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ABSTRACT Fungal keratitis is an inflammation of the cornea that results from infection by fungal
organisms. It has a high rate of blindness, which makes the accurate diagnosis of fungal keratitis important.
Confocal microscopy is an optical imaging technique that assists doctors in diagnosing fungal keratitis, and
cornea images obtained by confocal microscopy can be used to detect hyphae. The current challenges are how
to classify normal cornea images with nerves and abnormal cornea images with hyphae and how to detect
the hyphae in a complicated background. To address this problem, this paper proposes a novel automatic
hyphae detection method that assists doctors in making diagnoses. It includes two primary steps: texture
classification of images and hyphae detection. In texture classification step, first, after image enhancement
using a subregional contrast stretching algorithm, an adaptive robust binary pattern (ARBP), which is an
improvement on the adaptive median binary pattern (AMBP), is proposed and adopted to extract texture
features; and a support vector machine model is used to classify the normal and abnormal images. In the
hyphae detection step, binarization and a connected domain process are used to further enhance the targets,
and a line segment detector algorithm is adopted to detect the hyphae; then, the hyphal density is defined
to quantitatively evaluate the infection severity. The contributions of this study include the improvement of
the AMBP and the design of a novel framework. ARBP can extract effective texture features of images with
relatively bright and small targets. The experimental results demonstrate the effectiveness of the proposed
framework.

INDEX TERMS Fungal keratitis, texture analysis, ARBP, LSD, SVM.

I. INTRODUCTION
Fungal keratitis [1] is an inflammation of the cornea that
results from infection by a fungal organism. The lack of rapid
and effective early diagnostic methods often leads to early
misdiagnosis and delayed disease treatment, which cause
serious complications such as corneal perforation, anterior
chamber empyema, endophthalmitis and blindness. Because
the incidence has increased in recent years [2], the early diag-
nosis and accurate treatment of fungal keratitis are especially
important.

The primary diagnostic methods of fungal keratitis include
slit-lamp examination, microscopic examination of cornea
scrapings, fungal culture, tissue biopsy, polymerase chain
reaction (PCR) and confocal microscopy [3]. These methods

are widely used clinically with good results but have
shortcomings. For example, slit-lamp examination can only
help doctors observe symptoms and determine simple and
tentative diagnoses; microscopic examination of cornea
scrapings and tissue biopsy could cause secondary damage
to the corneal tissue of a patient; fungal culture takes a
relatively long time, leading to difficulties in real-time diag-
nosis [4], [5]; and the cost of PCR is high [6]. Among the
various diagnosticmethods, confocalmicroscopy [7], an opti-
cal imaging technique that relies on a spatial pinhole placed
at the confocal plane of the lens to eliminate out-of-focus
light, hasmany advantages in the diagnosis of fungal keratitis.
Confocal microscopy is emerging as a clinically important
noninvasive and non-contacting instrument for the diagnosis
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and management of keratitis with a high positive rate.
It allows for in vivo identification of filamentous structures
that are morphologically consistent with fungus in an area of
stromal infiltration, which relies on the subjective judgment
of doctors [8].

The cornea image obtained by confocal microscopy can
also be used to diagnose fungal keratitis at a cellular level.
The detection of hyphae in a cornea image is crucial evidence
of a fungal keratitis infection because there are no hyphae in
normal cornea fundus images, and the diagnosis is primarily
based on the number andmorphology of the observed hyphae.
Examples of normal cornea images with nerves and abnormal
cornea images with hyphae are shown in Fig. 1. Considering
that hyphae from infected cornea and nerves from healthy
cornea are also threadlike, separating and detecting hyphae
from nerves is an essential problem [9]. Experienced doctors
can observe medical images and make an accurate diagnosis,
but because of the large number of patients and images,
the lack of excellent doctors in some areas and the subjective
errors of doctors, an automatic hyphae detection method is
needed. However, to date, little work has been done on the
automatic detection of hyphae.

FIGURE 1. (a) Normal cornea image with nerves obtained by Heidelberg
Engineering HRT-3 confocal microscopy. (b) Abnormal cornea cornea
image with hyphae obtained by Heidelberg Engineering HRT-3 confocal
microscopy.

Currently, the development of interdisciplinary approaches
is becoming one of the trends of modern science and tech-
nology. Image analysis and processing, which is a rapidly
developing discipline, also has an increasing number of
excellent applications in the medical domain. Our team has
introduced image analysis and processing techniques, specif-
ically texture analysis [10], [11], into the diagnosis of fungal
keratitis. Texture is an attribute of images that describes
the variation and repetition of gray levels. Texture analysis
extracts texture features through a texture descriptor, includ-
ing the gray level co-occurrence matrix (GLCM) [12], [13],
Gabor filter [14], local binary pattern (LBP) [15], [16],
median binary pattern (MBP) [17], adaptive median binary
pattern (AMBP) [18], [19].

Qiu et al. [9] have proposed an automatic hyphae image
detection method in 2016 based on LBP and support
vector machine (SVM) [20] model that can separate abnor-
mal images from normal images with 93.53% accuracy.

However, it applies a fairly basic texture descriptor, LBP,
to extract the features, which misses important texture
information and negatively affects the classification results.
Furthermore, it cannot detect or quantitatively evaluate
hyphae.

In this paper, a novel framework that includes a new texture
descriptor is proposed, and hyphae detection and quantitative
evaluation are realized. The novel framework includes two
primary steps: texture classification of images and hyphae
detection. In texture classification step, firstly, we enhance
the images using a sub-regional contrast stretching algorithm;
then we propose an adaptive robust binary pattern (ARBP)
to extract texture features; at last we adopt SVM model to
classify the normal and abnormal images. In hyphae detec-
tion step, we apply binarization and a connected domain
process to further enhance the target; then a line segment
detector (LSD) algorithm is adopted to detect the hyphae;
lastly the hyphal density is defined to quantitatively evaluate
the infection severity. The novel automatic hyphae detection
framework is shown in Fig. 2.

FIGURE 2. The novel automatic hyphae detection framework.

The contributions of this study include:
• The newly proposed texture analysis method ARBP.
Considering that the brightness of the hyphae and nerves
is higher than that of the background, we improve the
AMBP by adding the average pixel value of the analysis
window as a new parameter. ARBP can extract effective
texture features of images with relatively bright and
small targets.

• The design of the novel automatic hyphae detection
framework. The experimental results demonstrate the
effectiveness of the proposed framework.

The rest of paper is organized as follows. Section II intro-
duces the related work on recent medical applications of
texture analysis. In section III, several general texture anal-
ysis methods are introduced, then we propose a new texture
analysis method ARBP and introduce the chosen classifier
SVM, finally, the concrete framework of classification in this
work is presented. Hyphae detection using a LSDmethod and
quantitative evaluation are described in section VI. Section V
demonstrates the experimental results and analysis. Finally,
the conclusions and future research are summarized in
section VI.
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II. RELATED WORK
Recently, traditional medical diagnostic methods, such as
slit-lamp examination, microscopic examination of cornea
scrapings, fungal culture, tissue biopsy, PCR and confocal
microscopy, still dominate the diagnosis of fungal keratitis.
Although little research work has been done on the automatic
detection of hyphae in cornea image, image analysis and
processing, especially texture analysis, has been increasingly
introduced to medical domain. Texture analysis [10], [11]
methods in medical domain can approximately be classified
into three categories: statistical methods, model based meth-
ods and spectral methods. In this section, some of the recent
medical applications of texture analysis are described.

Statistical methods describe the statistical features of local
area based on the gray value of pixels and its neighbors.
Statistical features include the first-order statistics, the
second-order statistics and the higher-order statistics. GLCM,
which is one of the typical statistical texture analysis meth-
ods, has been applied in medical image analysis effec-
tively. For example, Gaike et al. [21] proposed a novel
third order GLCM features and observed the results in
recognition of malignancy in a novel breast mammo-
gram’s regional database. Rohini and Soma [22] proposed a
unique system in skin melanoma detection relies on harlick
GLCM.

Model based methods describe texture based on cer-
tain mathematical models, a texture image is modeled as
a probability model or as a linear combination of a set
of basis function. Model based methods include Markov
random fields (MRF), Wold model, etc. Rastghalam and
Pourghassem [23] proposed a breast cancer detection algo-
rithm using a novel MRF-based probable texture fea-
ture. Ahmadvand and Daliri [24] improved a rontime of
MRF based method for Magnetic Resonance Imaging brain
segmentation.

Spectral methods convert image data to frequency domain
to extract the frequency domain features. Typical spec-
tral methods include Fourier transform, wavelet transform,
etc. Zou et al. [25] proposed to use the wavelet leader
transform for studying trabecular bone patterns, experi-
mental results on a recently released benchmark dataset
show that wavelet leader transform boosts the perfor-
mance of baseline wavelet transform by 5% in average.
Virmani [26] investigated various wavelet-based texture
descriptors for breast tissue density classification on MIAS
dataset.

III. CLASSIFICATION OF CORNEA IMAGES
In this section, the general local texture descriptors, such as
GLCM, Gabor filter, LBP, MBP and AMBP, are first intro-
duced. Second, we propose a novel texture analysis method
called ARBP, which is an improvement on AMBP. Then,
the principle of classifier SVM performed in this work is
presented. Finally, we introduce the classification framework
for cornea images.

A. GENERAL TEXTURE ANALYSIS METHOD
1) GRAY LEVEL CO-OCCURRENCE MATRIX
GLCM [12], [13] is defined as a co-occurrence matrix or a
co-occurrence distribution. In a gray-level image, a certain
gray relationship, known as image gray-scale spatial correla-
tion, exists among the pixels through the study of spatial gray
level correlations to describe the texture.

GLCM can be presented as the following probability
function:

p(i, j) =
P(i, j|d, θ)

N
(1)

where d is the interpixel distance, θ is the orientation, usually,
θ = [0◦, 45◦, 90◦, 135◦], and N is the total number of
possible outcomes.

Generally, we do not apply p(i, j) directly, instead, we use
GLCM statistical features which can realize satisfactory tex-
ture discrimination. General GLCM statistic features are
defined as follows:

Angular second moment (energy):

ASM =
G−1∑
i=0

G−1∑
j=0

[p(i, j)]2 (2)

Contrast:

Con =
G−1∑
i

G−1∑
j

(i− j)2P(i, j) (3)

Entropy:

Ent = −
G−1∑
i

G−1∑
j

p(i, j) log p(i, j) (4)

Absolute value:

abs =
G−1∑
i=0

G−1∑
j=0

|i− j|p(i, j) (5)

2) GABOR FILTER
Gabor filter is a linear filter that is used in texture analysis,
which can extract related features from different directions
and on different scales in the frequency domain. The fre-
quency and direction of Gabor filter are similar to those of
the human vision system.

The two-dimensional Gabor filter [14] is a Gaussian
nuclear function that is modulated by a sine wave, and it can
be defined as follows:

g(x, y) = (
1

2πσxσy
) exp(−

1
2
(
x2

σ 2
x
+

y2

σ 2
y
)+ 2π jWx) (6)

whereW is themodulation frequency, and σx and σy represent
the spatial extent and frequency bandwidth of the Gabor filter,
respectively.

A set of Gabor functions gm,n(x, y) can be obtained
by a generating function with the mother-generating func-
tion g(x, y).

gm,n(x, y) = a−2mg(x ′, y′) (7)

VOLUME 6, 2018 13451



X. Wu et al.: Hyphae Detection in Fungal Keratitis Images With ARBP

where x ′ = a−m(x cos θn + y sin θn), y′ = a−m(−x sin θn +
y cos θn), θn = nπ/K , and a > 1. Here, m = 1, 2, . . .M
represents the number of scales, and n = 1, 2 . . .N represents
the number of orientations.

For an a ∗ b size input image, the result after the Gabor
wavelet transform can be written as follows:

Gmn(x, y) =
∑
x1

∑
y1

I (x1, y1)gm,n(x − x1, y− y1) (8)

The mean deviation and standard deviation of the magni-
tude of the filtered images are used to represent the feature
vectors that are used for classification [14].

3) LOCAL BINARY PATTERN
LBP [15], [16], which was proposed by Ojala et al., is a
general local texture descriptor. It is a simple but powerful
texture analysis method.

LBP can be defined in a 3 × 3 image patch. As shown
in Fig. 3 and equation (9), it contains two main steps:
a thresholding step and an encoding step. In the thresholding
step, every pixel in the image patch is compared with the
center pixel value, and then, it is converted to 0 or 1. This step
aids in extracting the information of the local binary grayscale
differences. In the encoding step, the resulting eight binary
values are arranged as binary code to characterize a structural
pattern and the corresponding decimal number of the binary
coding is the LBP code of the center pixel [9].

FIGURE 3. The thresholding step and the encoding step of LBP.

LBP can be defined as follows:

LBPP,R =
P−1∑
p=0

s(gp − gc)2p, s(x) =

{
1, x ≥ 0
0, x < 0

(9)

where gp is the pth pixel value, and gc is the center value
within the image patch.

4) MEDIAN BINARY PATTERN
The theory of MBP [17] is similar to that of LBP, but it uses
the median of the pixel values in the image patch as the local
threshold rather than that of the center pixel. This difference
can improve the sensitivity and noise robustness of the LBP
descriptor. In general, MBP can be defined as follows:

MBPP,R =
P−1∑
p=0

s(gp − gm)2p, s(x) =

{
1, x ≥ 0
0, x < 0

(10)

where gm is the median value within the image patch.

5) ADAPTIVE MEDIAN BINARY PATTERN
In traditional texture descriptors such as the LBP and MBP,
the selection of the threshold value is usually limited to a
small region. However, a small window could miss the opti-
mal threshold value and the important spatial information.
In contrast, a larger window contains richer local texture
information to obtain the optimal threshold value. Consid-
ering that a constant window size cannot handle all of the
variations in an image, an adaptive window is needed to
change the analysis area of each center pixel depending on
certain criteria. The AMBP [18], [19] considers larger and
adaptive analysis windows around the center pixel to compute
the optimal local threshold.

Algorithm 1 Adaptive Median Binary Patterns (AMBP)
1: Input: Gray scale Image I ; maximum analysis window
kmax; patch size P
2: Output: AMBP image M
3: For all i, j do
4:: k ← 1
5: Repeat
6: S ← I [i− k : i+ k, j− k : j+ k]
7: Zmed ← median(S)
8: Zmin← min(S)
9: Zmax← max(S)
10: If Zmin+α · d < Zmed < Zmax−α · d then break
11: k ← k + 1
12: Until k ≤ kmax
13: If Zmin + α · d < I [i, j] < Zmax − α · d then
14: τ = I [i, j]
15: Else τ = Zmed (τ is the parameter used as the threshold
value)
16: End if
17: M [i, j]← P− bit binary pattern
18: End

AMBP contains three stages: determination of the optimal
size of analysis window, determination of the local threshold
value and encoding.Algorithm 1 shows the process of AMBP.

Let S(i, j) be the square analysis window around the given
coordinates (i, j), and let xc be the pixel value at this location.
We define d as the magnitude of the difference between the
center pixel and its neighbors, and it is related to the analysis
window size.

d =
1
|S|

∑
m∈S(i,j)

|xc − xm|, m 6= c (11)

The testing condition of the optimal analysis window size
is as follows:

Zmin + α · d < Zmed < Zmax − α · d (12)

where α is a control parameter that determines the range of
values for the median. If α = 0, then the median value is
limited between the minimum and maximum, which is the
testing condition of the standard AMBP. If α 6= 0, then the
median range is related to d .
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To obtain the optimal size of analysis window, we set
a maximal window size and conduct a repetition. In each
looped iteration, the median value of this square analysis
window is tested to determine whether it meets the testing
condition, which means whether it lies in the range [Zmin +

α · d,Zmax − α · d]. If the median value doesn’t meet this
condition, then the window size is increased by two. This
process is repeated until the value meets this condition or the
maximal window size is reached.

After obtain the optimal window size, to determine the
optimal local threshold value, if the center pixel lies in the
range [Zmin+ α · d,Zmax− α · d], the center pixel is selected
as the local threshold value, and otherwise, the median pixel
is selected as the local threshold value.

It must be noted that the optimal size of analysis window
is determined to seek the optimal threshold value. After the
threshold steps, in the process of encoding, the AMBP value
is encoded in the predefined encoding window as the follow-
ing equation:

AMBPP,R =
P−1∑
p=0

s(gp − τ )2p, s(x) =

{
1, x ≥ 0
0, x < 0

(13)

where P is the defined patch size.

B. PROPOSED TEXTURE ANALYSIS METHOD: ADAPTIVE
ROBUST BINARY PATTERN
In this work, we are interested in the hyphae and nerves
in cornea images rather than the background. Considering
that the brightness of the hyphae and nerves is higher than
that of the background, we improve the AMBP by adding
the average pixel value of the analysis window as a new
parameter.

Similar to AMBP, the process of ARBP contains three
steps: determination of the optimal size of the analysis win-
dow, determination of the local threshold value and encoding.

In contrast to AMBP, we add a new parameter Zpara. In the
repetition to obtain the optimal analysis window size, to deter-
minate the size that can extract more texture information
about the hyphae and nerves with high pixel values, we select
the parameter Zpara from Zave and Zmed which has the further
distance from the center pixel value. If Zpara lies in the range
[Zmin + α · d,Zmax − α · d], then we break the repetition
and obtain the optimal size, otherwise, the window size is
increased by two. This process is repeated until the value
meets this condition or the maximal window size is reached.

Then, after this repetition, if the center pixel lies in the
range [Zmin+ α · d,Zmax− α · d], the center pixel is selected
as the local threshold value, otherwise, Zpara is selected as
the local threshold value. In the encoding steps, the same
as in AMBP, The ARBP value is encoded in the predefined
encoding window according to the following equation:

ARBPP,R =
P−1∑
p=0

s(gp − τ )2p, s(x) =

{
1, x ≥ 0
0, x < 0

(14)

Algorithm 2 shows this process. The newly pro-
posed method is more robust in texture description than
AMBP; therefore, it was termed the adaptive robust binary
pattern (ARBP).

Algorithm 2 Adaptive Robust Binary Pattern (ARBP)
1 Input: Gray scale Image I ; maximum analysis window
kmax; patch size P
2 Output: ARBP image M
3 For all i, j do
4 k ← 1
5 Repeat
6 S ← I [i− k : i+ k, j− k : j+ k]
7 Zmed ← median(S)
8 Zmin← min(S)
9 Zmax← max(S)
10 Zave← average(S)
11 d = 1

|S|

∑
m∈S(i,j)

|xc − xm|,m 6= c

12 If |Zmed − I [i, j]| < |Zave − I [i, j]|, Zpara = Zave
13 Else Zpara = Zmed
14 If Zmin + α · d < Zpara < Zmax − α · d then break
15 k ← k + 1
16 Until k ≤ kmax
17 If Zmin + α · d < I [i, j] < Zmax − α · d then
18 τ = I [i, j]
19 Else τ = Zpara(τ is the parameter used as the threshold
value)
20 End if
21 M [i, j]← P− bit binary pattern
22 End

C. CLASSIFIER: SUPPORT VECTOR MACHINE
The support vector machine (SVM) [20] is a powerful super-
vised learning model in machine learning that can efficiently
perform a non-linear classification by a kernel function. It is
a pretty efficient method and works well in small sample
problems because it can ensure the minimization of both the
structure risk and the empirical error.

SVM convert the non-linear M -dimensional samples x
with the label y into a K -dimensional feature space (K > M )
by the kernel function ϕ(x) to realize linear separation.
The separation of two classes is performed by the hyper-

plane defined in equation (15){
g(x) = wTϕ(x)+ b ≥ 1 if y = 1

g(x) = wTϕ(x)+ b ≤ −1 if y = −1

}
(15)

where ϕ(x) = [ϕ1(x), ϕ2(x), . . . , ϕk (x)]T is a series of non-
linear kernel functions, such as radial Gaussian basis, poly-
nomial, spline, or sigmoid functions, w = [w1,w2, . . .wk ]T

is the weight vector of network, and b is the bias.
SVM computes the optimal classification parameter via

minimization of the classification error and maximization
of the separation margin between two classes. Mathe-
matically, it corresponds to the minimization of the cost
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function 8(ω, ξ ) defined as

min 8(w, ξ ) = 1/2wTw+ C
P∑
i=1

ξi

subject to yi(wTϕ(xi)+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, 2, . . . , p (16)

whereC > 0 is the user-specified constant that represents the
regularization coefficient, p is the number of given learning
data pairs xi, yi, and ξi ≥ 0 is the nonnegative slack variable.

It is easy to prove [27] that, for the optimal hyperplane,

w =
P∑
i=1

αiyiϕ(xi) (17)

where αi are positive real numbers that satisfies:

max Q(α) =
P∑
i=1

αi −

P∑
i=1

P∑
j=1

αiαjdidj
〈
ϕ(xi), ϕ(xj)

〉
subject to

P∑
i=1

aiyi = 0, ai > 0 (18)

The decision function can equivalently be expressed as

g(x) = sign(
P∑
i=1

αiyi〈ϕ(xi), ϕ(x)〉 − b) (19)

D. CLASSIFICATION FRAMEWORK
The classification framework in this paper includes three
steps: image enhancement, texture feature extraction and
classification.

First, because of the restrictive conditions in the image
acquisition process and the complex environment of the ocu-
lar surface, the cornea images have a messy background and
many noise pixels [9]. Thus, image enhancement is needed to
enhance the targets before feature extraction. The brightness
of the images is uneven, and thus, a contrast stretching algo-
rithm [28] applied to the sub-parts with different brightness
could lead to inaccurate enhancement. To solve this problem,
a sub-regional contrast stretching algorithm is applied. The
whole image is divided into M ∗ N sub-rectangle areas,
and every sub-rectangle has relatively even background. The
stretching parameters are set dynamically according the gray
level in each sub-rectangle.

Then, the newly proposed texture analysis method ARBP
is used to extract the texture features of the cornea images.
We calculate the ARBP value of every pixel and obtain the
ARBP feature, which is still an image. We consider the statis-
tical histogram of the ARBP feature image as the final feature
vector. The statistical histogram that describes the frequency
of every ARBP value is a typical representative of the original
ARBP feature image.

Lastly, we train the SVM classifier with the extracted
ARBP feature vectors and the labels of cornea images. The
SVM classifier is implemented by LIBSVM [29], and the

kernel function is RBF function because of its excellent clas-
sification results. During the training processing, the penalty
parameters and kernel parameters in SVM are determined via
cross-validation.

IV. HYPHAE DETECTION AND
QUANTITATIVE EVALUATION
After the classification, the images are divided into two
classes, normal cornea images with nerve and abnormal
cornea images with hyphae. In this section, we detect and
measure the hyphae in the abnormal images. First, we pre-
process the images and convert them to binary images; then,
we detect hyphae using the line detection method LSD;
finally, we define the hyphal density to quantitative evaluate
the infection severity.

A. IMAGE PREPROCESSING
After applying the sub-regional contrast stretching algorithm
in section III, the gray level difference between the back-
ground and targets, including hyphae and nerves, is much
larger. To further separate the targets from the background,
we convert the images into binary images, and Otsu’s [30]
method is used to obtain an optimal threshold for the binary
image. Then, there are some small non-target areas in the
binary images, and thus, we omit some connected domain
areas that are smaller than the set size to remove the messy
background and noise points.

B. HYPHAE DETECTION
Considering that hyphae are threads, we detect them using
line detection. LSD is a linear-time line segment detector pro-
posed by von Gioi [31] in 2012 based on the Burns, Hanson,
and Riseman method [32], and it uses a contrario valida-
tion approach according to Desolneux, Moisan and Morel’s
theory [33], [34]. LSD is designed to be used on any digital
image without parameter tuning. It controls for the number of
false detections. On average, one false alarm is allowed per
image.

The LSD algorithm inputs a gray-level image and returns
a list of detected line segments. Briefly, LSD comprises
calculation of the level line of each pixel to generate a level-
line area. The vector and the level line are tangential. Thus,
the area is divided into several connecting areas called line
support regions. Each line support region is a candidate for a
line segment, and a rectangle must be associated with it. The
principal inertial axis of the line support region is used as the
main rectangle direction, and the rectangle must cover the full
region. The final line segments are selected from those line
support regions according to certain criteria.

C. QUANTITATIVE EVALUATION OF THE
INFECTION SEVERITY
To obtain a better understanding of hyphae detection and
provide doctors diagnostic assistance, the infection sever-
ity must be quantitatively evaluated. In clinical diagnosis,
doctors observe the number, length and morphological
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features of hyphae using confocal microscopy to gain an
understanding of the patient’s infection status [8]. On this
basis, the evaluation in this paper is made based on the line
detection results, and we define the hyphal density (the length
of the hyphae/unit area) of the fundus fungi as a measure
of the infection severity. The higher the density is, the more
severe the infection is.

From a clinical point of view, the diagnosis of fungal kerati-
tis is a comprehensive judgment [3]. Doctors should consider
patients’ symptoms and the results of several medical exami-
nations to determine a definite diagnosis. The hyphal density
in this paper also acts as an auxiliary diagnosis factor to assist
doctors in making a comprehensive diagnosis, rather than
the decisive determinant of whether the patient has fungal
keratitis.

V. EXPERIMENTAL RESULTS AND ANALYSIS
A. EXPERIMENTAL DATABASE
In this paper, the database comprises 183 normal images and
195 abnormal images, which were collected in vivo using
Heidelberg Engineering HRT-3 confocal microscopy. The
size of these images is 384× 384.

FIGURE 4. Image preprocessing results. (a) The original abnormal image.
(b) The abnormal image after a sub-regional contrast stretching
algorithm. (c) The original normal image. (d) The normal image
after a sub-regional contrast stretching algorithm.

B. CLASSIFICATION RESULTS OF CORNEA IMAGES
After image enhancement using an 11 ∗ 11 sub-regional
contrast stretching algorithm (see Fig. 4), we applied several
texture analysis methods to extract texture features, includ-
ing GLCM, Gabor, LBP, AMBP and the newly proposed

ARBP. In order to obtain the most excellent classification
performance, several classifiers, including decision tree [35],
K-nearest neighbour (KNN) [36], logistic regression [37]
and SVM, are trained based on the above-mentioned texture
features.

In this experiment, 10-fold cross validation was adopted to
test the performance of the texture classification framework.
What’s more, the average accuracies of the classifiers were
calculated by repeating the experiments 100 times.

In order to evaluate the performance of different texture
analysis methods, we drew the receiver operating character-
istic (ROC) diagram [38] and calculated the sensitivity TPR,
specificity TNR, accuracy ACC and the area under ROC
curve AUC , which are defined as follows:

TPR = TP/(TP+ FN ) (20)

TNR = TN/(TN + FP) (21)

ACC = (TP+ TN )/(TP+ FP+ TN + FN ) (22)

AUC =
∫
∞

−∞

TPR(T )FPR′(T )dT (23)

where TP is the number of true positive samples, FP is the
number of false positive samples, TN is the number of true
negative samples, and FN is the number of false negative
samples, and FPR = 1− TNR.
Sensitivity measures the proportion of positive samples

that are correctly classified, and high sensitivity means a low
missed diagnosis rate. Specificity measures the proportion
of negative samples that are correctly identified, and high
specificity means a low misdiagnosis rate. ACC measures
the proportion of all of the samples that are correctly identi-
fied, and high classification ACC means a high classification
accuracy. AUC calculates the area under ROC curve, and
high AUC means excellent classification performance.

The ROC curve plots the true positive rate TPR against
the false positive rate FPR. ROC illustrates the diagnostic
ability of a binary classifier system while its discrimination
threshold is varied. The best possible classification method
would yield the point (0, 1) of the ROC space, which repre-
sents 100% sensitivity and 100% specificity [38]. The larger
AUC is, the better the classification performance is.

TABLE 1. Experimental results of multiple classifiers using GLCM
features.

The classification experimental results of several clas-
sifiers based on the above-mentioned features are shown
in Table 1 - Table 5 , the ROC diagrams are shown in Fig. 5 -
Fig. 9. Based on considerations on various factors including
TPR, TNR, ACC and AUC , SVM classifier obtained almost
the excellent classification performance based on the several
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FIGURE 5. ROC curves of multiple classifiers using GLCM features by
using the 10-fold cross validation.

TABLE 2. Experimental results of multiple classifiers using
GABOR features.

TABLE 3. Experimental results of multiple classifiers using LBP features.

TABLE 4. Experimental results of multiple classifiers using
AMBP features.

TABLE 5. Experimental results of multiple classifiers using ARBP features.

above-mentioned features. Therefore, we adopted SVM clas-
sifier in this classification framework to compare different
texture feature descriptors.

FIGURE 6. ROC curves of multiple classifiers using Gabor features by
using the 10-fold cross validation.

FIGURE 7. ROC curves of multiple classifiers using LBP features by using
the 10-fold cross validation.

TABLE 6. Experimental results of multiple features using SVM classifier.

The classification experimental results of different tex-
ture feature descriptors based on SVM classifier are shown
in Table 6, and the ROC diagram is shown in Fig. 10. As can
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FIGURE 8. ROC curves of multiple classifiers by using AMBP features
using the 10-fold cross validation.

FIGURE 9. ROC curves of multiple classifiers using ARBP features by
using the 10-fold cross validation.

been see, all of the texture analysis methods can achieve
accuracies in excess of 90%. For the traditional texture anal-
ysis methods, the classification performances of Gabor and
LBP are almost similar, which are better than that of GLCM
and slightly worse than that of AMBP. The newly proposed
ARBP obtained themost excellent classification performance
compared with the other methods, it could perfectly separate
the abnormal cornea images from normal cornea images with
the accuracy of 99.74%, and the values of TPR, TNR, AUC
are close to 1. Furthermore, the ROC curve of ARBP is close
to the best possible ROC curve. These experimental results

FIGURE 10. ROC curves of multiple features using SVM classifier using
the 10-fold cross validation.

FIGURE 11. Image preprocessing results. (a) The original abnormal
image. (b) The image after a sub-regional contrast stretching algorithm.
(c) Binary image with the threshold determined using Otsu’s method.
(d) Image after the connected domain process.

demonstrate the effectiveness of the proposed classification
framework.

C. RESULTS OF HYPHAE DETECTION AND
QUANTITATIVE EVALUATION
We preprocessed the images and converted them to binary
images, and the preprocessing results are shown in Fig. 11.
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FIGURE 12. LSD processing results. (a) The original abnormal image.
(b) The image after preprocessing. (c) The output of the LSD
with the detected lines.

Afterward, we detected the hyphae using the LSD algorithm.
As shown in Fig. 12, most of the hyphae have been effectively
detected as short lines.

FIGURE 13. Hyphal density calculation results (a) A hyphal density
of 1875. (b) A hyphal density of 1570.

We calculated the hyphal density of the abnormal hyphae
images using the ratio of length versus area. Considering that
all of the test images have the same area, the hyphal density
can be represented by the lengths of the hyphae. Fig. 13
shows the results for two hyphae images. The former has a
hyphal density of 1875, and the latter has a density of 1570,
which means that the first patient has a higher possibility of
having a severer fungal keratitis. The evaluation result can
provide doctors with auxiliary diagnostic information and
assist doctors in combining the patient’s symptoms and the
results of several other medical examinations to determine a
diagnosis.

VI. CONCLUSIONS AND FUTURE RESEARCH
In this study, a novel framework for detecting and measuring
hyphae is proposed.We classify normal and abnormal images
based on the newly proposed texture analysis method adap-
tive robust binary pattern (ARBP) and the classic classifier
support vector machine (SVM), and then, we preprocess the
abnormal images to enhance the targets and use the line seg-
ment detector (LSD) algorithm to detect the hyphae. Further-
more, the hyphal density is defined to quantitatively evaluate
the infection severity. The experimental results demonstrate
the effectiveness of the proposed framework. The newly pro-
posed adaptive robust binary pattern (ARBP) can help extract

effective texture features of images with relatively bright and
small targets.

We aimed to establish an intelligent confocal images anal-
ysis and diagnosis system to provide doctors with auxiliary
diagnostic information. There are several species of fungi
with different forms that can lead to fungal keratitis, such
as fusarium and aspergillus. At the present stage, we have
implemented two-class classification, respectively, abnormal
images and normal images. Further more, we need to extract
deeper texture features and implement classification of dif-
ferent fungi that present different forms. To achieve this
goal, first and most importantly, we must collect a very large
number of images of corneas infected by different fungi. Then
we plan to introduce deep learning methods to the feature
extraction and classification of the cornea images, such as
convolution neural network and deep belief network. Estab-
lishing an intelligent confocal images analysis and diagnosis
system is a large challenge, although at present it cannot
replace doctors in making a medical diagnosis, we believe
that as the rapid renovation and industrialization of technique,
intelligent medical images analysis and diagnosis system will
provide doctors increasingly accurate diagnostic messages
and convenient services.
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