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ABSTRACT Robotic soccer games, which have become popular, require timely and precise decision-
making in a dynamic environment. To address the problems of complexity in a critical situation,
policy improvement in robotic soccer games must occur. This paper proposes an adaptive decision-
making method that uses reinforcement learning (RL), and the decision-making system for a robotic
soccer game is composed of two subsystems. The first subsystem in the architecture for the proposed
method criticizes the situation, and the second subsystem implements decision-making policy. Inspired
by the support vector machine (SVM), a situation classification method, which is called an improved
SVM, embeds a decision tree structure and simultaneously addresses the problems of a large scale
and multiple classifications. When a variety of situations that are collected in the field are classified
and congregated into the tree structure, the problem of local strategy selection for each individual
class of situations over time is regarded as a RL problem and is solved using a Q-learning method.
The results of simulations and experiments demonstrate that the proposed method allows satisfactory

decision-making.

INDEX TERMS Robotic soccer, support vector machines, reinforcement learning, Q learning.

I. INTRODUCTION

As multi-agent systems (MAS), robotic soccer games have
recently become a popular means for the study of multi-
agent technologies, such as cooperation, collaboration, and
coordination [1], [2]. In a coordination process, each agent
taking assignments in a team must cooperate with others
while facing competition [3], [4]. In robotic soccer games,
a decision-making system must deal with a variety of sit-
uations in confrontation and be able to adjust its strategies
adaptively to achieve the purposes of coordination [5]. In [6],
the decision-making system for a robotic soccer game is com-
posed of two subsystems: a situation classification (SC) and
a strategy selection (SS). The SC evaluates uncertain envi-
ronmental information and situations that agents encounter.
The SS selects an appropriate strategy for a certain situations
classified by the SC. Many methods have been proposed for
the implementation of the SC mechanism. Expert systems

can evaluate situations and has been widely utilized [7], [8],
though their performance depends heavily on expert knowl-
edge of robotic soccer games. Besides, it is difficult to acquire
sufficient domain knowledge in a dynamic environment.
Some methods to increase the capacity of expert knowledge,
such as fuzzy decision trees [9] and self-organizing fuzzy
decision trees [10], are also used. These methods combine a
fuzzy logic with a decision tree’s structure to render the pro-
cess of the SC that is more similar to human manners. These
methods have problems such as the need for huge amounts of
memory and slow generation speed. Some variants of artifi-
cial neural networks are feasible alternatives, such as fuzzy
neural networks (FNN) [11], wherein the neural network is
combined with fuzzy logic to realize a more intelligent SC.
However, an accurate SC requires sufficient training sam-
ples and the parameter adjustment process is complicated.
As demonstrated in [12], an incremental learning algorithm
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with an SVM has a good performance in generalization,
because it does not depend on all the training data, but a subset
named support vector.

A Bayesian network is used in SS methods [13]. The
Bayesian network is sensitive to a priori knowledge. Nev-
ertheless, it is difficult to acquire knowledge beforehand
and the method may perform poorly when an agent is in
a dynamic environment. Reinforcement learning (RL) has
become more commonly used in SS [14]. For example,
in [15], a multi-strategy decision-making system with RL
is proposed for robot soccer games. A better action can be
granted after an iterative learning process. Recently, methods
combining RL and deep learning are popular for decision-
making. Agents with deep RL can learn the optimal policy
by a manner of end-to-end learning similar to the way of
human learning [16]. For learning in different situations,
the method proposed in [17] can achieve adaptive decision-
making. It also has many advantages, such as adaptability,
robustness, and versatility. In many RL problems, however,
a large state or action spaces results in an infeasible value
function estimation. Therefore, combining the neural network
with RL is an effective scheme that has been proposed to
solve this problem [18], [19]. In the combination, the neural
network approximates the value function. But its learning
speed is slow and the performance in local generalization is
poor in online learning. It has some limitations in practical
applications.

This paper elaborates the state space modeling of a robot
soccer system. For representation of dynamic operations,
high abstraction is defined as several factors constituting of
the dimensions of the state space to accommodate the char-
acteristic of a hybrid system such as the robot soccer games.
The obtained unified state space representation allows the
efficient and accurate dynamic operations of the entire hybrid
system working under dynamic and static conditions. More-
over, this paper proposes an RL decision-making method
based on a tree structure where each leave is a state classified
by a multi- classification technique. Based on the aggregated
state space, a model-free RL method, Q-learning, is applied
to a robotic soccer game [14]-[16]. Prior to execution of
Q-learning, an improved support vector machine (ISVM)
with a particle swarm optimization algorithm (PSO) for
classification, named PSO-SVM, is proposed to construct a
decision tree as the state space for RL [20]-[22]. With the
ISVM, its situation evaluation result is close to the actual
condition in robotic soccer games, the accurate and timely
situation evaluation is the necessary guarantee for efficient
strategy selection. When a variety of situations collected in
the field are classified and congregated into a tree structure,
the problem of local strategy selection for each individual
class of situations over time is regarded as an RL problem
and is solved using Q-learning [23]-[26]. With the RL, the
adaptive strategy selection can be achieved. Because of its
adaptivity, it is usually preponderant robotic soccer games.

This paper is arranged into four sections: Following
the introduction, the decision-making method is presented

VOLUME 6, 2018

in Section II. The SC subsystem classifies situations in a
continuous domain into a discrete state space using the
ISVM. The SS subsystem selects a specific strategy using the
adaptive decision-making algorithm with RL (ADMA-RL).
To illustrate the performance of the proposed method, com-
parisons between the proposed method and competitiors in
simulations and experiments are demonstrated and discussed
in Section III. Section IV presents the conclusion.

Il. THE ADAPTIVE STRATEGY DECISION METHOD

FOR ROBOTIC SOCCER

To address decision-making problems in a dynamic environ-
ment, such as in a robotic soccer game, this paper proposes
an adaptive decision method, where the ISVM is used to
collect and classify the environmental situational information
that is constituted by the defined evaluation factors and the
ADMA-RL chooses the proper strategy adaptively.

A. A SITUATION CLASSIFICATION BASED ON ISVM

In robotic soccer, situations change and diversify so dynam-
ically that an SC method with an SVM is proposed to
assess the robot’s ability to control the ball [27]. In general,
an SVM constructs a hyper plane that is used for classifi-
cation, regression, or other tasks [28]. Intuitively, good sep-
aration is achieved by the hyper plane that has the largest
distance to the nearest training-data point for any class (the
so-called functional margin), since the greater the margin,
the less is the generalization error for the classifier. Assum-
ing that there is a training dataset of k points of the form:
x1,y1), - - ., (X, yx) where x; is m dimension’s vector and y;
are either 1 or —1, each y; indicates the class to which point,
X;, belongs. As shown in Fig. 1, the maximum-margin hyper
plan” must be found to divide the group of points, x;, for
which y; = 1 from the group of points for which y; = —1,
which is defined so that the distance between the hyper plane
and the nearest point, x;, from either group is maximized.

Margin = 2/||w||

Hyper plane

FIGURE 1. The hyper plane for the SVM.

While the optimal hyper plane is being determined, any
hyper plane can be written as the set of points, x;, that
satisfies:

wxX;+b=0 ()

where w is the (not necessarily normalized) normal vector to
the hyper plane. The parameter, b/||w||, determines the offset
for the hyper plane from the origin along the normal vector,
w, X; denotes the input vector.
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Using the criterion for the maximum-margin hyper plane,
the optimization problem for the SVM can be rewritten as:

N
minimize : % xwlw+C Z i
i=1

subject : yi(xp*w +b) > 1 —and & > 0

(@)

where ¢; is a slack variable, C is the weight of outliers.
Using the trained weight vector w, the classification func-
tion for the SVM is

f(x) =sgn(w*xx+b) 3)

A SVM makes a judgment for the current situation in the
game by learning and it avoids over-learning, a dimensional
disaster, or local minima [28]. In the SVM for this paper,
an inseparable plane is mapped into a high dimensional plane
using a kernel function [29]. However, a traditional SVM
has disadvantages when large-scale data must be classified
and when there are multiple classifications, but the proposed
ISVM performs well to a multi-classification problem for
large-scale data in dynamic environments. The SC is executed
using an ISVM that has ng descriptions of the environment.

B. DATA PREPARATION - THE DEFINITIONS
OF EVALUATION FACTORS
During learning tasks, different high-level factors have a
trade-off, in terms of rewards and penalties, such as minimiz-
ing the amount of time and effort that is spent on a task while
maximizing the performance, in terms of the amount of time
required. To describe a reward function in a task, the factors
that matter for task completion must be decided exactly, and
each of the factors’ contribution to the reward must also be
described exactly. In other words, the definitions of factors
eventually constitute the dimension of the feature space in
classification as well as the state space in RL [30]. These
factors are referred to as environmental state features or just
features. Using expert knowledge and experience, several key
factors for situations in a robotic soccer game can be defined
for decision- making. The factors are categorized as global
and local factors.

Factor 1: Current score difference:

S =5 _s! @)

where S!, denotes the user’s current score and S/, denotes the
opponent’s current score.
Factor 2: Remaining competition time normalization:

77l = (Tmax — 1)/ Tmax (5)

where Thax denotes the longest time slice number for one
competition and ¢ denotes the time that the current game has
run.

Factor 3: Ball position, X':

To a certain extent, the ball’s position determines the cur-
rent decision. If the ball is in the opponent’s penalty area, an
aggressive strategy is taken; if the ball is in the user’s penalty
area, a defensive strategy is chosen to avoid losing the ball.
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Factor 4: Ball approaching time difference:

A = tah — 4o (6)

where 4, denotes the fastest time taken to control the ball and
14, denotes the fastest time taken for the opponent to control
the ball. This fastest time is calculated using the position of
players.

Factor 5: Number difference of both offensive robots:

nA = NAp — NAp (7)

where ny;, denotes the number of the user’s offensive
robots. na, denotes the number of the opponent’s offensive
robots. The offensive robots indicates robots which have
offensive capability. All robots have an offensive capability
only within a certain range of the ball. This range is derived
using actual match experience.

Factor 6: Distance difference between the ball and the both
offensive robots:

da = dan — dao (3

where dy4; denotes the average distance between the user’s
offensive robots and the ball, i.e. dap = Y ;2" di/nan where
d; denotes the distance between the ball and the user’s
i offensive robot; dy, denotes the average distance between
the user’s offensive robots and the ball, ie. ds, =

Zj"i’i d;j/na,, where d; denotes the distance between the ball

and the opponent’s i’ offensive robot.

Factor 7: The difference in the number of robots on both
sides of the ball:

np = npp — NBo (9)

where np;, denotes the number of the user’s robots on both
sides of the ball and np, denotes number of the opponent’s
robots on both sides of the ball. The first two are regarded as
global factors and the others are local factors.

In other words, the current score difference, the remaining
competition time normalization, the ball position, X?, the ball
approaching time difference, t4, the number difference of
both offensive robots, n4, the distance difference between the
ball and the both offensive robots, d4, and the difference in
the number of robots on both sides of the ball, np, are selected
as features to represent a variety of situations occurring in the
field.

Simulated experiences are collected in a simulation plat-
form initially and the situation labels for all data are marked
empirically according to the playback.

Because every feature has different dimensions, standard-
ization is necessary. Max-min standardization is used as stan-
dardization method. Assure miny, maxs are the minimum
value and the maximum value of a feature, A, respectively.
The standardization is executed by:

Vi = (v; — ming)/(maxa — mina) (10)

The value v; of feature A is mapped to the range
of [0, 1].
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Because data collected from the game field is nonlinearly
separable, a kernel function is used to transform the data
to another linear separable space. The selection of kernel
function is important. Thus, A Radial Basis Functions (RBF)
is selected as the kernel function for this paper [31].

In an SVM model, the penalty parameter, C, and the ker-
nel parameter, y, are important. The penalty parameter, C,
describes the tradeoff between the ratio of the sample for error
classification and the complexity of the algorithm. In terms
of the choice of the penalty parameter, this paper uses a grid
search method [32].The Gaussian kernel function is taken as
an example and one set of parameters are chosen, such as
C={271929 ),y =212 .2 29 In this
way, C and y constitute a two-dimensional grid. The data is
trained and tested with every combination (C, y) using the
ISVM and the accuracy of the results for every combination
is recorded. The combination with the highest accuracy is
chosen as the penalty parameter.

C. SITUATION CLASSIFICATION
The SC for a robotic soccer game is a multi-classification
problem with large-scale data. It includes situation sensing
and state aggregation. Vectors with the values of defined
factors representing the features of the game accommo-
date the sensory information on situation encountered. The
process of ISVM takes charge of state aggregation. For
large-scale data training, due to the limitations of computer
memory capacity, a conventional SVM cannot solve this
large-scale data problem. This paper proposes a training
method using a SVM, which uses a PSO algorithm to find
the optimal solution. To solve a multi-classification problem,
conventional methods, such as “1-a-1” and “l-a-r” [33],
have high training complexity and low classification accu-
racy. For a multi-classification problem, a multiple classifica-
tion method that uses a decision tree (DT) is proposed [34].

For a PSO, the feasible solution of the problem corresponds
to the position of a particle in the search space. Each particle
has an adaptive value that is determined by the objective
function and has a velocity vector that determines the position
of the particle at the next moment. The search process is
optimized using a group of randomly initialized particles in
an iterative way.

Assume that in the m-dimensional search space, there is
a population X = {X1, X3, ..., X} that has n particles. The
attribute of " particle and the state of i particle at time 7 + 1
are:

V);—H = v? + clrl(p§ —xl-’) + czrz(pi, — xf) (11)

D A (12)

where i € [1,n]; r; and rp are random numbers that are
uniformly distributed on the interval (0,1); ¢; and ¢ are
learning factors and ¢; = ¢3 = 2. pf is individual extreme
of i particle at time 7, Py is global extreme of the whole
population at time ¢. The principle for a PSO is shown in
Fig. 2.
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t+1

v

FIGURE 2. The principle of a PSO.

In essence, a SVM determines a support vector’s coeffi-
cient, which is a dual problem that is solvable using quadratic
programming algorithms, such as the Newton method or the
conjugate gradient method. These methods are limited by the
capacity of the computer and cannot solve this dual problem
for large data sets. This paper proposes a method that uses a
PSO to address this quadratic programming problem. Every
support vector corresponds to a particle in the PSO. The
process of finding a support vector’s coefficients is treated
as an optimization problem which is tackled by a PSO in this
work. As for the fault detection and diagnosis always seen in
the data process of support vector machines, the PCA-SVM
and Cross- Validation to discover the fault [35], [36] can
be applied to the support vector machines to alleviate the
influence of defects.

The steps for the realization of a PSO-SVM are shown in
Algorithm 1.

Algorithm 1 PSO-SVM

1. Definition
2. X' := the support vector set in the training sample set
3. X :=thewhole particle population, which consists of X’
4. Tmax := the maximum number of iterations
5. T := the global position threshold
6
7
8

F(x) := the fitness function
F!(x) := the fitness value of i"
. Initialization
9. 1 <Initial parameters for particle swarm;
10. ¢ <« Initial parameters for particle swarm;
11. v <«Initial velocity matrix;
12. p; <Initial optimal position for i particle;
13. p, <Initial global optimal position;
m
14. F(x) < + > (fi — vi)?
15.1t < 1; =l
16. Repeat r + +
17. calculate the fitness value F}(x) of i particle by F(x);
18. compare p; and p, with F f (x), update p; and pg;
19. update the state of the whole particle population by
(1D12)
20. obtain a new set of parameters in SVM
21.until t > Tppax or Py > T

A decision tree classifier is also known as a multistage clas-
sifier. It uses a binary tree classifier to transform a complex
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SVM

[ Classl | [ SVMI1 |

[ Class2 | [ SVM2 |

[ Class3 | [ SVM3

[ Classd | [ =eeee

FIGURE 3. The architecture for the DT-SVM.

multi-classification problem into several simple classification
problems. The architecture for a decision tree is used for a
SVM (DT-SVM), as shown in Fig. 3. For a multiple-class,
K(K > 2) classification question, this algorithm constructs
K-1 two-class classifiers in the training stage. The samples
for the m"” classifier consist of sample subsets that have a
classification label. Changing the sample label for a class
by +1 changes the label for the other classes by -1.

i =m) (13)

R +19
Yi= -1, i>m

According to (3), the decision function of m™ SVM
classifier is:

m
fn@) = sgn(Y " o'y K (" * x) + b™) (14)
i=1
For unknown samples, the decision output value in each of
the two classes of the SVM classifiers is calculated to make
classification decision using (15).

mfle) =f2x) =...=f"1x) = -
feo)= ) =+1 (15)
Kl =20 =... =8 1) = -

With the structure of decision trees, the robustness of the
ISVM is improved further. For unknown samples, we can use
formula (15) to provide its category value.

The process that uses a decision tree [21] and
PSO-SVM for a multiple-classification question is shown
in Algorithm 2.

Algorithm 2 ISVM

1. Definition

2. T :=training the sample set
3. K := the number of environment descriptions
4. T, = the m™ positive samples set
5. fm(x) := the decision function for m™ classifier
6. m<1;
7
8

Repeat m + +
The m™ class samples are selected from T as positive
samples set Ty,

9. The remaining samples form negative set 7' — T},

10. Utilize PSO-SVM to train on set 7' and obtain the f;,,(x).
11. T« T-T,

12.untilm > K — 1
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FIGURE 4. The architecture for reinforcement learning.

D. ADAPTIVE DECISION-MAKING ALGORITHM
USING RL (ADMA-RL)
Reinforcement learning is a machine learning algorithm that
is used to determine an optimal action-selection policy for
a Markov Decision Process (MDP) [26]. In this algorithm,
agents interact with the environment and select a specific
action for a specific state. A trial-and-error method is used
to gather experience and to train the policy. A policy is a rule
that a learning agent follows to select possible actions for the
state in which it finds itself. When the policy has been learnt,
agents use it to make a series of optimal action sequences to
achieve the goal. The process for agents interacting with the
environment is shown in Fig. 4. An agent perceives the cur-
rent state, s € S, from the environment and makes a decision
action using the learnt policy. S is the state set and A is the
action set. When the agent takes an action, a, a state transition
occurs from s to s’. A reward, r, is used to evaluate whether
the action is good. If an implicit or explicit reward function
induces a good reward, the agent strengthens the possibility
of the selected action and vice versa. Q-learning, which is
a model-free action-dependent heuristic dynamic program-
ming method, does not require knowledge of the plant model,
but utilizes experience that is derived from on-line state-
action data for the controlled system. Q-Learning is a model-
free reinforcement learning algorithm that is used to learn in
discrete Markov decision process environments. Q-Learning
allows learning agents to interact with the environment, even
though the learning agents have no prior knowledge. The
trial-and-error method is used to gather experience and to
train the action (decision) policy. When the policy has been
trained, the learning agent uses it to make a series of optimal
action sequences to achieve the goal. During the interaction,
as shown in Fig. 4, a Q-learning agent perceives the current
state, s;, from the environment when taking action a;. The
agent then gets the reward r,. The value of the state-action
pairs Q-value for the agent is then recoded. The Q-value is
updated by Eq. (16).

The update criterion for the Q-Value is:

Q'(s,a) = (1 =)0 (s, @) + a(r + y max 0~ '(s', &)
(16)

where (0 < o < 1) is the learning rate and y(0 < y < 1) is
the discount factor. When the agent has trained for a sufficient
number of episodes, the estimated Q-values approach the
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optimal values. The agent develops an optimal or a semi-
optimal policy using these approximated Q-values.

N A,
o g
N %
R % 5
/ T
One attacker

Two defender
Two assister

uondV:

One attacker
Three defender
One assister

One attacker
One defender
Three assister

FIGURE 5. The actions for strategy selection.

For an SC based on ISVM, there are ng states. For more
efficient decision-making, there are three actions, which indi-
cate different patterns of players’ roles, in a state that is
similar to a leaf in the decision tree, as shown in Fig. 5.

100 if get score
if lose score

K
r={100% (Y /mx? +my?
=1

K
- \/Oxiz +0y))/\JxE +yi  otherwise
i=1
(17)

The reward function is defined by three conditions: getting
a point, losing a point and a normal reward. Generally speak-
ing as formula (17).

Where ("x;, ™y;) is the coordinate of the user’s i robot
and K denotes the number of the user’s robots on the field,
(°x;, %y;) is the coordinate of the opponent’s i robot and K
denotes the number of the opponent’s robots on the field and
(xp, yp) is the coordinate of ball.

Semi-Markov decision processes (SMDPs) are used in
modeling stochastic control problems arising in Markova
dynamic systems [37]. A sojourn time in a state is defined
as the time cost by RL to transit from one state to the next
state and is a general random variable. In a state, the agent
may take a serial of similar actions before transiting into the
next state. Although the robot soccer game is regarded as an
SMDP, the intrinsic characteristic of Q-learning is a model-
free method which captures the environmental feedbacks by
physically interacting with the environment. In such a way,
the uncertainty resulting from modeling can be diminished
purposely in this case [38], [40]. The strategy that is used
in this paper is different to that for a traditional Q-Value
updating strategy, where

Orv1(8, ar) = Qr(sy, ar) +a(r +y I;laf( Oi(St41, Ar41))
t+
(18)
where s; represents the state in the r”* time slice; « is learning
rate; y is discount rate; and s;4+ is the next state of s; for
a; and r is immediate reward.

Assuming that in one epoch, the state, s,is transformed into
s’ after A learning cycle by the same actions as shown in Fig. 6,
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FIGURE 6. An illustrative diagram of a semi-MDP.

the action value updating strategy in this paper is:
Ora-1(s,@) = 151 +y max Q(s', a') (19)
a
Or+i(s,a) = rii + Y Qrtivi(s,a),0 <i <A =2 (20)

Qa5 @) = Q65 @) + (Y, Orsi [ = 045, )
@

The learning system is then executed and the correspond-
ing ADMA-RL is shown in Algorithm 3.

Algorithm 3 ADMA-RL

1. Definition

2. s, := calculated current state by ISVM

3. a; := current selected decision scheme with maximum
Q-value

4. Tmax := the maximum competition time

5. max() := finding the action with maximum Q-value
6. t < 1;

7. Repeat? + +

8 s; < discretizing_state_space;

9. r < reward_function();

10. a; < max(Q(s,a));

11. updating Q-value by (19)(20)(21);
12. until t > Thax

Ill. SIMULATIONS AND EXPERIMENTS

Comparisons are shown to demonstrate the efficiency of the
proposed method. Firstly, the parameters, C and y, in the
SVM are selected using a grid search method [32]. Then,
“l-a-17, “l-a-r” [33] and the ISVM are compared to demon-
strate that the ISVM has better classification accuracy and a
shorter classification time. In order to demonstrate the practi-
cality and efficiency of RL, the proposed AMDA-RL is tested
using a robotic soccer platform. A decision-making method
that uses a fuzzy neural network (DM-FNN) [11], a decision-
making method that uses a Bayesian SOM neural network
(DM-BSOM) [39] and a decision-making method that uses
an Adaptive Strategy Selection Method (DM-AD) are then
compared in robotic soccer games to prove the efficiency
of the DM-AD. Finally, the proposed method is used for a
robotic soccer game and the results are presented.

The experiments are implemented using a robotic soccer
simulation platform where there are ten two-wheeled robots -
five user’s robots and five opponent’s robots - as shown
in Fig. 7(a). The size of this platform is 1000pixelx640pixels
and the time for each competition is Tpax = 400s.The
Parameters for simulation platform are shown in Table 1.
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(b)

FIGURE 7. The experimental platforms. (a) The simulation platform.
(b) The real environment.

TABLE 1. Parameters for simulation platform.

Category Value
size (pixels) 1000*640
Time (sec.) 400s

During the test, the game uses three decision-making models:
AO (aggressive offense), CD (conservative defense) and MP
(moderate play). In order to demonstrate the practicality of
the proposed method, a real environment is show in Fig. 7(b).
In Fig. 7(b), there are ten real wheeled robots: five user’s
robots and five opponent’s robots. The user’s robots compete
with the opponent’s.

A. TEST RESULT FOR THE ADMA-RL

For the SVM, the penalty parameters, C and y, in the RBFs
are important. This paper uses the grid search method to select
them. Through the selection of this method and with expert
knowledge and experience, When C = 512, y = 2, the test
accuracy is 98%. Changing the parameter again has little
influence to SC. Therefore,C = 512,y = 2 are chosen as
the experimental parameters for ISVM. The parameters for
ISVM are shown in Table 2.

TABLE 2. Parameters for ISVM.

Category Value
C 512
/4 2

Fig. 8(a) shows the comparisons between 1-a-1, 1-a-r, and
ISVM in accuracy. From the figures it can be observed that the
classification accuracy for all three methods decreases, when
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FIGURE 8. A comparison of the performance of the three algorithms.
(a) Classify accuracy. (b) Train time.

MAX

IN]
ES
—

)

1S0[ PUE 3109 JO OnEY

o —_
o) o

N

50 100 150

0
Number of competition
(a)

MAX
el
2
=
S o4 A
z P AR LA A
2 N
&~
=
212
=]
2 j\f/v

0.6 /

=3

50 100 150
Number of competition

(b)

FIGURE 9. Ratios over competitions. (a) The change in the ratio for the
DM-AD and the AO. (b) The change in the ratio for the DM-AD and the CD.

=)

the number of classification classes increases from three to
ten, but the classification accuracy for the ISVM is higher
than that for the other two methods. Fig. 8(b) shows that the
training time for the ISVM is shorter than that the counter-
parts’ and less sensitive to the increment of the number of the
classes. This is because all samples are used in every training
cycle for the 1-a-r method, its training time is longest. The
training time of the 1-a-1 method is similar to the ISVM when
the number of classes is below seven, but, beyond seven,
its training time is obviously longer than ISVM. The ISVM
can excel over SVM in terms of computational complexities.
Comparatively, ISVM has higher classification accuracy and
faster training speed, especially in the case of large-scale data.

To demonstrate the efficiency of the proposed method in
robot soccer games, the AO and the CD were used as the
opponents, respectively, during learning. Each competition
was 400s and the ratios of the points won and lost over the
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games are shown in Fig. 9. The ratio for scores and losses
was calculated. When points lost is 0, “MAX”" denotes the
ultimate ratio in the Figure. The intrinsic parameters for RL
are shown in Table 3.

TABLE 3. Intrinsic parameters for RL.

Identified Value
n 10
n, 8
y 0.75
a 0.70

TABLE 4. Confrontation result.

Confrontation Factories DM-FNN  DM-BSOM DM-AD
Total ball-controlling rate 40.9% 60.7% 70.2%
Degree of threat to gate 30/855 70/1589 50/1202
Total number of losing balls 20 58 30

Fig. 9 shows that when the ADMA-RL competes with
the AO, the ratio rises gradually and reaches a plateau
around the 70™ competition. When the ADMA-RL competes
with the CD, the ratio rises gradually and reaches a plateau
around the 60" competition. It is seen that along when contin-
uous learning is used, ADMA-RL becomes more intelligent
and gets more scores in one competition. The efficiency of
the ADMA-RL is proven.

B. A COMPARISON OF DECISION-MAKING METHODS
The DM-BSOM, DM-FNN and DM-AD were evaluated in
50 robotic soccer games and each competition was 400s.
These models competed with the MP model. The results are
shown in Table 4 and Fig. 10. Table 4 shows the confrontation
result. Fig. 10(a) shows score ratio for each match, which
shows the effect of the strategy and the model. In Fig. 10(a),
the x-axis is the number of competitions and y-axis is the
score ratio for each match. In Fig. 10(b), the x-axis is time
and the y-axis is the ball’s abscissa. In robotic soccer the
ball’s position shows the team’s competitiveness and ability
to defend.

Table 4 and Fig. 10 show that the DM-AD, DM-FNN and
DM-BSOM have an advantage in robotic soccer decision-
making over the MP model. However, the model that uses
DM-FNN requires much manual intervention. It is difficult
for DM-FNN to achieve self-adaptive learning and it cannot
predict situations precisely. It is always in a defensive state
and has only a short time to control the ball or choose a con-
servative competition strategy in confrontations. This results
in a lower score ratio and offers no threat to an opponent.
Although DM-BSOM is more aggressive and scores better,
it uses regions so it is sensitive to regional divisions. There-
fore, it chooses different offensive and defensive strategies
frequently for different regions, which can lose the match
because there is poor stability. However, the proposed method
applied the SC and the SS to decision making for robotic
soccer games. In the SC, the ISVM with the PSO as an

VOLUME 6, 2018

JSO[ pu® 31028 JO oney

50 100 150 200 250 300 350 400

0 ﬂ""“W AL W AR A A Al o

e WMM \ MM» M«W" "M\/WM“M‘W WM I
202 ’TBSOM
O Competition time sy

(b)

FIGURE 10. The score ratio and average trajectories for the ball.
(a) The ratio of the score and losing. (b) The average of the trajectories.

accelerator is applied to decision tree structure. The accurate
and timely situation classification of the ISVM are critical for
efficient strategy selection so as that the SS can have a better
ability for self-adaptive learning and chooses strategies based
on a concise discrete state space. This results in good stability
and a balanced offensive and defensive strategy, compared
with the other two methods.

C. EXPERIMENTS

The decision method was applied to an actual game for two
types of situations: advantages and disadvantages. Two teams
competed with the opponent team. The opponent team used
the traditional method, which selects strategy based on the
position of the ball. The statistical score difference between
the two sides is about 50 competitions. The result is shown
in Fig. 11, where blue line denotes the team that uses the adap-
tive decision method and the red line denotes the team that
uses the traditional method. The x-axis denotes the number of
competitions and the y-axis denotes the score for both sides.
Fig. 11(a) shows that when there are disadvantages, the team
that uses the adaptive decision method has a larger score
difference than the team that uses the traditional method.
The team that uses the adaptive decision method can lose
because it takes an aggressive strategy to make a score. This
is the only way to make a score in a short time. Fig. 11(b)
shows that when there are advantages, the team that uses
an adaptive decision method uses a conservative strategy to
control a situation, unlike the traditional team. This
shows that the learning system performs well in both
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FIGURE 12. The trajectories for the ball. (a) The trajectories of the ball in
advantages. (b) The trajectories of the ball in disadvantages.

disadvantageous and advantageous situations. The satisfac-
tory results that are obtained demonstrate that the learning
system performs well.

The x-axis denotes times and the y-axis denotes the ball’s
abscissa position. 500 is midfield and values less than 500 on
the y axis denote the opponent’s area.
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Fig. 12(a) shows that, when there are advantages, the tra-
jectory of the ball always fluctuates above the middle line of
the field, the horizontal line of 500 pixels. This means that the
conservative strategy moves the ball to the opponent’s half
field so as to avoid losing a point. Fig. 12(b) shows that when
there are disadvantages, the trajectory of the ball fluctuates
around the region of 100-400 pixels. That means that the
user’s team uses the aggressive strategy that the situation
requires. Only this match strategy achieves a balance in attack
and defense.

IV. CONCLUSION

Problems such as uncertain knowledge representation and
high dimensional data representation exist in decision-
making methods. This paper proposes an Adaptive Strategy
Selection Method with Reinforcement Learning for Robotic
Soccer Games. In the SC subsystem, the ISVM, where the
PSO is used to speed up the training rate of the SVM,
is an efficient situation classification. The main objective of
the ISVM is to evaluate situations and the rewards. All of
the learning uses reinforcement learning. The ADMA-RL
enacts the learning process in the SS subsystem so deci-
sions are made adaptively as the environment changes. The
ADMA-RL approach allows more effective learning in the SS
subsystem. Using RL processes, the proposed method learns
the best strategies based on the identified compositions of
factors that represent a variety of the situations in the field.
To demonstrate the effectiveness of the proposed method,
experiments using simulation and a real environment are
performed. The players’ roles are designed to assign roles
as actions using the learnt policy. The strategy is composed
of role assignment that defines various numbers of attackers,
defender, and assistants. All of these are independent of each
other. If one displays a fault, it is easily replaced by another.
Dynamic role assignment means that for the proposed
approach, the role of each robot is changeable. The learned
policy decides all of the robots’ roles. All of the robots’ roles
can be changed according to the situation on the field. More
flexible situation aggregation means that the ISVM method
can be used for factor classification and immediate rewards.
The aggregation eliminates interference from noise.

In the robot soccer filed, the commands asserted from the
learning system to individual robots are actually carrying
the mixture of event-triggered (strategy selection) and time-
triggered (robot motor command) task sets, which commu-
nicate over protocols consisting of both static and dynamic
phases. In the future work, we should work on how to par-
tition and schedule the system functionality into time- trig-
gered and event-triggered domains and the optimization of
parameters corresponding to the communication protocol.
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