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ABSTRACT Image fusion techniques in 3-D echocardiography attempt to improve the field-of-view by
combining multiple 3-D ultrasound (3-DUS) volumes. Echocardiography fusion techniques are mostly
based on either image registration or sensor tracking. Compared to registration techniques, sensor tracking
approaches are image independent and do not need any spatial overlap between the images. Once the
images are spatially aligned the pixel intensities in the overlapping regions are determined using fusion
algorithms such as average fusion (AVG) and maximum fusion (MAX). However, averaging generally
results in reduced contrast while maximizing results in amplification of noise artifacts in the fused image.
Wavelet fusion (WAV) overcomes these issues by selectively enhancing the low-frequency components in
the image, but this could result in pixelation artifacts. We propose a new method for image fusion based
on a generalized random walker framework (GRW) using ultrasound confidence maps. The maps are based
on: 1) focal properties of the transducer and 2) second order image features. The fusion technique was
validated on image pairs sampled from 3-DUS volumes acquired from six healthy volunteers. All the
images were spatially aligned using optical tracking, and the fusion algorithm was used to determine the
pixel intensity in the overlapping region. Comparisons based on quantitative measures showed statistically
significant improvements for GRW (p < 0.01) when compared to AVG, MAX, and WAV for contrast-to-
noise ratio: 0.85± 0.03, signal-to-noise ratio: 7.42± 1.98, Wang–Bovik metric (Q0): 0.80± 0.15. The
Piella metric (Q1): 0.82± 0.01 also gave higher values for GRW, but the difference was not statistically
significant. Upon visual inspection, the GRW fusion had the lowest amount of stitching and pixelation
artifacts. The fusion technique proposed could help in improving the diagnostic accuracy and clinical
acceptance of 3-D echocardiography.

INDEX TERMS 3D echocardiography, multiview fusion, random walker, ultrasound confidence maps,
optical tracking.

I. INTRODUCTION
Three-dimensional (3D) echocardiography provides accu-
rate, high-quality visualization of the heart and is com-
monly used for volumetric measurements such as the
left ventricular (LV) ejection fraction [1]. Relative advan-
tages of 3D echocardiography compared to 2DUS are well
established [1]–[4] especially for volumetric analysis of
aneurysms [2], [3] where 2D model based approaches usu-
ally are less accurate. 3D echocardiography also offers

benefits in terms of operational cost and equipment
complexity when compared to cardiac magnetic reso-
nance (CMR) imaging.

A major limitation of 3D echocardiography is its lim-
ited field-of-view (FOV) which is caused due to limita-
tions in physical dimensions of the transducer and lack
of an ideal sonographic window. These limitations can
reduce the clinical applicability of 3D echocardiography as
it deprives the clinician of a complete 3D view of the heart.
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Consequently, attempts to fuse multiple cardiac images
obtained at different scanning angles have received con-
siderable research interest. Image fusion approaches in
echocardiography are mostly based on either image
registration [5]–[10] or sensor tracking [11]–[14].

Echocardiography volumetric data can be fused using
image registration provided there is sufficient overlap
between the constituent images. However clinical images of
the heart such as the apical and parasternal views that contain
complementary information are spatially far apart. In such
cases, the requirement of substantial image overlap limits the
extent of FOV improvement. Sensor-tracking based fusion
techniques [11]–[14] overcome this limitation by tracking
the ultrasound probe in 3D space and using this informa-
tion for spatial alignment. Tracking based approaches also
have the additional advantage of being independent of image
resolution.

Once the images are spatially aligned, the next step is
to determine the image intensity of the fused image in
overlapping regions. The intuitive approach of averaging
the pixel intensities would result in poor contrast (as image
boundaries get blurred in the composite image). On the other
hand using the maximum intensity has the disadvantage
of the maximizing noise artifacts (such as speckle noise).
Multiscale decomposition (MSD) techniques using wavelets
have been proposed to overcome the issues mentioned
above. Rajpoot et al. [7] extended 3D wavelet-based fusion
to echocardiography images. In their work images from
multiple views were initially registered using a rigid registra-
tion technique and then decomposed into multiple-frequency
sub-bands. Then the low-frequency components were maxi-
mized, and high-frequency components were averaged. This
ensured high-frequency noise suppression while preserving
the speckled nature of the image. Punithakumar et al. [12]
proposed a likelihood estimator based approach for wavelet
fusion wherein each pixel was weighted based on the local
image intensity in the neighborhood. Variants of the wavelet-
transforms such as contourlets [15], curvelets [16], complex
wavelets [17], [18] and beamlets [19] have also been pro-
posed. One limitation of transform based techniques (such
as wavelets) is the presence pixelation artifacts which might
distort small details in the fused image. Pixelation occurs
due to decimations involved in the wavelet transform and
translation dependence of standard wavelets [20]. As an
alternative, variational approaches such as [21] have been
proposed. These approaches are based on optimizing an
energy-functional and usually involve continuous optimiza-
tion which is computationally expensive. Computational cost
and time can be considerably reduced by using discrete
optimizations techniques such as graphs cuts which are
very popular in image segmentation, smoothing and stereo
vision. Miles et al. [20] used Graph cuts to fuse computed
tomography (CT) and magnetic resonance (MR) images
of the spine. They formulated image fusion as a multi-
label optimization problem using alpha expansion. Discrete
optimization can also be done using random walker (RW)

formulations [22], [23] which offer two advantages:
1) it reduces the chance of small cuts for labels with a
small boundary cost; and 2) it provides a confidence rating
of each pixel’s membership in the segmentation. A gener-
alized RW formulation was proposed by Shen et al. [24]
for fusing multi-exposure camera images. To the best of
our knowledge, discrete optimization techniques have not
been used for echocardiographic images to date. In this
paper, we propose a generalized RW formulation (GRW)
for multi-view ultrasound image fusion using ultrasound
confidence maps (UCM). UCMs have been used to provide
pixel confidence estimates for applications such as shadow
detection, 3D freehand ultrasound reconstruction and multi-
modal image registration [25]. The probability map proposed
in this paper is different from Karamalis et al. as we 1) define
pixel probability as inverse weights for floating nodes based
on distance from the focal point of ultrasound transducer,
and 2) we use second-order image features to estimate the
presence of tubular structures such myocardial boundaries
and leaflets based on the filter developed by Frangi et al. [26].

FIGURE 1. Schematic representation of the proposed echocardiography
fusion system using optical tracking system for spatial alignment and
generalized random walker for final image intensity computation.

II. METHODOLOGY
An overview of the proposed image fusion technique is shown
in Figure 1. As shown in the figure, we align the individ-
ual ultrasound volumes based on the positional information
obtained from the optical tracking system.The position and
orientation of the ultrasound probe were tracked using an
Optitrack (NaturalPoint, Corvallis, OR, USA) optical track-
ing system which had sub-millimeter precision. Our method
allows six degree of freedom (6 DOF) which captures trans-
lational and rotational components. As an initial calibration
the position of the ultrasound probe w.r.t a global coordinate
system was obtained by scanning the probe using a laser
scanner (Kreon Technologies, Limoges, France), which was
calibrated to an expected accuracy of 57 µm. The spatial
transformations required to align the image were computed
using the approach mentioned in Punithakumar et al. [12].
Upon obtaining spatially aligned images, we formulate image
fusion as an RW optimization problem and introduce pixel-
wise information as a UCM. The UCM assigns higher
confidence values to pixels that are closer to ultrasound
focus and closer to transducer axis. The confidence values
are also increased based on the presence of second order
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(ridge-like) features. The formulations for the GRW and
UCMs are described below.

A. ULTRASOUND CONFIDENCE MAPS (UCM)
TheUCMgives a pixel-wise likelihood estimate ranging from
0 to 1 based on the location and neighbourhood information
of the pixel. We define UCM, Ui, as follows:

Ui = (df ,i + da,i) exp (−αdo,i) exp (−βFi) (1)

where d represents the distance of point i from the focal
point f , nearest point to the axis of the transducer a and
geometric center of the transducer array o. These are defined
using a L2-norm such that:

df ,i =
∥∥i− f ∥∥2

da,i =
∥∥i− a∥∥2

do,i =
∥∥i− o∥∥2 (2)

Fi is a vesselness function computed based on eigen value
decomposition [26]. Using eigen values (λ1, λ2) of the
Hessian matrix H we define Fi as:

Fi =


0 if λ2 > 0

1− exp
(
λ1

λ2

)
+ exp (λ1 + λ2) if λ2 < 0

(3)

The Hessian matrix H is computed as the convolution of the
image I over the second order derivatives of a Gaussian filter
bank G which can be written as:

G(x, s) =
1
2π

s2 exp
(
−
‖x‖2

2s2

)
(4)

The term s represents the scale of the Gaussian filter, and it
was empirically set to 2. Similarly, the two free parameters,
α and β, were empirically chosen for the entire dataset.

B. GENERALIZED RANDOM WALKER FORMULATION
FOR MULTIVIEW IMAGE FUSION
The RW approach formulates fusion as a multi-labeling prob-
lem. For a set of n images coming from multiple views
M = {I1, . . . , In} and set of labels L = {l1, . . . , ln} corre-
sponding to these views, RW algorithmfinds the probability p
of each pixel in the fused image having a label l ∈ L. Note
that we assume the images to be either registered or aligned
by tracking such that there is a one-to-one correspondence
between the pixel intensities in each image. The pixel inten-
sity in the fused image gfi can be calculated as the average of
the pixel intensities from the individual views gki weighted by
their probability pki .

gfi =
1
n

n∑
k=1

gi × pki (5)

The set of pixels in fused image F and corresponding
labels L are represented by nodes on an undirected graph
G = (V ,E) where V = (F ∪ L) and E = F × L. The
RW formulation finds the probability that a random walker

starting from an image node Vf ∈ F reaches a particular label
node Vl ∈ L. The weights for the image edges and label edges
are represented by ωij defined as:

ωij =

{
exp (−(gi − gj)) ∀j ∈ F
exp (−(l − Ui)) ∀j ∈ L

(6)

where Ui is the pixel probability of pixel obtained from
the UCM. A schematic representation of a node in the GRW
formulation is shown in Figure 2.

FIGURE 2. Schematic representation of diagonally connected
neighbourhood of a node in the GRW formulation.

Based on the equivalence of RW formulation and electri-
cal networks described by Grady [23], we denote the node
potential of vi ∈ V as u(vi). The total energy of the network
can then be described in terms of a quadratic functional of the
edge weights as:

E =
1
2

∑
(vi,vj)

ωij
(
u(vi)− u(vj)

)2 (7)

Grady [23] has shown that any harmonic function can
minimize the energy functional in (7). This harmonic function
can be efficiently computed using the Laplacian matrix L
which represents the edge weights as:

Lij =


di if i = j
ωij if (i, j) ∈ V

0 otherwise

(8)

The Laplacian matrix L can be rearranged using upper
triangular matrices LL , LX andR as:

L =
[
LL R

RT LX

]
(9)

As shown by Shen et al. [24], the solution to the combinatorial
Dirichlet problem in (7) can be solved by rewriting (7) in
matrix form as :

E =
(
uL
uX

)T [ LL R

RT LX

](
uL
uX

)
(10)

where uL = (u(l1) ...u(lk )) represents the label nodes and
ux = (u(x1) ...u(xN )) represents the image nodes.The min-
imum energy solution of (7) can be obtained by setting
∇E = 0 in equation (10) and solving for :

LXuX = −RT uL (11)
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The estimated contribution pki of an individual view k for a
pixel location i can be found by solving k such combinatorial
formulations.

The ultrasound image acquisition setup and quantitative
metrics used for evaluation are explained next.

C. DATA ACQUISITION
In this study, we acquired 18 three-dimensional ultra-
sound (3DUS) volume pairs of echocardiography data from
6 healthy volunteers. All sequences were acquired on a
Philips iE33 ultrasound scanner (Philips Healthcare, Best,
The Netherlands) using an X3-1 matrix array transducer.
The protocol was approved by the Health Research Ethics
Board of the University of Alberta, and informed consent was
obtained from all volunteers. Volume rates were varied from
7 to 34 per cardiac cycle. Each 3DUS volume constituted
of 176 × 176 × 208 pixels with resolutions in the range of
(74 × 74 × 63) to (85 × 85) mm in x, y, and z coordinate
directions, respectively. During scanning, the ECG from the
ultrasound scanner was transmitted and read using an NI
USB-6009 digitizer. We also developed a software module
to detect the R-wave using LabVIEW so as to ensure that
volumes correspond to similar points in the cardiac cycle.
A test data set of 60 2D images was randomly sampled from
the 3D volumes for quantitative evaluation.

D. METRICS FOR QUANTITATIVE EVALUATION
OF IMAGE FUSION
In this study, we compared four fusion techniques -
average fusion (AVG), maximum fusion (MAX), wavelet
fusion (WVL) and GRW fusion - using quantitative met-
rics. We used four metrics for comparison - signal to noise
ratio (SNR), contrast to noise ratio (CNR), Wang-Bovik met-
ric (Q0) [27] and Piella metric (Q1) [28]. These metrics are
calculated as follows:

SNR =
µMY

µBP
(12)

CNR =
(µMY − µBP)

µBP
(13)

The subscripts MY and BP refer to myocardial and
blood pool regions selected around the contours as shown
in Figure 3. The terms µ and σ 2 represent the mean and
variance of pixel intensities in the region.

In order to quantify the amount of features retained in
the fused image, we computed the Wang-Bovik metric (Q0)
and Piella metric (Q1). To calculate the Wang-Bovik metric,
a reference image R was chosen from the individual views v1
and v2 based on the segmentation masks. Given a reference
image R and fused image F the Wang-Bovik metric can be
calculated as:

Q0 =
4σRFµRµF

(µ2
R + µ

2
F )(σ

2
R + σ

2
F )

(14)

For the Piella metric Q1, we define a saliency feature η(w)
over a window w based on the ratio of mean to standard

FIGURE 3. A few examples of manual segmentation on individual slices
delineating the myocardial boundary and leaflets. Corresponding views
are shown pairwise in figures (a) and (b), and figures (c) and (d).

deviation:

η(w) =
µ1/σ

2
1

(µ1/σ
2
1 )+ (µ2/σ

2
2 )

(15)

Then, the Piella metric can be calculated as:

Q0(v1, v2,F) =
1
‖W‖

∑
w∈W

(
η(w)Q0(v1,F)

+ (1−η(w))Q1(v2,F)
)
(16)

III. RESULTS
The images obtained in this study were spatially aligned
using optical tracking. TheGRW fusion algorithmwas imple-
mented in Matlab version 8.6 (R2015b). The execution time
for the algorithm was less than 10 seconds per ultrasound
image while running on a 3.2 GHz CPU. We manually seg-
mented the myocardial boundary and leaflets, examples of
which are shown in Figure 1. The SNR and CNR were cal-
culated by comparing the pixel intensities inside the mask to
pixel intensities in the immediate neighborhood. A reference
image Iref was created using the segmentation masks (shown
in Figure 3) which was then used to compute theWang-Bovik
metric Q0. Similarly to compute the Piella metric Q1 we
defined a saliency feature based on the signal-to-noise ratio
inside the segmentation masks. An example of the image
fusion is shown in Figure 4. The GRW fusion gave signifi-
cantly higher values for all four indices, and it did not have
pixelation artifacts in the fused image since the approach does
not involve transformation (as shown in row 2 of Figure 4).
GRW fusion also considerably reduced the stitching which
can be clearly seen in other fusion techniques.

The quantitative indices - CNR, SNR, Q0, and Q1 for a
dataset of 60 images fused using each of the techniques is
compared in Table 1. GRW gave higher values for all indices
calculated. The differences for all matrices were statistically
significant (at p < 0.01) when analyzed using a paired t-test
for CNR, SNR, and Q0.

The color map shows high probability pixels in blue
and low probability in red. As shown in Figure 5, pixels
corresponding to the cardiac structures were assigned to a
higher probability (dark blue) in the UCM. The impact of
the free parameters α and β on the ultrasound confidence
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TABLE 1. Comparison of quantitative indices for various fusion methodologies, values are represented as mean ± standard deviation. GRW fusion
yielded the best value for all quantitative measures.

FIGURE 4. First row: Fused image slice from various fusion techniques
(a) AVG (b) MAX (c) WAV and (d) the proposed GRW, second row:
Magnified view showing the left-ventricle (LV), right-ventricle (RV),
mitral valve, septum and lateral-wall of the heart. Note the imaging
artifacts shown by the asterisk (*) in row 2b and c are considerably
reduced in GRW fusion.

FIGURE 5. Examples of slices from the fused image volume shown
row-wise, first row: (a), (b) individual views of heart and corresponding
probability maps (c), (d), Effect of free parameters on the UCM is
illustrated in rows 2-3, which show variation of and respectively.

map was also studied. As shown in Figure 5, increasing the α
value resulted in shrinking the focal region (shown in blue).
Similarly, when the β value was increased, small echogenic
structures were assigned to higher probabilities in UCMs
resulting in a grainy pattern. As shown in Figure 5 optimal
performance was obtained for α = 1 and β = 2.

IV. DISCUSSION
In order to optimize the image quality of fused echocar-
diography datasets, we proposed a GRW formulation using
UCMs. Senor based fusion is a two-step process involving

1) spatial alignment of images and 2) finding the optimal
image intensity of each pixel location in the fused image.
The spatial alignment determined using sensor position is
independent of image-overlap and image quality. In non-
overlapping regions of the fused image the image intensity
from the single view is retained. The proposed GRW formu-
lation determines the optimal pixel intensity in overlapping
regions of the fused image, and it was tested with datasets
from volunteers for the first time. Main advantages of the
proposed technique, when compared to existing techniques,
are that it accounts for pixel neighborhood intensities and
ultrasound transducer characteristics (via the UCM).

The performance of the proposed fusion technique was
evaluated using CNR, SNR, Wang-Bovik metric (Q0) and
Piella metric (Q1). While CNR and SNR indicated image
quality, Q0 and Q1 indicated the amount of relevant infor-
mation preserved in the fused image. Compared to other
commonly used fusion techniques such as AVG, MAX, and
WAV, the GRWgave higher values for all four quality indices:
CNR, SNR, Q0 and Q1. Also as demonstrated in Figure 3
the fusion technique does not result in pixelation artifacts
since the approach does not involve transformation. We also
observed only a small number of stitching artifacts in the
GRW fusion when compared to AVG fusion where the effects
of stitching were apparent.

The proposed provides an ideal framework to seamlessly
integrate the various transducer characteristics such as focus-
ing as well as image features into the fusion algorithm. The
UCM provided a confidence estimate for each pixel in the
fused image, and these probabilities were used as label-edge
weights. As this formulation leaves the lattice structure of
the RW formulation intact, we could use the optimization
schemes mentioned by Grady [23]. Since cardiac structures
such as leaflets and the myocardial boundaries are seen as
echogenic tubular structures, the UCM assigned higher prob-
abilities to these structures.

Fusion methods have been proposed to overcome some
of the major hurdles which limit the more extensive use
of 3D echo: the limited FOV and the limited image quality
in many patients. Over the last years, progress has been
made to develop techniques to accurately align 3D datasets
obtained from different positions on the chest. Recently our
group has reported a technique using optical tracking which
was used in this study to obviate the need for image overlap
between individual views and is also independent of image
resolution. This is beneficial in echocardiography as the ultra-
sound image volumes usually have high levels of speckle
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noise. We were also able to fuse image volumes obtained at
large angular separation such as parasternal and apical views
of the heart which usually contain complementary informa-
tion [13]. The generalized random walker framework (GRW)
using ultrasound confidence maps (UCM) is another step
towards a clinically applicable 3D echocardiography fusion
method.

The ultrasound scanning takes ≈ 5 seconds per volume
for a 4–beat acquisition but varies with the patients anatomy.
During the study, parasternal and apical views were acquired
within single breath-holds (within 10 to 15 seconds) as well
as multiple breath-holds (15 to 20 seconds). The optical
tracking runs simultaneously and does not introduce any
additional delay. The post-processing time was≈ 10 seconds
per image. However, in order to fuse an entire cardiac cycle
(with ≈30 frames), the algorithm might take a more signif-
icant amount of time in which case GPU computation tech-
niques would have to be developed. In this study, we used data
sets with large variations in volume rate (7 to 34 per cardiac
cycle). The low volume rates correspond to single breath-
holds and the higher volume rates correspond to multiple
breath-holds. We did not notice any difference in the quality
of fusion in both cases which illustrates the robustness of the
approach. Usually low-volume-rate data sets are not used for
clinical measurements (such as ejection fraction) due to poor
temporal resolution.

Although the fusion technique has been tested for cardiac
images, it could be extended to other organs like the carotid
artery, aorta, and 3-D fetal femur. Further, there are no lim-
itations on the number of views that can be fused. However,
we found that two spatially-apart views were sufficient to
cover the entire LV boundary.

One limitation of our study is that it was conducted on a
small number of subjects all of which were healthy volun-
teers with relatively good acoustic windows. We have only
acquired still frames at breath-hold and effect of free breath-
ing has not been examined. An extension of this study to a
more substantial number of subjects including patients with
heart disease is planned as a future work. Note that in this
case, the advantage of the FOV improvement could be more
apparent.

On the technical aspect of limitations, the optical track-
ing is restricted to line-of-sight [12]. During the experiment
we determined the optimal position of multi-camera system
inside the scanning room so as to minimize the line-of-sight
issue. In a separate study, we have examined the feasibility
of magnetic tracking on dynamic heart phantom [14], and
in future, we plan to test the magnetic tracking on healthy
volunteers. One of the limitations of all the fusion techniques
described (including ours) is that fast moving structures such
as valves could be duplicated in the fused image. Our future
work would aim to extend the proposed RW formulation to
3D so that we could fuse complete 3D volumes instead of
individual slices thereby accounting for pixel information in
the all three dimensions. By extending the RW formulation
to 3D we would also be able to fuse full loops of ultrasound

images which would be beneficial in visualizing moving
structures.

V. CONCLUSION
A new approach for echocardiography image fusion based
on generalized random walker formulation was introduced in
this paper. The new method was able to incorporate trans-
ducer characteristics and image features into the fusion and
showed higher values for various image quality metrics than
other commonly used fusion approaches. The fusion tech-
nique also reduced pixelation or stitching artifacts. We expect
that this technique could add substantial value to diagnostic
echocardiography and we suggest further studies in patients.
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