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ABSTRACT With the rapid development of automatic driving and advanced driver assistance systems,
vehicle safety has improved greatly. These systems mainly use sensors installed on the vehicle and help
drivers deal with human operation errors. Traffic accidents are inherently unpredictable, and it is difficult to
prevent mistakes made by others. Therefore, the concept of defensive driving has attracted much interest.
Defensive driving aims to increase drivers’ self-awareness to prevent accidents. Future self-driving vehicles
should integrate defensive driving to improve driver safety. This paper proposes a framework based on the
risk evaluation value of defensive driving that rapidly transmits information about high-accident-likelihood
zones to drivers or vehicles by using Internet of Vehicles technology. This should enable drivers or self-
driving vehicles to predict risks and operate vehicles safely. To send alert messages in a timely manner,
it is essential to overcome the challenge of processing real-time data during driving. We design five kinds
of services in this rapid response framework, including raw data receiver, warning area decision, accident
pattern recognition, message generator, and user profile to analyze driver information using distributed
system architecture. Message-oriented middleware is used for communication between services. This
framework identifies high-accident-likelihood zones by using density-based spatial clustering of applications
with noise, simplifying the process of association calculation. After the calculation, this framework uses
the weighted severity index to weight and compare risk severities. According to our experimental results,
the service-oriented middleware design increases the speed and stability of information transmission.

INDEX TERMS Apriori, DBSCAN, defensive driving, Internet of Vehicles, message-oriented middleware.

I. INTRODUCTION
Defensive driving has always been considered safe driving.
Unmanned driving will become safer if self-driving technol-
ogy can integrate the concept of defensive driving [1]. How-
ever, defensive driving for avoiding potential risks depends
on drivers’ experience [2]. Driver experience can be improved
using machine learning techniques. Shimosaka et al. [3] pro-
posed a constructed a risk prediction model and learning
framework for drivers. The present paper proposes a method
for sending messages about potential accident risks to drivers
by using Internet of Vehicles (IoV) technology. In the future,
alert messages can be sent to self-driving vehicles; once
a vehicle receives a message, it will be able to adjust its
driving action and therefore achieve the goal of avoiding
accidents.

Thus far, many studies have investigated defensive driv-
ing. However, these studies have rarely focused on how to
evaluate a potential risk or how to alert a vehicle about the
risk. Risks are evaluated based on massive high-dimensional
data computing; therefore, constructing a predicting model is
very difficult. One method of increasing driving safety is to
improve driving assistant systems. Another view holds that
humans are the main cause of accidents. In fact, self-driving
technology cannot completely avoid accidents. In a 2015New
York Times report on Google Cars’ accident statistics [4],
Donald Norman noted ‘‘They have to learn to be aggressive
in the right amount, and the right amount depends on the cul-
ture.’’ This shows that no matter howmany sensors have been
used, without a favorable responsive system to execute defen-
sive actions, accidents will still occur. Another challenge
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is how to send alert messages to drivers in a timely manner.
When a vehicle is moving and passing through a high-risk
zone, an alert message should be sent to the driver early.
Therefore, we consider that the IoV is a great solution to
achieve the goal of evaluating risks and alerting vehicles
about them.

With the advent of Internet of Things (IoT) technologies,
vehicle networking technology has gradually evolved from
vehicular ad hoc networks (VANETs) to the IoV. The two
main research domains in the IoV are vehicle networking
and vehicle intelligence. Yang et al. [5] stated that vehicle
intelligence integrates drivers and vehicles. Vehicles become
more intelligent through network technology; namely, pro-
cesses such as deep learning, cognitive computing, swarm
computing, and uncertainty artificial intelligence. The IoV is
a network that can provide services over a large area or even
a whole country [6].

In Taiwan, the transportation department and city gov-
ernments provide smartphone warning apps; however, these
apps are not capable of receiving real-time transmissions.
Drivers are sometimes unable to receive alert messages in
time to respond effectively. Such apps receive alert messages
through the REST API, a web service interface based on
the HTTP network. The app periodically contacts the server
to request information (also known as server polling). The
polling mechanism can cause server overload because of
numerous invalid queries. This delays crucial alert messages,
meaning that they are no longer be helpful to drivers when
they are received [7]. Some apps use server push techniques
to overcome the problems of polling mechanisms. Push noti-
fications are sent by a third-party push notification service.
However, this mechanism is not continuously stable. Another
solution increases stability and reduces alert spots: the server
only sends alert messages when drivers approach some high-
accident-risk junctions or during specific periods. Although
this approach solves the message delay problem, it may also
severely limit the system capability.

To solve the aforementioned problems, we propose
a rapid-response framework based on message-oriented
middleware (MOM) that combines the advanced message
queuing protocol (AMQP) and message queue telemetry
transport (MQTT). MQTT and AMQP have proven to have
better performance in IoT [8], [9]. We focus on adaptive
calculation, system performance, and communication archi-
tecture. An association calculation algorithm is employed
to generate alert messages after the alert period for each
zone is calculated. When the system receives the calculated
data, it generates a suitable alert message according to driver
characteristics such as sex, age, position, date, and time.

This paper proposes a simple and efficient method to
calculate accident risk. First, geographic spots are clustered
using Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) to identify hotspots, which also distin-
guish some of the characteristics of the environment. Second,
we use the Apriori algorithm to calculate the most likely
accident-causing factors at the hotspots. We also calculate its

weights using personal conditions and the combination of fac-
tors under the severity of the accident (WSI). This calculation
procedure rapidly performs calculations and transmits data.
Future vehicles will be able to receive risk evaluations using
this system to enable appropriate defensive driving.

The remainder of this paper is organized as follows.
Section II discusses studies investigating traffic accidents,
IoV, and MOM. Section III presents the design of the service
framework. In Section IV, we illustrate the validation and
implementation of our system. In Section V, we analyze acci-
dent data for Taichung City and prove accidents are usually
connected to factors in the surrounding environment. The
experimental results are presented in Section VI. Finally,
the conclusions of this paper are drawn in Section VII.

II. RELATE WORK
New technologies for detecting and preventing traffic acci-
dents have been proposed in the fields of traffic engineer-
ing, computer science, and engineering. Traffic engineering
focuses on road improvements, whereas computer science
and engineering focus on vehicles and drivers to decrease the
probability of traffic accidents.

Traffic accidents are intrinsically unpredictable. Numer-
ous studies investigating traffic accidents have focused
on conveying accident information to relevant parties
in the shortest time possible and on assisting drivers
and injured people as quickly as possible [10], [11].
Several studies have noted that driver behavior is the
main factor causing traffic accidents, and therefore, they
have used a controller area network (CAN bus) and
other sensors to collect vehicle data. Kaplan et al. [12]
identified drowsiness and driver distraction as the main rea-
sons for traffic accidents. They proposed a method to mon-
itor a driver’s physical state by using a smartphone and
a wearable device as well as to notify other drivers of
potential risks through vehicle-to-vehicle (V2V) technology.
Jadhav and Wagdarikar [13] used an embedded system
to receive data from sensors such as eye-blink sensors,
CAN buses, webcams, and GPS receivers. After data anal-
ysis, GSM modules transmit the status to a server.

Many researchers have presented analyses of the causal
factors of accidents. Solaiman et al. [14] designed a website
that enables users to input accident information. This website
reports accident causes and trend data based on analyses
of previous accident information. It also provides a visu-
alization service using a geographical information system.
Christian and Quintero [15] presented an intelligent driving
assistant system based on artificial neural networks. Their
method aimed to provide reliable driving recommendations
by using accident risk maps analysis and intelligent driving
diagnosis. Zhan et al. [2] proposed a non-conservatively
defensive strategy (NCDS) for various scenarios faced in
urban autonomous driving.

Studies have long focused on establishing reliable
network connections in mobile vehicles. Studies have
investigated the IoV, especially in the fields of network

VOLUME 6, 2018 18549



P.-Y. Lai et al.: Rapid-Response Framework for Defensive Driving Based on IoVs Using Message-Oriented Middleware

connection technology, autonomous vehicles, and vehicular
clouds. TrendForce [16] forecasted that by 2020, 75% of cars
on the road will be able to connect to a network and that
autonomous cars will number more than 1million. Therefore,
receiving or sending messages through the Internet will be
common in the future. Trends in IoT research reveal that
VANETs are also considered a rich mobile sensor platform.
Ensuring communication connections is critical in personal
vehicles because they move between highly and lowly con-
nected regions rapidly. Many studies have used wireless
access in vehicular environments and dedicated short-range
communication (DSRC) to solve communication problems.
Meng et al. [17] proposed an efficiency evaluation system
that uses end-to-end delay time to detect packet loss rate.
In addition to V2V communications infrastructure, long-term
evolution (LTE)-based communication methods have been
discussed. Imadali et al. [18] noted that vehiclemanufacturers
install LTE communication devices in on-board units (OBUs)
because of the slow progress of IEEE 802.11p. In the future,
IEEE 802.11p should use IPv6 to integrate with LTE net-
works. Grigoryev et al. [19] compared the costs of networks
using UHF radio waves, DSRC, Wi-Fi, and LTE and found
that use of LTE incurred the lowest cost.

Vehicles currently contain numerous mobile platform sen-
sors. These sensors generate a considerable volume of data
when the vehicle is operated, thereby serving as a source of
big data. Instant big-data computation is another prominent
research topic. Aloqaily et al. [6] proposed the integration
of vehicular cloud computing with mobile cloud computing
and vehicular communications and compared the weaknesses
of some common cloud services for vehicular cloud comput-
ing. Meneguette [20] proposed a new protocol to facilitate
resource sharing via a mobile cloud in vehicular networks
and realized high resource availability of approximately 95%.
Meng et al. [21] investigated the resource allocation problem
in vehicular cloud computing, employed a semi-Markov deci-
sion process to calculate a maximum average rate of return,
and obtained an optimal solution using an iteration algorithm.
Gerla et al. [22] indicated that the reason for the success of
Google’s self-driving car project was the application of cloud
computing in vehicles. Their study investigated intelligent
vehicle grids for autonomous, Internet-connected vehicles
and the vehicular cloud.

Scholars have researched MOM-related technology for
decades. For example, Parlanti et al. [23] proposed a ser-
vice and application integration framework using this tech-
nology. Their system obtains dynamic information through
message queuing (MQ) to monitor the activity of ships at sea.
Morais and Elias [24] proposedMOMarchitecture for mobile
devices and evaluated the influence of different MOMmodes
on memory and data throughput. Chongnan et al. [25] studied
the application of MOM to telemetry tracking and command
systems. They analyzed the components in the architecture
and proposed a virtualization strategy using multi machine.
Labéjof et al. [26] proposed the R-MOM framework,
an adaptive asynchronous middleware system for the sensor

FIGURE 1. Service framework.

observation service, and implemented the interoperable
framework using Java Message Service (JMS), the Advanced
Message Queuing Protocol (AMQP), and the data distribu-
tion service (DDS); moreover, they experimentally evaluated
the performances of JMS, the AMQP, the user datagram
protocol, and the DDS.

III. FRAMEWORK DESIGN
The core services of the framework proposed herein, shown
in Fig. 1, consist of the raw data receiver (RDR), warning
area decision service (WADS), accident pattern recognition
service (APRS), message generator (MG), and user pro-
file service (UPS). This section discusses the design of
these services. Some phenomena are observed from accident
data: 1) high-accident-likelihood periods overlap with peak-
traffic periods; 2) traffic accident hotspots change over time;
3) transportation use differs by age group among the victims
of accidents; and 4) the distribution and time occurrence of
accident hotspots differ between working days and holidays.

As mentioned previously, we propose a framework based
on the spatial distribution of traffic accidents. An alert service
requires a reaction when an alert has the highest priority, even
when the framework is under heavy loading. Therefore, fast
computing and transmission are the most critical elements of
our framework design. The framework can be divided into
five services.

1) The RDR is responsible for receiving information from
the vehicle—including speed, latitude and longitude, and
identity—and forwarding this to the AMQP. The RDR is also
responsible for preliminary data filtering. For example, the
receiver stops forwarding data when the vehicle’s speed is
zero.

2) TheWADS determines whether a vehicle has entered the
warning area by using the results obtained throughDBSCAN.

3) The APRS infers the risk of a traffic violation and
alerts drivers according to their time period and location. This
service uses the association calculation algorithm to classify
historical accident records by applying multiple parameters
including a driver’s personal information, date and time, and
traffic flow as inputs.
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4) The MG receives information from the APRS and sends
alert messages to specific vehicles.

5) The UPS manages the personal information of users,
including driver age, sex, and driving-behavior statistics.

We design the communication structure using two MOM
protocols. Vehicles useMQTT to communicate with the RDR
and MG, whereas the AMQP is used for communication
between services. User registration with an MQTT broker is
implemented through a RESTful API by using HTTP.

Our framework based on IoV, the following three problems
persist. And these problems are also the goals what wemainly
improve in our system.

1) The system must react quickly: A typical vehicle
travels very fast, so the system must deliver messages
to the vehicle before it enters and leaves an accidental
hotspot.

2) The system must be capable of load balance: There
are thousands of devices in the IoV environment, so the
system must have the capacity of expanding to handle
user needs.

3) Themessage deliverymust be adaptable:Each driver
has an individual risk of accidents that depends on that
driver’s personal conditions.

Because IoV communication is not stable when vehicles
move, the greatest challenge is how traveling vehicles can
communicate with the system. Using a small quantity of
bandwidth for a traveling vehicle can reduce the impact of
unstable communication. Aside from VANET, MQTT uses
the least bandwidth of any currently available protocol of
wide-area communication [27]. However, the lightweight
design of MQTT also results in management and safety prob-
lems. AMQP is a full-featured communication protocol with
functions such as direct exchange and load balancing [7].
However, the transmission of AMQP is not as efficient as
that of MQTT [8], [9]. Therefore, we integrate MQTT and
AMQP into a communications system, which simultaneously
provides a rapid response function and a load balancing
function. We divide the communication system into exter-
nal communication and internal communication. External
communication uses MQTT for communication between the
vehicles and the system; MQTT is more efficient for this
task. Internal communication uses AMQP with load bal-
ancing for communication between two services, as shown
in Fig. 2.

The entire service is based on high cohesion and low
coupling. RDR is responsible for receiving;WADS is respon-
sible for determining whether the vehicle is located in the
hotspot; APRS is responsible for risk assessment; and MG is
responsible for generating messages. All these services oper-
ate independently. With an IoV/IoT design, we assume that
a single computer would be paralyzed by a large number of
users, so our service is designed to run onmultiple computers.
For example, when a single APRS server is paralyzed, we can
add APRS functionality arbitrarily by distributing messages
equally to other APRS services through the direct exchange
function of AMQP, so the system load can be balanced

FIGURE 2. Communication architecture.

simply. This is also the main reason why we use a mixed
design of MQTT and AMQP.

A. RDR
The RDR is a service between clients (vehicles) and the
server; it also converts between MQTT and the AMQP. As an
MQTT subscriber, the RDR should be able to process large
data streams without difficulty. The vehicle control unit trans-
mits the position and speed of the vehicle to the RDR. After
receiving the data, the RDR only assesses the speed. When
the speed data is zero, the vehicle is stationary. The RDR then
omits this record rather than forwarding it. When the vehicle
speed is greater than zero, the RDR becomes a message
producer and transmits messages to the AMQP service. Thus,
the WADS becomes a message consumer.

B. WADS
The WADS is used to calculate the speed of traffic flow
within a warning range. Traffic collisions involve constant
and variable factors. Variable factors include weather con-
ditions, time, lighting, and driver behavior. Constant fac-
tors include fixed facilities such as lanes, markings, and
traffic signs. These factors are related to the occurrence
of accidents. The WADS analyzes a driver’s current loca-
tion and time and determines requirements for further data
processing.

We find that traffic collision factors differ by zone and
period. The date and time of accidents can be used as a filter.
The date is categorized into weekdays and holidays, and the
time is divided into 12 periods of 2 h each. These datasets can
be evaluated using DBSCAN to determine the intensities of
the accident points. DBSCAN evaluates the number of points
adjacent to an accident point to determine whether there
are sufficient adjacent points to form a cluster. If there are
sufficient adjacent points, the accident point becomes a core
point. After DBSCAN has found a core point, the remaining
adjacent points are evaluated incrementally to identify the
next core point. If another adjacent point becomes a core
point, the cluster boundary is extended. DBSCAN continues
this process until no more core points can be found, as shown
in Fig. 3.
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FIGURE 3. DBSCAN schematic (Neps = 3).

FIGURE 4. Original distribution of traffic accidents.

FIGURE 5. Warning range distribution map after DBSCAN implementation.

DBSCAN has two important parameters:
• Eps - epsilon neighborhood: Each point uses Eps as
radius to search the near point within this range.

• Neps - minimum number of points required within Eps:
If a point can search adjacent points in the range of Eps,
and the amount of adjacent points is bigger than Neps.
This point and adjacent points will become a cluster.

Figure. 4 shows the DBSCAN operation for the loca-
tions of traffic accidents that occur between 8:00 A.M. and
10:00 A.M. in Taichung City. We implement DBSCAN with
Eps=25 m and Neps=10, and the results are shown in Fig. 5.

The main road of Taichung City has four lanes and a width
of approximately 25 m; thus, Eps=25 m and Neps=10. This
means that a cluster is formed if there were ten accidents, and
this is considered an accident hotspot.

TABLE 1. Analysis categories.

When a vehicle enters the warning range, the service
assesses its data and adds the vehicle to the alert message
publishing table.

C. APRS
The APRS is the control center for warning messages.
This service handles the majority of computing tasks. Thus,
we prefilter the data in the RDR andWADS to reduce the data
processing load in the APRS.

Vains [28] studied accident data analysis using Bayesian
networks and conditional probability functions and found that
accidents can be considered a multidimensional data set. This
characteristic of data is difficult to train using supervised
learning algorithms such as a neural network. We have previ-
ously used Random Forest (RF) and Back Propagation Net-
work (BPN) to cluster data. However, data is insufficient for
numerous accident hotspots for making accurate predictions,
resulting in overfitting.

The accident record is a table containing information about
location conditions. The record comprises accident data from
Taichung City during 2013–2015 and is divided into a main
table and a subtable. The main table includes the date, time,
weather conditions, road conditions, traffic signs, and loca-
tion of an accident on the road. The subtable includes infor-
mation about the driver and transportation, such as vehicle
type, age, and driving qualifications. Because these cate-
gories have several subcategories, some personal information
should be deleted, such as the driver’s occupation and travel
purpose. Moreover, we must filter some static row data, such
as road type, markings, traffic signs, and other fixed facilities.
Finally, we select categories for analysis (see Table 1).

These six categories include dozens of subcategories; judg-
ment of accident cause has 67 subcategories. These cate-
gories are too complicated to analyze. We use the hierarchy
method to filter data and construct associations between cat-
egories. To construct a directed graph of categories, we filter
these data by using three conditions: administrative region,
date, and time. The filter sequence of conditions is: driver
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age → transportation → transportation action → accident
type and pattern→ accident position→ judgment of accident
cause. The age category is divided into nine segments, each
with an interval of 10 years.

The adaptive messages are required for us, and it must be
evaluated in terms of time, place, individual information and
the severity of the incident. For this purpose, we perform the
algorithm with these three steps:

1) Data association: The data-associated degrees of these
six categories are computed using the Apriori algorithm. For
any combination of categories, the higher the data-association
degree, the higher is the probability that an accident will
occur. After the data-associated degrees are known, the criti-
cal messages of the accident hazard can be generated.

2) Personal characteristic: In the weighted calculation of
personal characteristics, the candidate item generated by the
Apriori computation is compared with individual data, such
as age, gender, and occupation. Each itemset in the historical
data is compared with personal data. If they match, the value
of the support is added by a priority value P and the summa-
tion thus obtained is called a weight.

3) Accident severity: We calculate the WSIs of each
data combination, and then multiply the supporting degrees
with WSIs. The WSI represents the index of degree of acci-
dent severity, which is generated by the numbers of deaths,
injuries, and property losses caused by the occurring accident.
A higher WSI implies a higher probability of casualty.

After these three calculations, the particular data combi-
nation with the highest weight value has been chosen as the
model of the sending message.

We must find the association between six factors. In spe-
cific accident hotspots, the frequency of accident factors is
different. To use the highest-frequency factor as the main fac-
tor is not correct because accidents are caused by not only one
factor. For example, one intersection has the highest accident
frequency with driver age of 10 years and transportation type
as car. However, this set occurs rarely or never; thus, we cal-
culate the association between the six categories together.
If a situation like our example actually exists, the confidence
degree will be low owing to its low frequency. We use the
Apriori algorithm to evaluate the associations among the six
factors. The Apriori algorithm has been used in numerous
data mining applications. It also yields good results for time-
series data. Some researchers have analyzed alert correlations
using the Apriori algorithm [29], [30]. A novel aspect of our
procedure is that we set the minimum support to 2. When the
dataset has two identical records, this procedure continues.
In general, setting the minimum support inappropriately may
cause excessive calculation of candidate itemsets and may
increase the system load. As per the DBSCAN procedure,
the total number of hotspots is approximately 10–1000, and
therefore, the system load is relatively light.

Because the Apriori algorithm is an iterative process,
Fig. 6 shows an iterative procedure. L indicates the itemsets;
L(x, y) is the itemset of the union of x and y categories, and
S represents the support value. When S is larger than the

FIGURE 6. The iterative process of Apriori algorithm.

minimum support, this itemset is a Large-Itemset. For exam-
ple, if L(a, b) is larger than the minimum support, we can
continue to test L(ab, c) and L(ab, d). The Apriori algorithm
is crucial for association data mining, but has poor efficiency.
The dataset must be searched once for each calculation. Our
accident database has more than 90 fields, and it would
be time consuming to execute extensive calculations for all
fields. Thus, we only calculate six categories in the Apriori
algorithm to reduce the computation time. We search the
database for the accident records from the hotspot area where
the vehicle is currently located. The record contains only the
ID number (Table 1) for generation of the message template.

The search results are denoted as Dataset D, as illustrated
in Fig. 7.
• Dataset: A record set that is two-dimensional, defined
as D.

• Items: A set of all items, defined as I.
• Transaction: A record in the dataset, defined as T ,
T ∈ D.

• Itemset: A set of items that appears at the same time,
defined as theK-itemset, whereK represents the number
of items.

• Support: It is defined assupp(X) = occur(X)/count(D)
= P(X). P(A∩B) represents the probability of A and B
appearing simultaneously.

• Confidence: It is defined as conf(X→Y) = supp(X∪Y)/
(supp(X)=P(Y|X)). For example, P(B|A) represents the
probability of event B occurring when the precondition
that event A occurring is existing P(AB)/P(A).

• Candidate Itemset: An itemset obtained by merging
down, defined as C[k].

• A large K-itemset: If event A contains k elements, it is
called a K-itemset event. If event A satisfies the mini-
mum supporting threshold, it is called a large K-itemset.
That is, the K-itemset is represented as L[k] if its support
is greater than or equal to a particularMinimumSupport.

The Apriori algorithm uses an iterative method with layer-
by-layer search; that is, the K-1 itemset is used to search for
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FIGURE 7. Apriori procedure diagram.

the K itemset. After searching the first large itemset, we mark
it as L1. L1 is used to search the second large itemset, which
is marked as L2. After that, L2 is used to search L3, and
so on to Lk. The procedure is repeated until it cannot find
any available itemset. The procedure searches a large itemset
by iterating a loop of two steps: first, it generates candidate
itemset C1, C2, . . ., Ck (which can become a portfolio of a
large itemset). Then, it calculates the support of candidate
itemset Ck to determine whether Lk is a large itemset. The
searching strategy of the Apriori algorithm starts with a few
items and gradually searches itemsets of multiple items.

The Apriori calculation chooses the maximum support
itemset. There are two reasons why our calculation does
not use the maximum support itemset. First, the accident
severity should be considered. Thus, the candidate itemset
amount is multiplied by the weighted severity index (WSI).
There are a few serious accidents, and these accidents usually
cause death or serious injury. We thought that these serious
accidents should attract more attention than others. Second,
when any factor of user profile has the same item in the
candidate set, this candidate set is added by a priority value P
which called a weight.

Accidents include many uncertainties, and the purpose
of our service is not to predict the probability of a driver
suffering an accident. Instead, it is to identify the factors
causing an accident. Therefore, we provide an alert service
that considers the risk of accidents.

At present, the most widely used weighted severity cal-
culation is Equivalent Property Damage Only (EPDO) [31];
however, because the dataset we had is lack of some
parameter, we are unable to use this method. Therefore,
we choose the WSI for our weighting calculations. The
WSI is modified from EPDO, and the area feature should
be considered in EPDO. Therefore, we choose the WSI
to calculate different accident types using the following
equation [32]:

WSI = (12F + 3I + P)/(F + I + P) (1)

F: number of accidents resulting in deaths
I: number of accidents resulting in injury
P: amount of property lost owing to accident
After the WSI is obtained, using amount of itemsets ×

WSI, the item with the highest value is used as the template
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Algorithm 1 Apriori
1 Procedure: Apriori
2 Input: K;
3 Output: R; /∗itemset association collection∗/
4 L = Layer of itemsets;
5 Smin = min support;
6 For each LK in L from D
7 if K+1 < count of L then
8 CK∪K+1 = LK ∪ LK+1;
9 if (CK∪K+1 ≥ Smin) then
10 R add NK∪K+1;
11 Apriori (K ++);
12 end
13 end
14 end for
15 Return R;

TABLE 2. Message format.

for the alert message.

∀x = {A1,A2,A3 . . .An}

T = max(∀x ×WSI ) (2)

A: amount of itemsets
T: message template
We evaluate the accident types and patterns in each admin-

istration zone. After the distance and weight have been calcu-
lated, the candidate records are multiplied by the risk evalua-
tion of the accident type and pattern. The candidate with the
highest weight becomes the template for generating awarning
message. The warning message is transmitted to the MG in
the format shown in Table 2.

D. MG
Usually, more than one person is involved in an accident. In an
accident record, the first record is of the person who bears the
greatest responsibility. Therefore, we use the first record as
the sample to create a message. The template record includes
the following columns, from which the message is formed:

1) Accident type: Transportation types of the persons
involved. There are four type combinations, namely vehi-
cle/motorcycle to pedestrian, vehicle to vehicle/motorcycle,
vehicle/motorcycle self-crash, and railway level crossing.
Each type has an independent subtype. For example, the sub-
types of vehicle to vehicle/motorcycle include rear-end col-
lision, side collision, and rubbing collision. The subtypes of
vehicle/motorcycle to pedestrian include walking on the road
and playing on the road.

2) Accident cause: The main cause of collision, such as
driver behavior, vehicle mechanical failure, or signal failure.

TABLE 3. Raw vehicle data.

FIGURE 8. Work queue and routing modes.

3) Accident position: The road type of the accident loca-
tion, such as crossroad, section, or dedicated lane.

4) Transportation type: The means of transportation, such
as motorcycle, private small passenger vehicle, bus, or truck.

5) Transportation operation: The vehicle action, such as
driving straight, making a right turn, and making a U-turn.

We use these five columns to create messages such as
‘‘At the crossing (accident position) ahead, motorcycle (trans-
portation type) side impacts (accident type and subtype) often
occur. Please pay attention to left-turn (transportation opera-
tion) red-light-running (accident cause) violations.’’

After the warning message is created, the MG publishes it
to a vehicle according to its ID number.

E. MIDDLEWARE DESIGN
After a vehicle is activated, it must subscribe to a topic pro-
vided by the MG. The topic is defined as Alarm/{VehicleId},
where VehicleId is the unique identification number of
each vehicle. Thus, each vehicle receives a unique topic
depending on its VehicleId. The RDR subscribes to a topic–
service/receiver. Each vehicle publishesmessages to the RDR
every 5s. The data format is shown in Table 3.

We use the AMQP for communication between the RDR,
WADS, and APRS. The AMQP chooses different modes,
such as work queue, routing, publish/subscribe, and topic.
When a service bottleneck occurs, we use the work queue
method to share traffic by adding servers. Conversely, if the
framework needs to process specific information, the AMQP
can achieve this through the routing key. A message with a
specific routing key is passed to a specific service and pro-
cess. Considering the scalability and load balance, we choose
the AMQP as the server protocol [26]. Fig. 8 displays the
work queue and routing modes.

F. UPS
We develop a user profile service using a Web API method.
We consider that a vehicle may have multiple users, and each
user has different personal conditions. We design a simple
method that can link the current users and vehicles rapidly.
Whenever a different driver takes control of the vehicle,
the driver must first log into the APP, and then scan a unique
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FIGURE 9. The mapping of driver and vehicle.

FIGURE 10. Implementation equipment.

QR code, which contains the Vehicle ID on the vehicle OBU,
before driving. As shown in Fig. 9, once the driver has
scanned the QR code, the APP sends the User ID and Vehicle
ID to the server; together, the server and the APP provide a
personal alert service.

IV. FRAMEWORK IMPLEMENTATION AND PROTOTYPE
We developed a driver alert service that uses Windows
Server 2013 as the application server and Microsoft SQL
2014 Express as the database. For the middleware, Mosquitto
is employed as the MQTT broker and RabbitMQ is used
as the AMQP server. This framework is implemented using
the C# language. We also use Raspberry Pi 3 as our OBU
with Windows 10 IoT. The user client was developed using
the Universal Windows Platform. The GPS system employs
G-STAR IV (GlobalSat WorldCom Corp.). Vehicle speed is
determined using OBDII with a Bluetooth interface device to
retrieve vehicle CAN bus data (Fig. 10).

The intersection of Wuquan West Road and Huanzhong
Road has the highest accident rate in Taichung City [33].
Wuquan West Road is the main conduit between urban and
industrial areas and has plane and elevated sections. His-
torical records show that from 7:00 A.M. to 9:00 A.M.

FIGURE 11. High-accident-likelihood location.

FIGURE 12. No-left-turn sign.

and 5:00 P.M. to 7:00 P.M., the majority of accidents are
side impacts between right-turning vehicles and motorcy-
cles caused by vehicle drivers not obeying the traffic rules.
Figs. 11 and 12 illustrate the right turn. At other times of
the day, the majority of collisions are side impacts caused
by left-turning vehicles running a red light, giving straight-
driving vehicles under the elevated road insufficient time to
slow down to avoid a collision. Fig. 11 shows that a no-
left-turn sign is installed above the road, and it is applicable
from 7:00 A.M. to 9:00 A.M. and 5:00 P.M. to 7:00 P.M.
This indicates that the traffic flow at this intersection reaches
a peak during these two periods. When the traffic flow is
high, side collisions usually occur because drivers disobey
traffic signs. However, historical records show that side col-
lisions are also frequent during nonpeak hours. At rush hour,
the most common type of collision is vehicles leaving the
interchange side and colliding with a motorcycle approaching
from the right. However, traffic signs do not alert drivers at
times outside these two periods.

We consider this intersection as an example. When a
vehicle is moving, the screen shows its real-time location.
The OBU connects to the server through the 4G LTE net-
work. When the OBU executes a background MQTT service,
it transmits the coordinates and speed to the MQTT broker.
When the service determines the location of a driver who
requires notification, the OBU receives a warning message
on the subscribed topic.

In Fig. 13, the driver is leaving Provincial Highway 74 and
entering Wuquan West Road. When the vehicle arrives at the
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FIGURE 13. Alert message.

intersection of Wuquan West Road and Huanzhong Road,
the driver receives an alert message regarding the intersection
ahead; because accidents at this intersection are usually side
collisions, the drivermust pay attention to vehicles on the left-
hand side.

Furthermore, we also use a text-to-speech (TTS) service to
allow the driver to focus on driving and not remove their eyes
from the road. If the user enables the voice function, the text
message is sent to the service, transformed to speech by the
TTS service, and then played to the user.

V. DATA ANALYSIS
We analyzed accident data for Taichung City, the third-
largest city in Taiwan, collected from September 2013 to
August 2015. The difference between urban and rural areas
was substantial. Taichung City was formerly divided into two
administrative regions, Taichung City and Taichung County,
but they were merged into Taichung City in 2010. The terrain
of Taichung City is extremely diverse, including coast, plains,
and mountainous areas more than 3000 m in altitude. The
urban area of Taichung City accounts for 7.3% of the total
area of Taichung, 41.2% of the population, and 53.4% of
traffic accidents.

Accidents are unforeseen events or circumstances that are
random and lack patterns. Therefore, we cannot predict when,
where, or who will experience a traffic accident. However,
accidents are usually connected to factors in the surrounding
environment, such as road design and traffic flow. By classi-
fying the times and severities of specific conditions, we can
obtain a reference and valuable information.

Over the course of a day, the accident rate increases starting
at 8:00 A.M., and the period with the highest accident rate is
4:00 to 8:00 P.M.We use Xitun District, which has the highest
proportion of accidents in Taichung City, as our example.
We analyzed the accident records for small passenger vehi-
cles and motorcycles on weekdays and holidays (Fig. 14).

During weekdays, collisions between small passenger
vehicles and motorcycles were more frequent during rush
hour and the likelihood of a collision decreased between
8:00 A.M. and 2:00 P.M. At weekends, small passenger
vehicle collisions increased slowly from 8:00 A.M., whereas
collisions involving motorcycles showed no notable hourly

FIGURE 14. Ratio of accidents by transportation type and time of day in
Xitun District.

FIGURE 15. Analysis of accident periods for weekdays and weekends.

change. The distribution of collisions differed substantially
between weekdays and holidays, especially among motorcy-
cles. This is largely because many people use motorcycles
as their main method of transportation in Taiwan. Notably,
although Taiwan has the highest motorcycle density in the
world, the rate of accidents caused by motorcycles is lower
than that caused by cars (Fig. 15).

We analyzed the number of events involving small pas-
senger vehicles and motorcycles. As shown in Fig. 16, for
drivers aged 20–30 years, motorcycle events were slightly
more frequent than those involving small passenger vehicles;
motorcycles events decreased sharply with age after peaking
at 20∼30 years.

VI. EXPERIMENTAL RESULTS
We use the REST API, which is the most widely used inter-
face in service-oriented architecture, as a control and compare
it with the proposed system using the MOM architecture.
Under the same service, the communication interfaces of each
service are redesigned using the REST API. The RESP API
is developed using the ASP.NET MVC API, and the client
specifications are Intel i5-4460 3.2 GHz, 16 GB of RAM,
and Windows 10. The server specifications are Intel i7-7700,
16GB of RAM, and Windows Server 2012. The network
environment is a local network.
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FIGURE 16. Distribution of accidents involving small passenger vehicles
and motorcycles by age.

FIGURE 17. Delay time in experiments.

TABLE 4. REST API and our system delay time.

A. DELAY TIME COMPARISON
In the experiment design, MQ and HTTP are very different
protocols. MQTT transmits/subscribes messages using mul-
tiple threads, and therefore, its performance is better than
that of REST, which uses a single thread for request and
response. To ensure a fair result, the design of the control
group creates a thread when a client provides a service, and
we also use the POST method. Each service should obtain
a calculation result without polling; this design improves
the performance of the REST API by sending and receiving
results through one connection. The weakness of this method
is that it also reduces the service turnover ratio of the REST
API. However, this experiment focuses on the performance
of HTTP andMQ in different architectures; thus, the turnover
ratio is not considered. During the experiment, we only send
the coordinate from the same accident hotspot to ensure that
the message length is the same. Fig. 17 shows the test delay
time obtained in the experiment. We used 1000 latitude and
longitude data points for our experimental simulation; the
results are presented in Table 4.

The results of the comparison of the REST API system and
our framework reveal a more than fourfold performance gap

FIGURE 18. Delay time distribution.

FIGURE 19. Jitter rate comparison.

in the whole system processing time. In terms of stability,
we calculated the distribution of data (Fig. 18).

In experiments to determine the delay time counts,
the delay time distribution obtained using the MOM frame-
work was between 2 and 10 ms; however, that obtained using
the REST API oscillates between 6 and 20 ms, as shown
in Fig. 18. The results thus indicate that the MOM architec-
ture is relatively stable.

B. JITTER RATE COMPARISON
We analyzed the jitter rate of the REST API and MOM
(Fig. 19). The result reveals that the average jitter rate of the
REST API is 0.229 and that of MOM is 0.064. According
to this experiment, the transmission performance of MOM
is better than that of the HTTP API, and the jitter rate also
demonstrates that MOM has superior reliability.

C. SUMMARY
HTTP has long headers. The server can determine user
requests and give responses according to these headers. In an
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IoT or IoV environment, complex headers waste transmission
time. For example, the default limit is 8 KB in Apache and
16 KB in IIS. The general Message Queue protocol header is
shorter, e.g., a MQTT header is only 2 bytes [7].

A typical HTTP connection is not sustainable. It begins
when the user requests it and must endure until the server
has output. However, if the user is not willing to wait for
the previous request to be answered, and requests the data
again, the connection must be re-established and the server
data must be re-read. This causes frequent polling and can
lead to servers being paralyzed with Distributed Denial of
Service (DDoS) attacks and similar problems. Therefore,
we must avoid this type of paralysis if the system has several
users.

Many previous studies have demonstrated that the trans-
mission efficiency of Message Queue is higher than that of
HTTP. The four protocol comparisons show that AMQP and
MQTT are better than HTTP in terms of both bandwidth and
latency [8], [9]. Our system is based on MOM with MQTT
and AMQP. The experimental results are also consistent with
the literature.

VII. CONCLUSIONS
In the design of our framework, we considered its possible
application carefully, and the resulting MOM framework was
found to obtain superior results to the HTTP-based architec-
ture. With great developments in self-driving and advanced
driver assistance system technologies, vehicles will undeni-
ably become safer than they are currently. However, even
the safest vehicles cannot avoid accidents caused by external
factors, such as surroundings, other vehicles, or pedestrians.
Thus, defensive driving based on big data analysis is nec-
essary for improving driving safety. This paper proposes a
rapid-response framework that enables defensive driving by
not only providing proper alert messages to drivers but also
improving drivers’ awareness of accident risk. After proper
encoding, it will be able to provide risk assessments to self-
driving vehicles as a basis for appropriate defensive driving
operations. Our framework proposes a favorable concept for
integrating the IoV with self-driving applications.

We attempted to use a random forest and BPN to construct
the analysis model; however, these models were infeasible
because they resulted in overfitting. This situation can occur
because of the data distribution, with large amounts of data
in a hotspot, or because the amount of data is insufficient to
construct an accurate model. We use an Apriori algorithm to
calculate factor associations. This algorithm can obtain the
optimal result even when data are insufficient. To evaluate
the prediction precision, more data is still required. In the
future, we will continue to collect data and a deep learn-
ing method will be applied to this model to improve its
accuracy.
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