hence control law (23) can be applied.

The dynamics in (48a) show that, after z converges to
zero, the ξ−dynamics are governed by the algebraic equation
−k0g sin(ξ ) = 0. We choose the sliding manifold as

σ = −k0g sin(ξ )+ αż+ βz (49)

The relative degree of σ is 2 and the design procedure in
Section III-B is applicable. The derivative of σ is

σ̇ = −k0gξ̇ cos(ξ )+ αk0ξ̇2z− αk0g sin(ξ )+ β ż (50)
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FIGURE 7. The Beam-and-Ball - response with SSOSM control u (23), q(0) = [1.5,0,10.0,0]T , applied disturbance d (t) = 0.25 sin(0.4πt) from
t = 10 (s) to t = 15 (s). (a) Beam angle q1 (rad) and velocity q̇1 (rad/sec). (b) Ball position q2 (m) and velocity q̇2 (m/sec). (c) Sliding surface σ . (d)
Control effort u (N-m).

In terms of coordinates (q1, q̇1, q2, q̇2) of system (45)we have

σ = −k0g sin(q1)+ αq̇2 + βq2 (51)

σ̇ = −k0gq̇1 cos(q1)+ αk0q̇21q2 − αk0g sin(q1)+ βq̇2 (52)

The first term k0ξ̇2z in (48a) is taken into account in controller
synthesis but excluded in the design of sliding manifold
in (49) for the following reasons:
i. including this term in the sliding manifold results in

undefined relative degree at the origin and Assumption 5
becomes invalid.

ii. being third order, is small near the origin.
iii. To achieve the stable system in (10), the coefficient β of

z in the sliding manifold (49) can be chosen sufficiently
large to dominate the strictly positive state dependent
coefficient k0ξ̇2 of z in (48a). The Beam velocity q̇1 = ξ̇
is usually less than 2 radians/second, and hence,
k0ξ̇2 < 2 and choosing β ≥ 2 is sufficient.

Reasons (ii) and (iii) are crude assumptions but simulation
results justify their validity.

In Eq. (21), b(z, ż, ξ, ξ̇ ) in terms of (q1, q̇1, q2, q̇2) is:

b(z, ż, ξ, ξ̇ ) = 2k0αq2q̇2 − k0g cos(q1) (53)

The final control τ for system (45) is given by (46) with w
given by (21) and u given by (23) and (24). Figs. 6 and 7
show simulation results for the Beam-and-Ball system (45).

V. SIMULATION RESULTS AND DISCUSSION
A. THE FURUTA PENDULUM
Fig. 2 shows closed loop response of the Furuta Pendulum
with SSOSM control u (23) and observer (24). The controller
parameters are chosen as ρ = 3, K1 = 8, K2 = 10 and
the observer parameters as λ1 = 1, λ2 = 3. The sliding
parameters are chosen as α = 0.3061, β = 0.2041. The
controller stabilizes the system from the initial condition
q(0) = [−5, 0, 0.45, 0]T to the upward unstable equilibrium
position q = [0, 0, 0, 0]T in less than 6 seconds. The control
effort is smooth. Fig. 3 shows closed loop response with
swingup control (36) with parameters Kd = 8.0, Kp = 10.0.
The controller stabilizes the q1−dynamics as desired but the
q2−dynamics behave as in (37). Fig. 4 shows successful
swing up from q2 = π to q2 = 0 with wswingup (36) and then
balancing with u (23) in the presence of external disturbance
d(t) = 0.5 sin(0.4π t). Figs. 2, 4 show system response, under
slidingmode control law (23), is robust to applied disturbance
and even to a large magnitude disturbance. Fig. 3 shows
system response, under feedback control law (36), is affected
by applied disturbance.

B. THE OVERHEAD CRANE
Fig. 5 shows closed loop response of the Overhead Crane
with SSOSM control u (23) and observer (24). The controller
parameters are chosen as ρ = 3, K1 = 1, K2 = 1.6 and
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the observer parameters as λ1 = 1, λ2 = 3. The sliding
parameters are chosen as α = 0.2041, β = 0.1020. The
Crane transports the payload to the desired position q1des =
20 (m) in 10 seconds while the payload swing angle q2
remains within the desired range of |q2| <

π

18
= 0.1745

radians, i.e., within 10 degrees. System response is robust to
a large applied disturbance d(t) = 5 sin(0.4π t).

C. THE BEAM-AND-BALL SYSTEM
Figs. 6 and 7 show closed loop response of the Beam-and-Ball
with SSOSM control (23) and observer (24). The controller
parameters are chosen as ρ = 3, K1 = 5, K2 = 6 and the
observer parameters as λ1 = 4, λ2 = 5. The sliding variable
parameters are chosen as α = 1.5, β = 1.5. The controller
stabilizes the system in less than 6 seconds. Moreover the
control effort is smooth and within acceptable range. The
effects of applied disturbance on stability are made visible in
simulation. Small variations in Beam angle due to disturbance
cause large variation in Ball position, which is unactuated,
and then the control takes action by changing the Beam angle
to bring the Ball back to desired position.

D. COMPARISON OF RESULTS
It is interesting to compare the results with some existing
results reported in the literature. The comparison shows
the improved performance of the proposed control design
framework.

The physical parameters of the Overhead Crane are the
same as in [20]. Fig. 5 shows the results are in agreement
with and improved to [20]. We set the desired position of
the Crane to a larger value of 20(m) in contrast to 14(m)
of [20]. Still the peak control effort is less, i.e., 76(N) as
compared [20] where it is greater than 200(N) and the payload
swing angle is contained within 10 degrees in contrast to [20]
where it is greater than 10 degrees. However, the settling time
in our case is 10 seconds, because of greater desired position,
compared to 6 seconds of [20]. Moreover, system response
is robust to sinusoidal disturbance with large magnitude (5)
and large time period (5 seconds) compared to magnitude
0.54 and time period 0.5 seconds in [20]. Disturbance with
small magnitude and high frequency are simply absorbed by
mechanical systems especially with large physical parameters
as is the case. Furthermore, the design in this article is simple
and complete.

The physical parameters of the Beam-and-Ball system
are the same as in [3] and [14]. The initial condition in
Figure 6 is the same as in [14]. Fig. 6 shows the results
are in agreement with and improved to [14]. Comparing
to [14], the overshoot in the Ball position and the settling
time are remarkably improved. The settling time is 7 seconds
in our case and it is 12 seconds in [14]. The overshoot
in the Ball position is 3.4 and 6.67 in the cited reference.
Fig. 7 shows response for initial condition similar to but
much larger than that in [14]. Again we see that the settling
time and the undershoot are remarkably improved in our
case. Shown in [14], the SMC law based on approximate

input-output linearization [3] becomes unstable for these ini-
tial conditions.

VI. CONCLUSION
We presented a framework based on smooth second order
sliding mode for the control of a class of underactu-
ated mechanical systems. A nonlinear sliding manifold was
designed to stabilize the reduced order Lagrangian zero
dynamics of the underactuated mechanical system such
that stability of the overall system is also guaranteed. The
effectiveness of the proposed framework was shown through
illustrative design examples of the Furuta Pendulum,
theOverheadCrane, and the Beam-and-Ball system. The con-
trol action is smooth as desired and demanded for mechanical
control systems. The results are in general agreement with
and improved to previous works while the design procedure
is comprehensive and simple. The proposed control design
framework is general and can be applied to nonlinear systems
other than underactuated mechanical systems. Additionally,
to overcome the limitations of sliding mode control law,
swingup control law was designed in the case of Furuta Pen-
dulum. Successful swingup and stabilization in the presence
of external disturbance was demonstrated using the designed
control laws.

REFERENCES
[1] C.-J. Wan, D. S. Bernstein, and V. T. Coppola, ‘‘Global stabilization of

the oscillating eccentric rotor,’’ Nonlinear Dyn., vol. 10, no. 1, pp. 49–62,
May 1996.

[2] R. T. Bupp, D. S. Bernstein, and V. T. Coppola, ‘‘A benchmark problem
for nonlinear control design,’’ Int. J. Robust Nonlinear Control, vol. 8,
nos. 4–5, pp. 307–310, Apr. 1998.

[3] J. Hauser, S. Sastry, and P. Kokotovic, ‘‘Nonlinear control via approximate
input-output linearization: The ball and beam example,’’ IEEE Trans.
Autom. Control, vol. 37, no. 3, pp. 392–398, Mar. 1992.

[4] J. She, A. Zhang, X. Lai, and M. Wu, ‘‘Global stabilization of 2-DOF
underactuated mechanical systems—An equivalent-input-disturbance
approach,’’ Nonlinear Dyn., vol. 69, nos. 1–2, pp. 495–509, Jul. 2012.

[5] A. Isidori, Nonlinear Control Systems. London, U.K.: Springer-Verlag,
1995.

[6] M.W. Spong, ‘‘Partial feedback linearization of underactuated mechanical
systems,’’ in Proc. IEEE/RSJ/GI Int. Conf. Intell. Robots Syst., Munich,
Germany, Sep. 1994, pp. 314–321.

[7] R. Olfati-Saber, ‘‘Nonlinear control of underactuated mechanical systems
with application to robotics and aerospace vehicles,’’ Ph.D. dissertation,
Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge,
MA, USA, 2001.

[8] R. Olfati-Saber, ‘‘Normal forms for underactuated mechanical systems
with symmetry,’’ IEEE Trans. Autom. Control, vol. 47, no. 2, pp. 305–308,
Feb. 2002.

[9] R. Xu and Ü Özgüner, ‘‘Sliding mode control of a class of underactuated
systems,’’ Automatica, vol. 44, no. 1, pp. 233–241, Jan. 2008.

[10] M. W. Spong, ‘‘Energy based control of a class of underactuated mechan-
ical systems,’’ in Proc. IFAC World Congress, San Francisco, CA, USA,
1996, pp. 431–435.

[11] R. Ortega, M. W. Spong, F. Gòmez-Estern, and G. Blankenstein, ‘‘Stabi-
lization of a class of underactuated mechanical systems via interconnection
and damping assignment,’’ IEEE Trans. Autom. Control, vol. 47, no. 8,
pp. 1218–1233, Aug. 2002.

[12] A. M. Bloch, N. E. Leonard, and J. E. Marsden, ‘‘Controlled Lagrangians
and the stabilization of mechanical systems. I. The first matching the-
orem,’’ IEEE Trans. Autom. Control, vol. 45, no. 12, pp. 2253–2270,
Dec. 2000.

[13] A. M. Bloch, D. E. Chang, N. E. Leonard, and J. E. Marsden, ‘‘Controlled
Lagrangians and the stabilization of mechanical systems. II. Potential
shaping,’’ IEEE Trans. Autom. Control, vol. 46, no. 10, pp. 1556–1571,
Oct. 2001.

7770 VOLUME 6, 2018



I. Shah, F. u. Rehman: Smooth Second Order Sliding Mode Control of a Class of Underactuated Mechanical Systems

[14] D. Voytsekhovsky and R. M. Hirschorn, ‘‘Stabilization of single-input
nonlinear systems using higher-order term compensating sliding mode
control,’’ Int. J. Robust Nonlinear Control, vol. 18, nos. 4–5, pp. 468–480,
Mar. 2008.

[15] M. S. Park and D. Chwa, ‘‘Swing-up and stabilization control of inverted-
pendulum systems via coupled sliding-mode control method,’’ IEEE Trans.
Ind. Electron., vol. 56, no. 9, pp. 3541–3555, Sep. 2009.

[16] I. Fantoni and R. Lozano, ‘‘Stabilization of the Furuta pendulum around
its homoclinic orbit,’’ Int. J. Control, vol. 75, no. 6, pp. 390–398, 2002.

[17] A. S. Shiriaev, L. B. Freidovich, A. Robertsson, R. Johansson, and
A. Sandberg, ‘‘Virtual-holonomic-constraints-based design of stable oscil-
lations of Furuta pendulum: Theory and experiments,’’ IEEE Trans. Robot.,
vol. 23, no. 4, pp. 827–832, Aug. 2007.

[18] L. B. Freidovich, A. S. Shiriaev, F. Gordillo, F. Gomez-Estern, and
J. Aracil, ‘‘Partial-energy-shaping control for orbital stabilization of high-
frequency oscillations of the Furuta pendulum,’’ IEEE Trans. Control Syst.
Technol., vol. 17, no. 4, pp. 853–858, Jul. 2009.

[19] J. Aracil, J. Á. Acosta, and F. Gordillo, ‘‘A nonlinear hybrid controller for
swinging-up and stabilizing the Furuta pendulum,’’ Control Eng. Pract.,
vol. 21, no. 8, pp. 989–993, 2013.

[20] N. Sun, Y. Fang, and H. Chen, ‘‘A continuous robust antiswing tracking
control scheme for underactuated crane systems with experimental verifi-
cation,’’ J. Dyn. Syst. Meas. Control, vol. 138, no. 4, p. 041002, 2016.

[21] N. Sun, Y. Fang, Y. Zhang, and B. Ma, ‘‘A novel kinematic coupling-based
trajectory planning method for overhead cranes,’’ IEEE/ASME Trans.
Mechatronics, vol. 17, no. 1, pp. 166–173, Feb. 2012.

[22] Y. Fang, B. Ma, P. Wang, and X. Zhang, ‘‘A motion planning-based
adaptive control method for an underactuated crane system,’’ IEEE Trans.
Control Syst. Technol., vol. 20, no. 1, pp. 241–248, Jan. 2012.

[23] B. Ma, Y. Fang, and Y. Zhang, ‘‘Switching-based emergency braking
control for an overhead crane system,’’ IET Control Theory Appl., vol. 4,
no. 9, pp. 1739–1747, Sep. 2010.

[24] N. B. Almutairi andM. Zribi, ‘‘Slidingmode control of a three-dimensional
overhead crane,’’ J. Vibrat. Control, vol. 15, no. 11, pp. 1679–1730, 2009.

[25] B. Kolar, H. Rams, and K. Schlacher, ‘‘Time-optimal flatness based control
of a gantry crane,’’ Control Eng. Pract., vol. 60, pp. 18–27, Mar. 2017.

[26] Z. Zhang, Y. Wu, and J. Huang, ‘‘Differential-flatness-based finite-time
anti-swing control of underactuated crane systems,’’ Nonlinear Dyn,
vol. 87, no. 3, pp. 1749–1761, Feb. 2017.

[27] N. B. Almutairi and M. Zribi, ‘‘On the sliding mode control of a ball on a
beam system,’’ Nonlinear Dyn., vol. 59, nos. 1–2, pp. 221–238, 2010.

[28] V. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electro-
Mechanical Systems. London, U.K.: Taylor & Francis, 1999.

[29] H. Ashrafiuon and R. S. Erwin, ‘‘Sliding mode control of underactuated
multibody systems and its application to shape change control,’’ Int. J.
Control, vol. 81, no. 12, pp. 1849–1858, 2008.

[30] I. Shah and F. Rehman, ‘‘Smooth higher-order sliding mode control of a
class of underactuated mechanical systems,’’ Arabian J. Sci. Eng., vol. 42,
no. 12, pp. 5147–5164, Dec. 2017.

[31] H. Bayramoglu and H. Komurcugil, ‘‘Nonsingular decoupled terminal
sliding-mode control for a class of fourth-order nonlinear systems,’’
Commun. Nonlinear Sci. Numer. Simul., vol. 18, no. 9, pp. 2527–2539,
Sep. 2013.

[32] N. Qaiser, N. Iqbal, A. Hussain, and N. Qaiser, ‘‘Exponential stabilization
of a class of underactuated mechanical systems using dynamic surface
control,’’ Int. J. Control, Autom., Syst., vol. 5, no. 5, pp. 547–558, 2007.

[33] L. Xu and Q. Hu, ‘‘Output-feedback stabilisation control for a class of
under-actuated mechanical systems,’’ IET Control Theory Appl., vol. 7,
no. 7, pp. 985–996, May 2013.

[34] Y.-F. Chen and A.-C. Huang, ‘‘Controller design for a class of underactu-
ated mechanical systems,’’ IET Control Theory Appl., vol. 6, vol. 6, no. 1,
pp. 103–110, Jan. 2012.

[35] R. Sakthivel, P. Selvaraj, Y. Lim, and H. R. Karimi, ‘‘Adaptive reliable
output tracking of networked control systems against actuator faults,’’
J. Franklin Inst., vol. 354, no. 9, pp. 3813–3837, Jun. 2017.

[36] H. R. Karimi, ‘‘Robust synchronization and fault detection of uncertain
master-slave systems with mixed time-varying delays and nonlinear per-
turbations,’’ Int. J. Control, Autom. Syst., vol. 9, no. 4, pp. 671–680, 2011.

[37] C. Edwards, S. K. Spurgeon, and R. J. Patton, ‘‘Sliding mode
observers for fault detection and isolation,’’ Automatica, vol. 36, no. 4,
pp. 541–553, 2000.

[38] H. Alwi, C. Edwards, and C. P. Tan, Fault Detection and Fault-Tolerant
Control Using Sliding Modes (Advances in Industrial Control). Berlin,
Germany: Springer, 2011.

[39] C. P. Tan and C. Edwards, ‘‘Sliding mode observers for robust detection
and reconstruction of actuator and sensor faults,’’ Int. J. Robust. Nonlin.,
vol. 13, no. 5, pp. 443–463, Apr. 2003.

[40] C. P. Tan and C. Edwards, ‘‘Robust fault reconstruction in uncertain linear
systems using multiple sliding mode observers in cascade,’’ IEEE Trans.
Autom. Control, vol. 55, no. 4, pp. 855–867, Apr. 2010.

[41] H. R. Karimi, ‘‘A slidingmode approach toH∞ synchronization of master–
slave time-delay systems with Markovian jumping parameters and non-
linear uncertainties,’’ J. Franklin Inst., vol. 349, no. 4, pp. 1480–1496,
May 2012.

[42] Y. Kao, J. Xie, C. Wang, and H. R. Karimi, ‘‘A sliding mode approach
to H∞ non-fragile observer-based control design for uncertain
Markovian neutral-type stochastic systems,’’ Automatica, vol. 52,
pp. 218–226, Feb. 2015.

[43] H. Zhang, X. Liu, J. Wang, and H. R. Karimi, ‘‘Robust H∞ sliding
mode control with pole placement for a fluid power electrohydraulic
actuator (EHA) system,’’ Int. J. Adv. Manuf. Technol., vol. 73, nos. 5–8,
pp. 1095–1104, Jul. 2014.

[44] Y. B. Shtessel, I. A. Shkolnikov, and A. Levant, ‘‘Smooth second-order
sliding modes: Missile guidance application,’’ Automatica, vol. 43, no. 8,
pp. 1470–1476, Aug. 2007.

[45] S. Iqbal, C. Edwards, and A. I. Bhatti, ‘‘A smooth second-order sliding
mode controller for relative degree two systems,’’ inProc. 36th Annu. Conf.
IEEE Ind. Electron. Soc. (IECON), Nov. 2010, pp. 2379–2384.

[46] F. Andreev, D. Auckly, S. Gosavi, L. Kapitanski, A. Kelkar, and W. White,
‘‘Matching, linear systems, and the ball and beam,’’ Automatica, vol. 38,
no. 12, pp. 2147–2152, 2002.

[47] Y. Aoustin and A. Formal’Skii, ‘‘Ball on a beam: Stabilization under
saturated input control with large basin of attraction,’’ Multibody Syst.
Dyn., vol. 21, no. 1, pp. 71–89, Feb. 2009.

[48] D. E. Chang, ‘‘Stabilizability of controlled Lagrangian systems of
two degrees of freedom and one degree of under-actuation by the
energy-shaping method,’’ IEEE Trans. Autom. Control, vol. 55, no. 8,
pp. 1888–1893, Aug. 2010.

[49] L. Marton, A. S. Hodel, B. Lantos, and J. Y. Hung, ‘‘Underactuated
robot control: Comparing LQR, subspace stabilization, and combined
error metric approaches,’’ IEEE Trans. Ind. Electron., vol. 50, no. 10,
pp. 3724–3730, Oct. 2008.

[50] M. T. Ravichandran and A. D. Mahindrakar, ‘‘Robust stabilization
of a class of underactuated mechanical systems using time scaling
and Lyapunov redesign,’’ IEEE Trans. Ind. Electron., vol. 58, no. 9,
pp. 4299–4313, Sep. 2011.

IBRAHIM SHAH received the B.Sc. degree in
mathematics and physics from the University of
Peshawar, Pakistan, in 1993, the M.Sc. degree
in physics from Quaid-i-Azam University, Islam-
abad, Pakistan, in 1995, and the M.S. degree in
electronic engineering with specialization in con-
trol systems from the Capital University of Science
and Technology, Islamabad, Pakistan, in 2012. He
is currently a Ph.D. Fellow with the Department
of Electrical Engineering, Capital University of

Science and Technology. His research interests include nonlinear control,
sliding mode control, data acquisition, instrumentation and control, embed-
ded systems, and FPGA-based realization of control systems.

FAZAL UR REHMAN received the M.Sc. and
M.Phil. degrees in mathematics fromB. Z. Univer-
sity, Multan, Pakistan, in 1986 and 1990, respec-
tively, and the M.Eng. and Ph.D. degrees in
control systems from the Department of Electri-
cal Engineering,McGill University,Montreal, QC,
Canada, in 1993 and 1997, respectively. He joined
the Faculty of Electronic Engineering with the
Ghulam Ishaq Khan Institute of Engineering Sci-
ences and Technology, Pakistan, as an Assistant

Professor, from 1998 to 2002 and as an Associate Professor from 2003 to
2005. He is currently a Professor with the Department of Electrical Engi-
neering, Capital University of Science and Technology, Islamabad, Pakistan.
His research interests are primarily in nonlinear control systems.

VOLUME 6, 2018 7771


	INTRODUCTION
	PROBLEM FORMULATION
	MAIN RESULTS: SLIDING MANIFOLD AND SLIDING MODE CONTROL LAW
	THE SLIDING VARIABLE  EXPLICITLY DEPENDS ON 
	THE SLIDING VARIABLE  DOES NOT EXPLICITLY DEPEND ON 

	DESIGN EXAMPLES
	THE FURUTA PENDULUM
	THE OVERHEAD CRANE
	THE BEAM-AND-BALL SYSTEM

	SIMULATION RESULTS AND DISCUSSION
	THE FURUTA PENDULUM
	THE OVERHEAD CRANE
	THE BEAM-AND-BALL SYSTEM
	COMPARISON OF RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	IBRAHIM SHAH
	FAZAL UR REHMAN


