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ABSTRACT Human epithelial type 2 (HEp-2) cell images play an important role for the detection of
antinuclear autoantibodies in autoimmune diseases. As the HEp-2 cell has hundreds of different patterns,
none of currently available HEp-2 datasets contain all of the types. Therefore, existing automatic processing
systems for HEp-2 cells, e.g., cell segmentation and classification, needs to be transferred between different
data sets. However, the performances of transferred system often dramatically decrease, especially when
transferring supervised-approaches, e.g., deep learning network, from large dataset to the small but similar
ones. In this paper, a novel transfer-learning framework using generative adversarial networks (cC-GAN)
is proposed for robust segmentation of different HEp-2 datasets. The proposed cC-GAN tries to solve the
overfitting problem ofmost deep learning networks and improves their transfer-capacity. An improvedU-net,
so-called Residual U-net (RU-net), is developed to work as the generator for cC-GAN model. The cC-GAN
was first trained and tested using I3A dataset and then directly evaluated usingMIVIA dataset, which is much
smaller than I3A. The segmentation result demonstrates the excellent transferring-capacity of our cC-GAN
framework, i.e., a new state-of-the-art segmentation accuracy of 75.27% was achieved on MIVIA without
finetuning.

INDEX TERMS Cell segmentation, generative adversarial networks, fully convolutional network.

I. INTRODUCTION
The patterns of Human Epithelial type 2 (HEp-2) cell pro-
vide useful information for the diagnosis of autoimmune
diseases. To alleviate the shortcoming of traditional manual
approaches, e.g. inter-observer variability, various automatic
systems for HEp-2 cell classification have been proposed [1].
Foggia gave a thorough review of automatic processing sys-
tems developed for HEp-2 cell images in [2] and [3] and
more recent reviews were provided by Hobson et al. [4]–[6].
As most of the existing classification approaches involve cell
segmentation as their first step, the accuracy of segmentation
makes direct influence to the final classification accuracy.
Hence, a robust automatic segmentation approach for HEp-2
cell image is worthwhile to develop.

Cell image segmentation is a field that has been exten-
sively studied. The accurate segmentation results can increase
the performance of subsequent processing, e.g. cell clas-
sification, etc. Intensity thresholding is the oldest, and
still one of the most predominant approaches for cell

segmentation [7]. Perner proposed the first thresholding
based segmentation for HEp-2 cell images using Otsu [8].
Based on the previous work, Huang developed a hybrid
segmentation method combining Otsu and Canny operator
to improve the segmentation accuracy [9]. In more recent
research, a novel approach for HEp-2 cell segmentation based
on the framework of verification-based multi-threshold prob-
ing was proposed by Jiang et al. [10]. Other typical seg-
mentation approaches, e.g. morphological filtering, have also
been applied to HEp-2 cell images. For example, Percan-
nella employed a sort of classifier-controlled morphological
dilation operation for the better structuring of HEp-2 cell
areas [11]. Many researches [12]–[14] improved the typical
watershed algorithm [15] for the segmentation of HEp-2 cell
images. In more recent research, Merone et al. proposed
an active-contour based segmentation algorithm for HEp-2
images [16]. Although many studies [16], [17] have been
made for HEp-2 cell segmentation, due to the big variances
of appearances among different HEp-2 cell categories, most
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of the previous studies are only able to provide accurate
segmentation for images of some specific cell patterns.

Deep convolutional neural networks (CNNs) gain exten-
sive attention from researchers since their performances
surpassed the state-of-the-art in many visual recognition
tasks. Although the typical application of convolutional net-
works is classification, many researchers have made their
trials using CNN to address the problem of biomedical
image segmentation in recent years. Ciresan et al. trained a
CNN in a sliding-window setup to predict the class label,
i.e. foreground/background, of each pixel [18]. The net-
work produces outstanding segmentation results for Electron
Microscopy (EM) images. However, there is a trade-off
between the window-size and segmentation performance
of the CNN approach, i.e. larger window-size decreases
the segmentation accuracy whilst smaller size provide lim-
ited context. Hence, inspired by the Fully Convolutional
Network (FCN) [19], Ronneberger proposed the U-net for
microscopy image segmentation [20], which surpassed the
CNN-based segmentation network on EM dataset. In more
recent research, Li proposed a hybrid network combining
the FCN and Residual Network to segment HEp-2 specimen
image [21], which achieved a new state-of-the-art segmenta-
tion accuracy. The main idea under FCN model is to apply
the classification networks (AlexNet [22], VGG net [23],
GoogLeNet [24], and ResNet [25]) to segmentation task
by transforming the last classifier layers to deconvolutional
layers. Compared to the CNN-based segmentation network,
FCN is a more elegant architecture as it does not require
the setting of sliding-window size [20]. Due to the effective
segmentation results produced by FCN, the model has been
used to segment not only microscopy images but also other
medical images. For example, Chen proposed a FCN-based
network for the segmentation of glands [26]. Recently, gen-
erative adversarial networks (GAN) has also been applied
to generate segmentation mask in [27]. Kohl employed the
architecture proposed in [27] to segment the MRI of aggres-
sive prostate cancer [28].

Although the deep learning approaches outperformed the
traditional methods on various processing tasks, the primary
problems of using deep learning to process HEp-2 cell image
gradually emerge, i.e. lack of training data and network over-
fitting. As the HEp-2 cell has hundreds of different patterns,
the image volume of some patterns may be relatively small,
e.g. only four Cytoplasmic specimen images are available
in MIVIA dataset [2]. Insufficient training data makes the
deep network unable to correctly segment and recognize the
cell images of rare patterns. To address the problem, models
are often pre-trained on large dataset, e.g. ImageNet or I3A
datasets [4], and then transferred to the small but similar
ones, e.g. MIVIA. Phan finetuned a model pre-trained on
ImageNet to MIVIA dataset for HEp-2 cell classification
[29]. Bayramoglu et al. pre-trained their network on I3A to
achieve better classification performance on MIVIA [30].
However, due to the overfitting problem, the performances of
transferred deep learning system often dramatically decrease.

Furthermore, most of previous transfer-learning work mainly
focuses on the classification problem of small HEp-2 dataset.
Annotated masks were used to extract cell areas from spec-
imen images in the classification approaches. Therefore,
their classification performances may significantly decreases
in practical application due to the lack of reliable auto-
matic segmentation approach. The first work transferring
deep learning network to segment small HEp-2 dataset was
made in the very recent research [21]. A fully convolutional
residual network (FCRN) pre-trained on I3A dataset was
transferred to segment MIVIA dataset, with a segmentation
accuracy of 59.88%. Although the transferred FCRN sur-
passed all the traditional methods, the robustness of trans-
ferred HEp-2 segmentation network still has large margin for
improvement.

In this paper, we proposed a novel model using condi-
tional generative adversarial networks (cC-GAN) for robust
segmentation among different HEp-2 datasets. The networks
trainedwith proposed cC-GAN framework alleviate the influ-
ence caused by network overfitting and achieved the better
transferring capacity for small-scale HEp-2 dataset. A hybrid
network combining ResNet and U-net (RU-net) is proposed
as the generator of cC-GAN. The RU-net achieved better
segmentation performances than the typical U-net on the
HEp-2 datasets of I3A and MIVIA. To more effectively
train the transfer-learning frameworks, a novel hybrid training
scheme (additional-epoch training, AEt) is proposed, which
consists of common training and extra GAN training. As the
GANmodel involves two primary components, i.e. Generator
network (G) and Discriminator network (D), we also investi-
gated the relationship between the G and D, and disclosed the
rules of network selections for the small-scale HEp-2 dataset,
e.g. MIVIA.

II. RELATED WORK
A. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks (GAN) is first proposed by
Goodfellow [31] in 2014, which provides a game-theoretic
formulation for training models for image generation. The
GAN attracts increasing attentions from researchers in recent
years. Extensive works improving the typical GAN model
has been proposed to increase the quality and variability of
generated images [32], [33].

A generative adversarial network (GAN) consists of two
networks trained in the oppositions. The typical generator
(G) takes a random noise vector z and accordingly gener-
ates an image, Xfake = G(z). The typical discriminator (D)
receives an input image and decides if it is a training image
(y) or synthesized image from generator (G(z)). The objective
of a typical GAN can be expressed as

LGAN (G,D) = Ey∼pdata(y)[logD(y)]

+Ez∼pz(z)[log (1− D (G (z)))] (1)

where G tries to minimize the objective whilst the discrimi-
nator (D) tries to maximize it, i.e. argminGmaxDLGAN (G,D).
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FIGURE 1. Comparison of GAN frameworks. G and D stand for generator and discriminator, respectively. (a) The typical AC-GAN (GAN with auxiliary
classifier). The classification loss is used to improve the quality of generated images. (b) The typical pix2pix model with two losses, i.e. GAN loss
and L1 loss. (c) The proposed cC-GAN with GAN loss, L1 loss and classification loss.

B. GAN WITH AUXILIARY CLASSIFIER (AC-GAN)
Recent research [34] illustrates that the performance of image
synthesis can be improved by adding an auxiliary classifier
to generative adversarial networks. Based on the observation,
Odena proposed a variant of GAN, namely AC-GAN [34].
The AC-GAN added a classification branch to the discrimi-
nator of GAN. Therefore, the discriminator has both a proba-
bility distribution over sources and a probability distribution
over the class labels. The objective function of AC-GAN has
two parts, i.e. LGAN and LClass. The LClass can be generally
defined as

LClass = Ey∼pclass(y)
[
logP (C = c |Xreal)

]
+Ez∼pz(z)[P(C = c|Xfake)] (2)

where D is trained to maximize LGAN + LClass while G is
trained to maximize LClass − LGAN .

C. IMAGE-TO-IMAGE TRANSLATION USING GAN
In addition to image generation, image-to-image transla-
tion using GAN models is another on-going research topic.
It applies GAN in the conditional setting [35], [36] to per-
form various kinds of image transformations, e.g. colorizing
pictures with object edges, transferring day photos to night
and converting maps to aerial photos, etc. The first work in
this area was named by pix2pix [27]. Assuming the provided
conditional image as x, the objective of conditional GAN
(cGAN) involved in pix2pix can be expressed as

LcGAN (G,D) = Ex,y∼pdata(x,y)[logD(x, y)]

+Ex∼pdata(x),z∼pz(z)[log(1−D(x,G(x, z)))]

(3)

The pix2pix framework also employs a L1 distance loss
between the synthesized image and corresponding ground

truth for generator network, i.e. LL1(G). Hence, the final
objective of pix2pix framework is argminGmaxDLcGAN
(G,D)+ λLL1(G). λ is a ratio factor for L1 loss (LL1).

III. NETWORK ARCHITECTURE
A. THE FRAMEWORK OF cC-GAN
We proposed novel conditional generative adversarial net-
works with classifier (cC-GAN) to improve the transferring
capacity of pre-trained fully-convolutional network. Fig. 1 (c)
presents the architecture of cC-GAN, which contains two
primary components, i.e. generator (G) and discriminator
(D). Given the input cell image, the generator in our cC-
GAN model accordingly generates the cell masks, which is
equivalent to cell segmentation whilst the discriminator aims
to distinguish the generated images from ground truths.
The proposed cC-GAN is a hybrid network based on AC-

GAN (Fig. 1 (a)) [34] and pix2pixmodel (Fig. 1 (b)) [27]. The
typical AC-GAN is proposed to synthesize an image from a
random noise. Thus, it is not able to complete the image-to-
image translation task, e.g. from cell images to binary masks.
The pix2pix model is able to perform image-to-image trans-
lation task. However, it only uses the GAN loss to assess the
translation performance, which is not stable and easily col-
lapses in training process. Since the AC-GAN demonstrates
that classification loss can improve the quality of samples
generated byGANmodel and stabilize GAN training, our cC-
GAN (Fig. 1 (c)) combines AC-GAN and pix2pix models by
adding a classification branch to the discriminator of pix2pix.
Three losses are involved in the proposed cC-GAN, i.e. L1

loss (LL1), GAN loss (LcGAN ) and Softmax loss (Lclass). The
L1 loss is employed to encourage generator network to predict
the right label, i.e. foreground/background for each pixel in
the image. The GAN loss is used to discriminate the output
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TABLE 1. Architecture of discriminator in cC-GAN.

of generator network from the ground-truth. With the GAN
loss, the discriminator network is able to tell the generator
whether the entire generated image or a large portion of it
mismatches with the ground-truth. Therefore, the generator
can accordingly update its network weights. The GAN loss
can be seen as a regularization term for the generator network
to avoid overfitting. The Softmax loss, defined in Eq. (4),
enables the discriminator network to predict the categories
of input cell images.

Lclass =
1
N

∑
i

Li =
1
N

∑
i

−log(
efli∑
j e
fj
) (4)

where fj denotes the j-th element (j ∈ [1,K ], K is the number
of classes) of vector f predicted by the discriminator, li is the
label of i-th input feature andN is the number of training data.
Hence, according to Eq. (2-3), the objective of our

cC-GAN framework can be expressed as

arg(minGmaxD (LcGAN (G,D)+ λLL1 (G))

+minGminDLclass(G,D)) (5)

where λ is set to 100 in the experiments.
The proposed cC-GAN adopts the architectures of U-net/

RU-net as generator network, which will be introduced in the
next section. The architecture for discriminator is similar to
the one introduced in [27], whose detail is listed in Table 1.
The pipeline consists of Input layer (I), Convolutional
layer (C), Batch Normalization layer (BN), LeakyReLU,
Fully-connected layer (FC) and loss layers, i.e. Sigmod and
Softmax.

B. RESIDUAL U-NET BASED GENERATOR
U-net is a fully-convolutional networkwidely-used as genera-
tor for conditional GANmodels, e.g. pix2pix, which fuses the
features extracted from shallow and deep convolutional layers
to produce accurate segmentation masks. Residual Network
(ResNet) won the competition of ILSVRC 2015, demonstrat-
ing its excellent capacity of feature extraction. Combining
the advantages of the two network architectures, we proposed
so-called Residual U-net (RU-net) for the generator network
of our cC-GAN. The architecture of proposed RU-net is
presented in Fig. 2.

The proposed RU-net consists of 7 residual modules (RM)
and 7 deconvolutional layers (DC). The purple rectangles are
the output feature maps from corresponding residual mod-
ules. The black arrows stand for concatenation operation. The

FIGURE 2. Flowchart of RU-net. Each rectangle represents a network
module which may contain more than one layer. The numbers in each
module represent the size and amount of convolutional kernels. The
steps of convolutional layer and residual modules are set to 2.

FIGURE 3. The architecture of residual module.

convolutional layer and residual modules in RU-net extract
image features by making convolutional operation with a
stride of 2. To produce the segmentation results of the same
size to input image, the deconvolutional layers are employed
to up-sampled the feature maps. Batch normalization [37] is
used to reduce internal covariate shift during training process.
LeakyReLU [38] is used as the non-linear activation function
for the proposed RU-net.

As deeper network has larger receptive field enclosing
more contextual information for segmentation, the proposed
RU-net replaces the original plain convolutional connections
of U-net with residual modules. The RM structure was veri-
fied to help alleviating the gradient vanishing problem as the
network goes deeper. As shown in Fig. 3, the skip connections
can directly propagate signals forward and backward.

C. ADDITIONAL-EPOCH TRAINING SCHEME
(AE-TRAINING)
When the training scheme stated in [27] and [28] simultane-
ously trains the G and D, we found it not stable to train the
cC-GAN in our experiments. Therefore, we proposed in this
paper the additional-epoch training scheme (AEt) to train our
cC-GAN model:
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Step 1: The generator, i.e. U-net/RU-net, (without GAN
structure) was first trained on I3A dataset only supervised by
L1 loss until it converges, i.e. 9 epochs in our experiments.
Step 2: The pre-trained generator was loaded into the

cC-GAN model and further finetuned on I3A dataset for 1 to
2 epochs with the supervision of GAN, L1 and classification
losses.

The aim of GAN model is to balance the performances
between generator and discriminator. Hence, the GANmodel
is easy to collapse when one component (G/D) always
outperforms the other. The proposed AE-training scheme
separately trains the generator and discriminator, such that the
oscillations occurred in network training caused by random
initialization can be reduced. That helps to balance the gener-
ator and discriminator, stabilize the training process, alleviate
the model collapse problem and improve the segmentation
performance of generator.

D. IMPLEMENTATION
The proposed framework is developed with Torch toolbox.
The networks were trained on one Tesla K80 (11GB RAM).
The detailed setting for training the cC-GANmodel is accord-
ingly set as claimed in [27]. ‘Adam’ [39] is used as the solver
for Stochastic Gradient Descent.

IV. PROCESSING APPROACHES
A. PRE-PROCESSING
The I3A dataset contains 1008 HEp-2 specimen images with
size 1388 × 1040 and their contrast is low. An appropriate
image pre-processing approach is necessary for the generator
network to better extract internal features and perform seg-
mentation. Hence, the same pre-processing approach stated
in [21] is adopted in our work.

Since the proposed cC-GANmodel can be trained with few
training data, our data augmentation scheme only involves
image cropping. We consecutively cropped 20 pieces of
256×256 sub-images from each HEp-2 specimen image and
generated a set of 20,160 images.

B. POST-PROCESSING (OPTIONAL)
As most of the generated segmentation results have over-
lapped cells as shown in Fig. 4 (a), the proposed cC-GAN
framework employs the watershed transform to separate
them. The positions of seed points for watershed transform

FIGURE 4. Disjoint connected cells. (a) Patch of original cell image.
(b) Initial segmentation results from cC-GAN model. (c) Separation results
from watershed transform.

are detected by applying morphological erosion to the initial
segmentation result (Fig. 4 (b)). Fig. 4 (c) is the final result
separating the connected three cells. The post-processing step
is optional.

V. EXPERIMENTAL RESULTS
A. DATASET
1) I3A1

The dataset was first released in the fluorescent image based
cell classification contest organized by ICIP 2013 [4], and
used again in the contest organized by ICPR 2014 [5].
The dataset records 252 specimens from seven categories,
Homogeneous (53), Speckled (52), Nucleolar (50), Cen-
tromere (51), Golgi (10), Nuclear membrane (21), and
Mitotic spindle (15). The numbers in brackets are the number
of specimens for corresponding type of cells. For each spec-
imen, four images were captured in different locations with
size of 1388 × 1040; therefore, I3A HEp-2 dataset contains
1008 grayscale specimen images.

2) MIVIA2

MIVIA dataset, first used in ICPR 2012 Contest, is widely-
accepted for the performance evaluation of HEp-2 cell
segmentation algorithm. The dataset consists of 28 HEp-2
green-channel specimen images with a resolution of 1388 ×
1038, which can be classified into six categories: Homo-
geneous (6), Fine speckled (4), Coarse speckled (5), Cen-
tromere (6), Nucleolar (4) and Cytoplasmic (4).

It is worthwhile to mention that MIVIA dataset only con-
tains 28 specimen images which are too few to finetune a
deep learning framework. Furthermore, the cell categories are
different between I3A andMIVIA, resulting in difficulties for
a deep learning network pre-trained on I3A to yield accurate
segmentation results for images of cell category only avail-
able in MIVIA, e.g. Cytoplasmic.

B. EVALUATION CRITERION
The cell areas were manually annotated as ground truths
by the dataset provider. Using the provided ground truths,
the segmentation accuracy (SEG) can be calculated via:

SEG =
2× Precision× Recall
Precision+ Recall

(6)

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

(7)

where the values of TP (number of true positives), FP
(number of false positives) and FN (number of false nega-
tives) were computed according to the definitions proposed
in previous work [11].

C. EVALUATION OF cC-GAN
We first use I3A dataset (five-fold cross validation) to elab-
orate the training process of cC-GAN. The split protocol of

1http://nerone.diem.unisa.it/hep2-benchmarking/dbtools/
2http://mivia.unisa.it/
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five-fold cross validation is the same to [21]. The U-net and
RU-net are employed as generator network. The proposed
AE-training mechanism, i.e. 9 epochs of common training +
1 epoch of GAN training, was adopted as the training scheme.
The typical cGAN only using GAN loss [31] was involved for
comparison.

The curves of training error during extra GAN epoch for
one of the five-fold cross validation are presented in Fig. 5.
The print frequency for training losses is set to 50 iterations;
therefore, we have 350 records. The errG and errD stand
for the losses from generator and discriminator networks,
which are LcGAN (G,D) for typical cGAN and LcGAN (G,D)+
Lclass(G,D) for our cC-GAN. As illustrated in Fig. 5, com-
pared to the proposed cC-GAN (Fig. 5 (c) and (d)), the per-
formances of generator and discriminator are not balanced
during extra cGAN training (Fig. 5 (a) and (b)), i.e. the
discriminator always surpasses the generator.

FIGURE 5. Training error curves during extra GAN epoch. (a) cGAN with
U-net (b) cGAN with RU-net (c) cC-GAN with U-net (d) cC-GAN with
RU-net.

We listed in Table 2 the SEG of five-fold cross validation
for different GAN models. One can observe that the perfor-
mance of U-net and RU-net gradually increases from epoch
#3 to #9 as the networks start to converge. They reached the
best after 9 epochs, i.e. 85.56% for U-net and 86.00% for
RU-net. Due to the unstable training process of cGAN, per-
formance degradations are observed after additional cGAN
training, i.e. drops of 2.75% for U-net and 6.28% for RU-net.
In contrast, the extra epoch of cC-GAN training provides
improvements of SEG, i.e. 0.21% for U-net and 0.15% for
RU-net.

To assess the transferring capacity, the pre-trained
cC-GAN framework was directly applied to MIVIA dataset
without finetuning. Fig. 6 presents the transferring capacities
of cGAN and cC-GAN on MIVIA, with different training
epochs. The lines in red are the SEG for GAN models using
RU-net and the cyan lines are for the ones using U-net.

TABLE 2. Variation of SEG during AE-training on I3A (%).

FIGURE 6. SEG of U-net/RU-net on MIVIA dataset during AE-training. The
cyan lines stand for GANs with U-net and the red lines are for the ones
with RU-net.

Fig. 6 illustrates that RU-net provides better transferring
capacity than U-net after 3 epochs of training. After 9 epochs
of common training, the SEG of RU-net on MIVIA reaches
around 72%,which is about 1% higher than that of U-net. Due
to the imbalance AE-training, cGAN produces a marginal
improvement for RU-net whilst a degradation for U-net.
In comparison, the proposed cC-GAN significantly boosts the
performance of U-net/RU-net on MIVIA in epoch #10. The
performance improvements are 2.52% and 2.60% for U-net
and RU-net, which demonstrates that as the regularization
term, the additional epoch of cC-GAN training in AE-training
scheme can effectively alleviate the overfitting problem and
improve the transferring capacity of U-net/RU-net.

Fig. 7 presents segmentation results of different deep learn-
ing frameworks for each cell category of MIVIA. The results
from U-net have a severe problem of over-segmentation,
e.g. many fault segmentations were generated in the result
for Coarse Speckled. The RU-net produces decent results
alleviating the problem of over-segmentation, which illus-
trates that the residual modules can help network to bet-
ter extract cell features. Compared to the common trained
U-net/RU-net, the networks with AE-training, i.e. cC-GAN
with U-net/RU-net, produces more complete cell outlines,
which can be easily observed by comparing the results of
Homogeneous and Centromere. As the cell pattern of Cyto-
plasmic is not contained in the training set, i.e. I3A, the seg-
mentation results generated by the frameworks for this cell
pattern are visually different from the ground truths.

D. COMPARISON WITH STATE-OF-THE-ART
1) I3A DATASET
In this section, we evaluate the segmentation accuracy of pro-
posed cC-GAN with benchmark algorithms on I3A dataset
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FIGURE 7. Segmentation results on MIVIA dataset. The first column shows examples from each cell category. The corresponding ground truths are
presented in the second column. The following columns present the results from different frameworks.

using five-fold cross-validation. The Otsu approach [8], Fully
Convolutional ResNet (FCRN) [21], original U-net [20] and
original pix2pix model [27] are involved for comparison.
Table 3 lists the SEG for different approaches.

It can be observed from Table 3 that all deep learning
based approaches perform much better than the Otsu. For
non-GAN networks, FCRN-88 with 88 layers performs the
best and our RU-net ranks the second. The GAN network
proposed for image segmentation, pix2pix, does not perform
well, i.e. a SEG of 78.93%. Compared to the adoption of
cGAN, which didn’t improve the performance of U-net, the
proposed cC-GAN improved the performance of both U-net
and RU-net.

Due to the larger receptive fields, deeper networks are able
to capture more contextual information for complex image

TABLE 3. Segmentation performances on I3A.

processing tasks. Hence, the deepest FCRN-88 produces the
best SEG of 87.29%, which is 1.14% higher than that of
our cC-GAN with RU-net. However, the deeper architecture
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TABLE 4. SEG of different approaches for each category in MIVIA (%).

leads to the increase of parameters, which increases the risk
of overfitting when the training dataset is insufficient.

2) MIVIA DATASET
The proposed networks trained on I3A are directly tested on
MIVIA without finetuning for transferring capacity evalua-
tion. The SEG of different approaches for six cell patterns of
MIVIA is calculated and listed in Table 4. Previous meth-
ods are included in this paper for comparison: the method
using Otsu [8], the watershed-based segmentation method
for HEp-2 images [12], the adaptive segmentation approach
proposed in [9], the auto-learning method suggested in [11],
the marker-control watershed [14], the fully convolutional
network transformed from typical ResNet-50/101 [25], the
fully convolutional ResNet for HEp-2 images [21], the orig-
inal pix2pix framework [27] and the typical U-net [20]. The
last column in Table 4 presents the average SEG of six
cell classes. All of the deep learning frameworks listed in
Table 4 are trained on I3A and tested on MIVIA without
finetuning.

For comparison convenience, we separate Table 4 to
three parts, i.e. traditional hand-crafted approaches, deep-
learning based approaches and deep-learning framework with
AE-training. To investigate the influence caused by classi-
fication branch, multi-task RU-net is developed by adding
a classification branch to the original RU-net. It can be
observed that cC-GAN provides higher improvement, i.e.
2.60%, for RU-net compared to that of multi-task learning,
i.e. 0.63%.

For the deep learning models without AE-training, the
multi-task RU-net achieves the best segmentation perfor-
mance on MIVIA, i.e. 73.30%, which is 0.63% higher than
the runner-up, i.e. RU-net. The SEG of Multi-task RU-net
is 13.42% higher than that of very deep FCRN-88, which

suffered from overfitting problem. The segmentation perfor-
mance of cGANwith U-net trained with AE-training scheme,
i.e. 71.34%, surpasses the original pix2pix, i.e. 60.54%.

Although the proposed AE-training mechanism provides
improvements for both U-net and RU-net, its performance
varies with different selections of G and D. Due to the dif-
ficulty of maintaining balance in AE-training with cGAN,
the cGAN-based model yields a marginal improvement
of 0.77% to RU-net and a degradation of 0.60% to U-net.
The classification branch stables the AE-training by mak-
ing the discriminator of cC-GAN with a more complex
architecture.

Hence, our cC-GAN produces significant improvements
for both of U-net and RU-net, i.e. improvements of 2.52%
and 2.60%, respectively. The cC-GAN with RU-net trained
by AE-training mechanism achieves a new state-of-the-art
result, i.e. 75.27% average SEG on MIVIA. The AE-trained
cC-GAN (with U-net/RU-net) achieved the best SEG for
Homogeneous (82.59%), Fine Speckled (87.11%), Coarse
Speckled (84.52%), Centromere (77.12%) and Cytoplasmic
(50.03%), which significantly outperforms that of runner-up,
i.e. Marker-control watershed. To assess the statistical signif-
icance of our results, we made a T-test validation between
cC-GAN with RU-net and Marker-control watershed. The
probability of observing the given results generated by T-test
is 67.60%.

To further evaluate the performance of our cC-GAN,
we compared the cC-GAN with benchmarking algorithms
on an extra HEp-2 dataset, namely Indirect ImmunoFluo-
rescence Segmentation dataset (IIFS) [16]. The IIFS dataset
contains 24 images from the categories of Homogeneous (H),
Fine speckled (FS), Coarse speckled (CS) and Nucleolar (N).
We follow the same protocol presented in [16] for perfor-
mance evaluation and the results are listed in Table 5. In the
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TABLE 5. SEG of Different Approaches for Each Category in MIVIA &
IIFS (%).

table, the segmentation accuracy for each cell category is an
average of the results obtained from MIVIA and IIFS.

The proposed cC-GAN was directly applied to IIFS
without finetuning. Table 5 shows that the cC-GAN with
RU-net achieves comparable accuracy with state-of-the-art,
i.e. Active contour, for H, CS and N. For FS, the accuracy
of our cC-GAN i.e. 89.0%, is 3.6% higher than that of the
runner-up, i.e. Active contour. The average SEG (84.9%) of
our cC-GAN is higher than all other competing algorithms.
A T-test validation is made between the results from cC-GAN
andActive contour to evaluate the statistical significance. The
probability generated by T-test is 86.94%.

VI. DISCUSSION AND CONCLUSION
A. DISCUSSION
We have presented a cC-GAN transferring-learning frame-
work to better segment HEp-2 specimen images among dif-
ferent datasets. Based on the presented results, a discussion
is presented in this section.

1) HOW TO SELECT MODEL FOR DIFFERENT TASKS?
Table 3 listed the SEG of deep learning networks on I3A
for five-fold cross validation. It demonstrates that deeper
network can yield better segmentation results if there are
sufficient training data. The SEG on I3A dataset increases
from 85.56% to 87.29%, when the network depth goes deeper
from 16 to 88 layers. However, the deeper network has
higher risk of overfitting, e.g. the transferring performance
of FCRN-88 is only 59.88% on MIVIA, i.e. 12.06% lower
than that of U-net. Hence, very deep networks work better
for the application with enough volume of training data, e.g.
using the models trained on I3A training set to segment the
specimen images in the unpublished I3A testing set.

As small dataset has insufficient data to train or finetune
a deep learning network, segmentation framework has to be
pre-trained on large dataset and then transferred to segment
the small one. The transferring capacity of framework plays
a vital role in this task. As presented in Table 4, the proposed
AE-training improves the transferring capacity of U-net/
RU-net. The core of AE-training is to balance the perfor-
mances of generator and discriminator networks, which is
easier if the two components have similar complexities of
network architecture. Hence, to segment the small HEp-2
dataset, e.g. MIVIA, the AE-training cC-GAN with RU-net,
which has excellent transferring-capacity, is more preferable.

2) WHY IS cC-GAN BETTER THAN cGAN?
As presented in Table 4, cGAN model decreases the per-
formance of U-net, but produces marginal improvement,

FIGURE 8. The distribution of features learned by different
discriminators. (a) cGAN and (b) cC-GAN. Different colors stand for
different cell categories.

i.e. 0.77%, for RU-net. In contrast, the proposed cC-GAN
provides similar improvements for both U-net and RU-net.
The only difference between cGAN and cC-GAN is the extra
classification branch added to discriminator. Hence, to further
explore the underlying reason of better performances pro-
vided by cC-GAN, a discussion of the discriminator networks
is performed in this section.

Due to the same structures of first four layers of discrimina-
tors in cGANand cC-GAN, the features learned by layer #4 of
discriminator from both GAN frameworks were visualized
in Fig. 8 using t-SNE [40]. The numbers in color bar stand
for corresponding cell categories, i.e. 1 for Homogeneous,
2 for Speckled, 3 for Nucleolar, 4 for Centromere, 5 for Golgi,
6 for Nuclear membrane and 7 for Mitotic spindle.

Fig. 8 illustrates that the classification branch enriches the
information contained in each neuron of discriminator. The
features learned by layer #4 of discriminator in cC-GAN
(Fig. 8 (b)) are able to not only distinguish real/fake sam-
ples, but also recognize their cell categories. As presented
in Fig. 8 (b), the cC-GAN has learned to separate Centromere
cells from the others, i.e. the cluster of Centromere (label #4)
is located in the bottom of Fig. 8 (b). In contrast, the features
learned by cGAN have a random distribution (Fig. 8 (a)),
which means they have no capacity to distinguish the cell
categories. As cC-GAN is only employed for one epoch of
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TABLE 6. Leave-one-out on MIVIA (%).

training for the purpose of network regularization, its classi-
fication performance is not comparable to that of the state-of-
the-art algorithms. However, the use of classification branch
increases the complexity of discriminator, which stables the
AE-training. Furthermore, the classifier branch not only pro-
vides richer information for discriminator, but also for the
generator, i.e. minGminDLclass(G,D), which enables the gen-
erator to produce better segmentation results. Those factors
finally result in the improvement of SEG using cC-GAN and
the degradation of SEG using cGAN.

3) IS IT POSSIBLE TO USE ULTRA-DEEP
NETWORK AS GENERATOR?
We noticed that the ultra-deep network, i.e. FCRN-88
provides excellent performance on I3A dataset with a SEG
of 87.29%. According to the performance improvement pro-
duced by cC-GAN for U-net/RU-net, there is marginal space
for FCRN-88 to improve on MIVIA if the cC-GAN training
can be successfully applied. However, in the experiments,
we observed that the difficulty of GAN training significantly
increases as the generator network goes deeper. Due to the
large difference of network complexity between G and D,
the model collapse problem, as illustrated in Fig. 5 (b),
occurred in GAN training. On the other hand, if we construct
a deeper discriminator for FCRN-88, balancing two ultra-
deep networks is a difficult task for GAN model. Taking
the above factors into consideration, we did not take the
ultra-deep network, FCRN-88, as generator for the proposed
cC-GAN.

4) FINETUNING OR NOT?
As theMIVIA only has 28 specimen images, which are insuf-
ficient for the training of deep learningmodel, we finetune the
model pre-trained on I3A dataset using MIVIA and evaluate
the framework performances with leave-one-out experiment.
Table 6 listed the results of leave-one-out experiment. Com-
pared to the framework without finetuning (ft), the SEG
of Coarse-speckled, Centromere, Nucleolar and Cytoplasmic
significantly increased after finetuning. The average SEG of
finetuned cC-GAN with RU-net is 79.89%, which is 4.62%
higher than that of original framework.

Although the finetuning significantly improves the SEG of
several cell patterns, the deep learning networks involved in
our work are transferred from I3A to MIVIA without fine-
tuning, which has a number of advantages in the following
applications.

While hundreds of HEp-2 cell patterns are available,
it is very difficult to collect and label large number of
training samples for each pattern. Therefore, models with

knowledge-transferring capacity would be highly useful to
directly process small HEp-2 dataset without finetuning.
When no training data is provided in practical applications,
using pre-trained models to directly process small HEp-2
dataset is also highly desirable.

B. CONCLUSION
Human Epithelial type 2 (HEp-2) cell provides important
metric for systemic autoimmune disease diagnosis. To allevi-
ate the influence occurred in traditional manual approaches,
a reliable automatic diagnosis system is worthwhile to
develop. As the accurate segmentation results can increase
the accuracy of sub-sequent processing, e.g. HEp-2 cell
classification, the automatic segmentation of HEp-2 images
gradually becomes an attracting research topic. However,
the variety of HEp-2 cell patterns and the small volume
of some patterns make it a difficult task to perform robust
segmentation for different HEp-2 datasets.

In this paper, we proposed a novel framework of
conditional generative adversarial networks using auxiliary
classifier (cC-GAN) to address the challenge of HEp-2 cell
segmentation. The cC-GAN networks are employed to alle-
viate the overfitting problem of most deep learning networks
and improve their transfer-capacity. Advanced network archi-
tecture, i.e. Residual U-net, is proposed as the generator of
our cC-GAN. Furthermore, a novel training scheme, named
AE-training, is proposed to further improve the segmen-
tation performance. I3A dataset is used to train the pro-
posed framework and the publicly available much smaller
dataset, i.e. MIVIA, is used for testing. A new state-of-the-
art segmentation accuracy of 75.27% on MIVIA is achieved
by the proposed cC-GAN model without finetuning, which
indicates its excellent transferring-capacity between different
HEp-2 datasets.

REFERENCES
[1] L. Shen, J. Lin, S. Wu, and S. Yu, ‘‘HEp-2 image classification using inten-

sity order pooling based features and bag of words,’’ Pattern Recognit.,
vol. 47, no. 7, pp. 2419–2427, Jul. 2014.

[2] P. Foggia, G. Percannella, P. Soda, and M. Vento, ‘‘Benchmarking HEp-
2 cells classification methods,’’ IEEE Trans. Med. Imag., vol. 32, no. 10,
pp. 1878–1889, Oct. 2013.

[3] P. Foggia, G. Percannella, A. Saggese, and M. Vento, ‘‘Pattern recognition
in stained HEp-2 cells: Where are we now?’’ Pattern Recognit., vol. 47,
no. 7, pp. 2305–2314, Jul. 2014.

[4] P. Hobson, B. C. Lovell, G. Percannella,M.Vento, andA.Wiliem, ‘‘Bench-
marking human epithelial type 2 interphase cells classification methods
on a very large dataset,’’ Artif. Intell. Med., vol. 65, no. 3, pp. 239–250,
2015.

[5] P. Hobson, B. C. Lovell, G. Percannella, A. Saggese, M. Vento, and
A. Wiliem, ‘‘HEp-2 staining pattern recognition at cell and specimen
levels: Datasets, algorithms and results,’’ Pattern Recognit. Lett., vol. 82,
pp. 12–22, Oct. 2016.

VOLUME 6, 2018 14057



Y. Li, L. Shen: cC-GAN: Robust Transfer-Learning Framework for HEp-2 Specimen Image Segmentation

[6] P. Hobson, B. C. Lovell, G. Percannella, A. Saggese, M. Vento, and
A. Wiliem, ‘‘Computer aided diagnosis for anti-nuclear antibodies HEp-
2 images: Progress and challenges,’’ Pattern Recognit. Lett., vol. 82,
pp. 3–11, Oct. 2016.

[7] E. Meijering, ‘‘Cell segmentation: 50 years down the road [life sciences],’’
IEEE Signal Process. Mag., vol. 29, no. 5, pp. 140–145, Sep. 2012.

[8] P. Perner, H. Perner, and B. Müller, ‘‘Mining knowledge for HEp-2 cell
image classification,’’ Artif. Intell. Med., vol. 26, nos. 1–2, pp. 73–161,
2002.

[9] Y.-L. Huang, Y.-L. Jao, T.-Y. Hsieh, and C.-W. Chung, ‘‘Adaptive
automatic segmentation of HEp-2 cells in indirect immunofluorescence
images,’’ in Proc. IEEE Int. Conf. Sensor Netw., Ubiquitous Trustworthy
Comput., Jun. 2008, pp. 418–422.

[10] X. Jiang, G. Percannella, andM. Vento, ‘‘A verification-based multithresh-
old probing approach to HEp-2 cell segmentation,’’ in Proc. Comput. Anal.
Images Patterns, 2015, pp. 266–276.

[11] G. Percannella, P. Soda, and M. Vento, ‘‘A classification-based approach
to segment HEp-2 cells,’’ in Proc. Int. Symp. Comput.-Based Med. Syst.,
2012, pp. 1–5.

[12] Y.-L. Huang, C.-W. Chung, T.-Y. Hsieh, and Y.-L. Jao, ‘‘Outline detection
for the HEp-2 cell in indirect immunofluorescence images using water-
shed segmentation,’’ in Proc. IEEE Int. Conf. Sensor Netw., Jun. 2008,
pp. 418–422.

[13] C.-C. Cheng, J.-S. Taur, T.-Y. Hsieh, and C.-W. Tao, ‘‘Segmentation of
anti-nuclear antibody images based on the watershed approach,’’ in Proc.
IEEE Conf. Ind. Electron. Appl., Jun. 2010, pp. 1695–1700.

[14] S. Tonti, S. D. Cataldo, A. Bottino, and E. Ficarra, ‘‘An automated approach
to the segmentation of HEp-2 cells for the indirect immunofluorescence
ANA test,’’ Comput. Med. Imag. Graph., vol. 40, pp. 62–69, Mar. 2015.

[15] L. Vincent and P. Soille, ‘‘Watersheds in digital spaces: An efficient
algorithm based on immersion simulations,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 13, no. 6, pp. 583–598, Jun. 1991.

[16] M. Merone and P. Soda, ‘‘On using active contour to segment HEp-2
cells,’’ in Proc. IEEE Int. Symp. Comput.-Based Med. Syst., Jun. 2016,
pp. 118–123.

[17] C. S. Di, S. Tonti, A. Bottino, and E. Ficarra, ‘‘ANAlyte: A modular image
analysis tool for ANA testingwith indirect immunofluorescence,’’Comput.
Methods Programs Biomed., vol. 128, p. 86, May 2016.

[18] D. C. Cirean, G. Alessandro, L. M. Gambardella, and
J. Schmidhuber, ‘‘Deep neural networks segment neuronal membranes
in electron microscopy images,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 25. 2012, pp. 2852–2860.

[19] E. Shelhamer, J. Long, and T. Darrell, ‘‘Fully convolutional networks
for semantic segmentation,’’ in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2015, pp. 3431–3440.

[20] O. Ronneberger, P. Fischer, and T. Brox, ‘‘U-Net: Convolutional networks
for biomedical image segmentation,’’ in Proc. Med. Image Comput. Assist.
Intervent., 2015, pp. 234–241.

[21] Y. Li, L. Shen, and S. Yu, ‘‘HEp-2 specimen image segmentation and
classification using very deep fully convolutional network,’’ IEEE Trans.
Med. Imag., vol. 36, no. 7, pp. 1561–1572, Jul. 2017.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Int. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[23] K. Simonyan and A. Zisserman. (2015). ‘‘Very deep convolutional
networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

[24] C. Szegedy, W. Liu, Y. Jia, and P. Sermanet, ‘‘Going deeper with convo-
lutions,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 1–9.

[25] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for
image recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[26] H. Chen, X. Qi, L. Yu, and P.-A. Heng, ‘‘DCAN: Deep contour-aware
networks for accurate gland segmentation,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2016, pp. 2487–2496.

[27] P. Isola, J. Y. Zhu, T. Zhou, and A. A. Efros. (2016). ‘‘Image-to-image
translation with conditional adversarial networks.’’ [Online]. Available:
https://arxiv.org/abs/1611.07004

[28] S. Kohl et al. (2017). ‘‘Adversarial networks for the detection of aggressive
prostate cancer.’’ [Online]. Available: https://arxiv.org/abs/1702.08014

[29] H. T. H. Phan, A. Kumar, J. Kim, and D. Feng, ‘‘Transfer learning of a
convolutional neural network for HEp-2 cell image classification,’’ inProc.
IEEE Int. Symp. Biomed. Imag., Apr. 2016, pp. 1208–1211.

[30] N. Bayramoglu, J. Kannala, and J. Heikkilä, ‘‘Human epithelial type 2
cell classification with convolutional neural networks,’’ in Proc. IEEE Int.
Conf. Bioinf. Bioeng., Nov. 2015, pp. 1–6.

[31] I. J. Goodfellow et al., ‘‘Generative adversarial networks,’’ in Proc. Adv.
Neural Inf. Process. Syst., vol. 3. 2014, pp. 2672–2680.

[32] M. Arjovsky, S. Chintala, and L. Bottou. (2017). ‘‘Wasserstein GAN.’’
[Online]. Available: https://arxiv.org/abs/1701.07875

[33] D. Berthelot, T. Schumm, and L. Metz. (2017). ‘‘BEGAN: Bound-
ary equilibrium generative adversarial networks.’’ [Online]. Available:
https://arxiv.org/abs/1703.10717

[34] A. Odena, C. Olah, and J. Shlens. (2016). ‘‘Conditional image
synthesis with auxiliary classifier GANs.’’ [Online]. Available:
https://arxiv.org/abs/1610.09585

[35] M. Mirza and S. Osindero. (2014). ‘‘Conditional generative adversarial
nets.’’ [Online]. Available: https://arxiv.org/abs/1411.1784

[36] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee,
‘‘Generative adversarial text to image synthesis,’’ in Proc. Int. Conf. Mach.
Learn., 2016, pp. 1060–1069.

[37] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep network
training by reducing internal covariate shift,’’ in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, ‘‘Rectifier nonlinearities improve
neural network acoustic models,’’ in Proc. Int. Conf. Mach. Learn. Work-
shop Deep Learn. Audio, Speech, Lang. Process., 2013, pp. 1–6.

[39] D. P. Kingma and J. Ba. (2014). ‘‘ADAM: A method for stochastic opti-
mization.’’ [Online]. Available: https://arxiv.org/abs/1412.6980

[40] L. van der Maaten and G. Hinton, ‘‘Visualizing high-dimensional data
using t-SNE,’’ J. Mach. Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.

YUEXIANG LI received the B.Eng. degree in
telecommunications engineering from the Bei-
jing University of Posts and Telecommunications
in 2011, the M.S. degree in electronic engineer-
ing from The Hong Kong University of Science
and Technology in 2012, and the Ph.D. degree
in electronic engineering from the University of
Nottingham, Nottingham, U.K., in 2016.

He joined the Computer Vision Institute, Shen-
zhen University, Shenzhen, China, as a Research

Fellow, in 2015. His Ph.D. work is in the area of bioelectronics engineering
which is an interdisciplinary branch of science requiring knowledge from
both bioscience and electronic engineering. The principal aim of his project
is to establish a robust monitoring system for cells using image processing
techniques related to the area of pattern recognition and computer vision.

Dr. Li attended the Eighth International Symposium on Multispectral
Image Processing ànd Pattern Recognition, Wuhan, China, in 2013, and the
conference Optics Within Life Sciences, Ningbo, China, in 2014. He has
published two conference papers for these two events.

LINLIN SHEN (M’12) received the Ph.D. degree
from the University of Nottingham, Nottingham,
U.K., in 2005.

He was a Research Fellow with the Medical
School, University of Nottingham, involved in
brain image processing of magnetic resonance
imaging. He is currently a Professor and a Director
of the College of Computer Science and Software
Engineering, Computer Vision Institute, Shenzhen
University, Shenzhen, China.

His research interests include Gabor wavelets, face/palmprint recognition,
medical image processing, and hyperspectral image classification. He was
a recipient of the Most Cited Paper Award from the Journal of Image and
Vision Computing and was the winner of International Competition on Cells
Classification by Fluorescent Image Analysis. He is listed as a Most Cited
Chinese Researcher by Elsevier.

14058 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	GENERATIVE ADVERSARIAL NETWORKS
	GAN WITH AUXILIARY CLASSIFIER (AC-GAN)
	IMAGE-TO-IMAGE TRANSLATION USING GAN

	NETWORK ARCHITECTURE
	THE FRAMEWORK OF cC-GAN
	RESIDUAL U-NET BASED GENERATOR
	ADDITIONAL-EPOCH TRAINING SCHEME (AE-TRAINING)
	IMPLEMENTATION

	PROCESSING APPROACHES
	PRE-PROCESSING
	POST-PROCESSING (OPTIONAL)

	EXPERIMENTAL RESULTS
	DATASET
	I3A1
	MIVIA2

	EVALUATION CRITERION
	EVALUATION OF cC-GAN
	COMPARISON WITH STATE-OF-THE-ART
	I3A DATASET
	MIVIA DATASET


	DISCUSSION AND CONCLUSION
	DISCUSSION
	HOW TO SELECT MODEL FOR DIFFERENT TASKS?
	WHY IS cC-GAN BETTER THAN cGAN?
	IS IT POSSIBLE TO USE ULTRA-DEEP NETWORK AS GENERATOR?
	FINETUNING OR NOT?

	CONCLUSION

	REFERENCES
	Biographies
	YUEXIANG LI
	LINLIN SHEN


