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ABSTRACT A novel strong tracking square-root cubature Kalman filter (SCKF) based on the adaptive
current statistical (CS) model is proposed aiming at the maneuvering aircraft tracking problem. The Jerk
input estimation is introduced on the basis of the modified input estimation algorithm in order to make
the connection with the state process noise and the state error covariance matrix. Thus, the online-adaptive
adjustment of the CS model is achieved. Additionally, the introduced position of the fading factor is re-
deduced and a novel calculation method is designed in order to overcome the invalidity problem of the
traditional fading factor. Two simulation scenarios are conducted to verify the effectiveness of the proposed
algorithm. The simulation results show that the proposed algorithm possesses better adaptability and tracking
precision than the two state-of-the-art single model filters. Moreover, the proposed algorithm decreases the
runtime by 40% while maintaining the comparable performance compared with the interacting-multiple-
model SCKF.

INDEX TERMS Aircraft tracking; current statistical (CS) model, square-root cubature Kalman
filter (SCKF), modified input estimation (MIE), fading factor.

I. INTRODUCTION
Model errors are inevitable in the maneuvering aircraft
tracking problem, whose reasons are the model mismatch,
the unknown disturbance and the nonlinear and non-Gaussian
property of the measurement. Therefore, the elimination of
model errors may be performed by the following means.
One is to improve the accuracy and the adaptive adjustment
capability of the structured model. Another is to improve
the precision of the filtering algorithm. The modeling for
highly maneuvering aircraft can be roughly divided into sin-
gle model and multiple categories. Though the later algo-
rithm tries its best to utilize multiple models to match the
maneuvering process, models can’t cover all motion states.
In addition, the increase in the number of model naturally
leads to a decrease in the real-time property of the algorithm.
As to the single model algorithm, references [1]–[3] pro-
pose the Singer model [1], current statistical (CS) model [2],
and Jerk model [3] successively, where the CS model has
the better ability to describe the aircraft maneuvering char-
acter compared with others. However, the CS model has
some inherent problems such as the need of presetting prior
parameters and the lack of adaptive adjustment capability.

Though references [4]–[6] put forward many modified CS
models, they all concentrate on mending some parameters in
the CS model and don’t touch its innate character. Addition-
ally, the aircraft data ismeasured in polar coordinates whereas
the aircraft motion model is established in the Cartesian coor-
dinate system. Thus, a nonlinear transformation is required.
Recently, nonlinear estimation methods - Gaussian approx-
imation filters [7]–[13] based on the sample point, have
been involving in intensive research. Typical ones are the
unscented Kalman filter (UKF) [7], [8], the Gauss-Hermite
quadrature filter (GHQF) [9], [10] and the cubature Kalman
filter (CKF) [11]–[13]. Due to the avoidance of calculating
Jacobian matrix and the utilization of nonlinear model of
the system instead of linearization, they have great advan-
tages over the extended Kalman filter (EKF) [13]. Especially,
the CKF shows merits of low computational complexity and
strong robustness among them and thus is applied in various
state estimation problems [16]–[18]. Moreover, the square-
root CKF (SCKF) introduces the matrix triangular factoriza-
tion based on the CKF and avoids the recursive square-root
operation to the state error covariance matrix, improving
the numerical stability and accuracy further. However, the

10052
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-8786-6736


H. Zhang et al.: Adaptive ST-SCKF for Maneuvering Aircraft Tracking

performance of the nonlinear filters will be greatly influenced
when faced with the inaccurate model or bad measurement
caused by the aircraft maneuver. In order to improve the
tracking stability on the abrupt change, references [19]–[25]
introduce the fading factor in the state error covariance matrix
and structure the strong tracking (ST) nonlinear filter. How-
ever, the fading factor in [19]–[25] has two problems. The
first is the arbitrariness of the introduced position, which is
due to a lack of mathematical deduction to the simultaneous
satisfaction of the orthogonality principle of residual error
sequences and of the least mean-square error of the output
estimation. The second one is that they all adopt the form of
the ratio between the identification value of sum of diagonal
elements in the measurement residual error covariance matrix
and the theoretical output value from the filter, bringing about
two problems in the radar measurement coordinate. One is
that the sum of diagonal elements in the residual error covari-
ance matrix is meaningless because different dimensional
residual errors have different meanings. The other is that
the angular residual error is greatly smaller than the other
dimensions. When the abrupt change mainly occurs in the
angle dimension, the small change of the angular residual
error has little effect on the change of the fading factor and
thus the fading factor will be invalid.

An adaptive CS model is proposed and the SCKF is
adopted for the state estimation in this paper aiming at the
issues above. Additionally, the introduced position of the
fading factor is relocated and a novel calculation formula for
the fading factor is put forward for the purpose of improving
the algorithm performance on trackingmaneuvering aircrafts.
The main contributions of this paper are as follows.

The first is that an adaptive CS model is proposed. The
Taylor’s series expansion of the acceleration mean in the
CS model and the modified input estimation (MIE) [26]
algorithm are combined to introduce the Jerk input estimation
and tomodify the state equation and the adjustmentmethod of
maneuvering acceleration covariance matrix in the CSmodel.
Thereby, the process noise and the state error covariance
matrix output from the filter are connected and the adaptive
tracking to the aircraft is realized.

The second one is that the sufficient condition of the ST-
SCKF is re-deduced from the orthogonality principle and the
effective position of the fading factor is relocated.

The third one is that a new calculation method is put
forward for the fading factor. Themaximum ratio between the
vector structured by diagonal elements in the measurement
residual error covariance matrix and the vector structured
by diagonal elements in the theoretical output value from
the filter is utilized for the calculation of the fading factor.
Thereby, the invalidity problem of traditional fading factors
can be avoided.

Last but not the least, two simulation scenarios con-
ducted show that the proposed algorithm is able to accurately
track highly maneuvering motion and weak maneuvering
motion at the condition of lacking prior knowledge. The
performance of the proposed algorithm is better than the

multiple-fading-factor SCKF [24] based on the CS model
and the SCKF-STF [25] based on the modified CS model
[6]. Moreover, the proposed algorithm decreases the runtime
by 40% while maintaining the commensurate performance
compared with the interacting-multiple-model SCKF (IMM-
SCKF).

II. ANALYSIS ON THE CS MODEL
The discrete state equation of the CS model and the nonlinear
measurement equation are shown in Eq. (1) and Eq. (2)
respectively.

Xk+1 = FkXk + Uk āk +W k = f (Xk )+W k (1)

Zk+1 = h(Xk+1)+ V k+1 (2)

where Fk is the state transition matrix. Uk is the accelera-
tion input matrix. āk is the input acceleration mean. Zk+1
is the measurement matrix. h(.) is the nonlinear transforma-
tion function. W k ∼ N (0,Qk ), the process noise. V k+1 ∼

N (0,Rk+1), the measurement noise.W k and V k+1 are mutu-
ally independent. Qk = 2ασ 2

a qcs. α is the maneuvering fre-
quency. Specific forms of Fk , Uk and qcs can be found in [2],
and [4]–[6]. σ 2

a , the variance of maneuvering acceleration,
complies with the mended Rayleigh distribution:

σ 2
a =


4− π
π

(amax − āk+1)2 āk+1 ≥ 0
4− π
π

(amax + āk+1)2 āk+1 < 0
(3)

However, āk+1 is inaccessible. Thus, the following approxi-
mation is contained in the CS model [27]:

āk+1E[ak+1|Zk ] ≈ E[ak |Zk ] , âk (4)

where Zk is the set of measurement till to time k . âk is the
acceleration estimation in time k . Thus, Eq. (3) indeed is:

σ 2
a,k =


4− π
π

(
amax − âk

)2 âk ≥ 0
4− π
π

(
a−max + âk

)2 âk < 0
(5)

Eq. (5) and Qk = 2ασ 2
a qcs reveal that the tracking

performance of the CS model is dependent on two preset
parameters: the maximum acceleration and the maneuvering
frequency. If a±max and α cover large scope, the tracking
precision on the steady state and the weak maneuver will
be greatly influenced. However, the real values will easily
exceed the threshold if they are preset as low values, bring-
ing about deteriorated tracking precision on maneuver state.
Therefore, the CS model should be modified.

III. ADAPTIVE CS MODEL
According to Taylor’s series expansion, the acceleration can
be expressed as follows.

a(t) = a(t0)+
1
1!
a(1)(t0)(t − t0)+

1
2!
a(2)(t0)(t − t0)2

+ · · · +
1
n!
a(n)(t0)(t − t0)n (6)
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where a(1)(t0) is the Jerk value in time t0. a(n)(t0) is n order
derivative of a(t) in t0. Let t0 = kT and t = (k + 1)T , where
T is the sample interval, and Eq. (6) can be expressed as:

ak+1 = ak + Ta
(1)
k +

T 2

2!
a(2)k +

T 3

3!
a(3)k + · · · +

T n

n!
a(n)k (7)

Eq. (7) show that a±max in time (k+1)T is able to be deduced
by the acceleration, Jerk and higher order derivatives in time
kT. Therefore, Eq. (4) can be rewritten as:

āk+1E[ak+1|Zk ]

= E[ak |Zk ]+ E[a
(1)
k |Z

k ]T

+E[a(2)k |Z
k ]
T 2

2!
+ · · · + E[a(n)k |Z

k ]
T n

n!

= âk + T â
(1)
k +

T 2

2!
â(2)k +

T 3

3!
â(3)k + · · · +

T n

n!
â(n)k (8)

Eq. (3) can be rewritten as:

σ 2
a,k =

4− π
π

×

(
ãk+T ã

(1)
k +

T 2

2!
ã(2)k +

T 3

3!
ã(3)k + · · · +

T n

n!
ã(n)k

)2

(9)

where ã(n)k is the estimation error of a(n)k . Eq. (9) indicates that
the acceleration and the measurement variance are able to be
adaptively adjusted in the CS model on the condition that the
acceleration, the Jerk and the higher order derivatives in time
kT are accessible. However, the higher order derivatives in
time kT can’t be obtained due to the dimension limitation.
Therefore, the following two approximations are introduced
into Eq. (8) and Eq. (9).
(1) The maximum acceleration a±max in time (k + 1)T

can be deduced by the real acceleration ak and the Jerk
mean ā(1)k in time kT:

a±max = ak+1 ≈ ak + T ā
(1)
k (10)

(2) The acceleration mean āk+1 in time (k + 1)T can be
deduced by the estimation value of acceleration âk and
the mean estimation value of Jerk ˆ̄a(1)k in time kT:

āk+1 ≈ âk + T ˆ̄a
(1)
k (11)

Due to the unknown of ˆ̄a(1)k , the idea ofMIE [26] is introduced
to augment it in the state vector and the recursive least square
estimation method is utilized. The equation of ā(1)k+1 = ā(1)k is
supplemented with Eq. (1) to deduce the state equation of the
adaptive CS model:[

Xk+1

ā(1)k+1

]
=

[
FACS UACS
0 I

] [
Xk

ā(1)k

]
+

[
W k
0

]
(12)

where

FACS =

 1 T T 2/2
0 1 T
0 0 1



and

UACS =

 T 3/6− (2− 2αT + α2T 2
− 2e−αT )/2α3

T 2/2− (e−αT − 1+ αT )/α2

T − (1− e−αT )/α

.
Additionally, Eq. (9) is rewritten as follows based on

approximations of Eq. (10) and Eq. (11).

σ 2
a,k =

4− π
π

(
ãk + T ˜̄a

(1)
k

)2
(13)

where ˜̄a(1)k is the estimation error of Jerk. Considering the
occupied ratio of the Jerk mean in the adaptive CS model,
the variance expectation of acceleration and the Jerk mean
are utilized to approximate Eq. (13):

σ 2
a,k

=
4− π
π

{
E[ãk ãTk ]+ 2TE[ ˜̄a(1)k ( ˜̄a(1)k )T ]+ T 2E[ãk ( ˜̄a

(1)
k )T ]

}
=

4− π
π

{
Pk (ẍ, ẍ)+ 2TPk (x̄, x̄)+ T 2Pk (ẍ, x̄)

}
(14)

where Pk (.,.) is the corresponding elements in the output state
covariance matrix of the filter.

Above all, the adaptive CS model is transformed into the
standard filtering model, and the process noise is connected
with the state covariance output from the filter by the mod-
eling of the maximum acceleration and the mean value of
acceleration. Thereby, the adaptive tracking to the aircraft is
able to be realized.

IV. SCKF WITH MODIFIED FADING FACTOR
A. SCKF
CKF, essentially a Gaussian approximation filter, transforms
the nonlinear filtering problem with Gauss distribution into
the quadrature calculation problem. SCKF introduces the
square-root of state error covariance matrix on the basis of
CKF in order to ensure the positive definiteness and to further
improve the filtering stability and precision.

Before describing the procedure of the SCKF, the operation
symbol Tria(.) is defined as follows. R is the upper triangular
matrix obtained from the QR decomposition on matrix AT ,
so the QR decomposition operation to A can be expressed as
S = Tria(A) = RT , where S is the lower triangular matrix.
The procedure of SCKF [11], [12] is able to be described as
follows.
Step 1: Time update
Assume that state error covariance is Pk|k in time kT, then
Step 1.1: Factorize

Pk|k = Sk|k (Sk|k )T (15)

Step 1.2: Evaluate the cubature points and the propagated
cubature points

X i
k|k = X̂k|k + Sk|kξ i, i = 1, 2 . . .m (16)

X i∗
k+1|k = f (X i

k|k ) (17)

where X i
k|k and X i∗

k+1|k are the cubature point and the prop-
agated cubature point respectively. m is the total number of
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cubature points, n is the dimensional number of the state
vector X , which satisfies m = 2n. ξi = (m/2)1/2[1], [1] is
the full permutation and reverse of n dimensional unit vector:

[1] =


 1
0
. . .

0

 ,
 0
1
. . .

0

 , . . . ,
 0
0
. . .

1

 ,
−10
. . .

0

,
 0
−1
. . .

0

 , . . . ,
 0
0
. . .

−1


 (18)

Step 1.3: Estimate the predicted state and the square-root
factor of the predicted error covariance.

X̂k+1|k =
1
m

m∑
i=1

X i∗
k+1|k (19)

Sk+1|k = Tria([X∗k+1|k ,Chol(Qk )]) (20)

where the weighted, centered matrix

X∗k+1|k =
1
√
m

[
X1∗
k+1|k − X̂k+1|k ,X2∗

k+1|k

−X̂k+1|k , . . . ,Xm∗
k+1|k − X̂k+1|k

]
(21)

Step 2:Measurement update
Step 2.1: Evaluate the cubature points and the propagated

cubature points

X i
k+1|k = X̂k+1|k + Sk+1|kξ i (22)

Zik+1|k = h(X i
k+1|k ) (23)

Step 2.2: Estimate the predicted measurement

Ẑk+1|k =
1
m

m∑
i=1

Zik+1|k (24)

Step 2.3: Estimate the square-root of the residual error
(innovation) covariance matrix

SZZk+1|k = Tria([Zk+1|k ,Chol(Rk+1)]) (25)

where the weighted, centered matrix

Zk+1|k =
1
√
m

[
Z1k+1|k − Ẑk+1|k ,Z

2
k+1|k

−Ẑk+1|k , . . . ,Zmk+1|k − Ẑk+1|k
]

(26)

Step 2.4: Calculate the residual error covariance matrix

PZZk+1|k = SZZk+1|k (S
ZZ
k+1|k )

T (27)

Step 2.5: Estimate the cross-covariance matrix between the
state prediction error vector and the residual error vector

PXZk+1|k = Xk+1|k (Zk+1|k )T (28)

where the weighted, centered matrix

Xk+1|k =
1
√
m

[
X1
k+1|k − X̂k+1|k ,X2

k+1|k

−X̂k+1|k , . . . ,Xm
k+1|k − X̂k+1|k

]
(29)

Step 2.6: Estimate the Kalman gain

Kk+1 = PXZk+1|k (P
ZZ
k+1|k )

−1 (30)

Step 2.7: Estimate the updated state and the square-root
factor of the corresponding error covariance matrix

X̂k+1|k+1 = X̂k+1|k + Kk+1(Zk+1 − Ẑk+1|k ) (31)

Sk+1|k+1 = Tria([Xk+1|k−Kk+1Zk+1|k ,Kk+1Chol(Rk+1)])

(32)

B. RELOCATION AND NOVEL FORMULA FOR
THE FADING FACTOR
The strong tracking filter (STF) utilizes the idea of fading
memory by introducing the fading factor on the state pre-
diction error covariance matrix in order to achieve the read-
justment of gain matrix and to remain the orthogonality of
residual error sequences. Therefore, the precision of the STF
can be maintained when faced with the aircraft maneuvering.
Reference [28] modified the calculation method of the fading
factor through its equivalent expression and made it more
applicable. Reference [19]–[25] apply the modified fading
factor to nonlinear filters and structure multiple ST-nonlinear
filters. However, as stated in Introduction, the two problems
of the fading factor in [19]–[25] should be highlighted: the
effective position and their form. Therefore, the effective
position is relocated from the orthogonality principle and a
novel calculation method is put forward: calculating the ratio
between the identification value and the theoretical value in
different dimensions respectively, and then select the maxi-
mum ratio as the fading factor. As such, the fading factor will
remain the same sensitivity to the distance, the velocity and
the angle dimension.

1) STF
The gain matrix can be adjusted in the STF to satisfy the
following two equations.

E[(Xk+1 − X̂k+1|k )(Xk+1 − X̂k+1|k )T ] = min (33)

E[(Zk+1+j − Ẑk+1+j|k+j)(Zk+1 − Ẑk+1|k )T ]

= E[νk+1+j(νk+1)T ] = 0, k = 0, 1, 2 . . . ; j = 1, 2, . . .

(34)

where min means the estimation should achieve the least
mean-square error. νk+1 is the residual error in time (k+1)T .
Eq. (34) reveals that the residual error sequences in different
times should be orthometric. The steps of the STF can be
summarized as:

X̂k+1|k = f (X̂k )

Pk+1|k = λk+1Fk+1|kPk (Fk+1|k )T + Qk
Ẑk+1|k = h(X̂k+1|k )

X̂k+1 = X̂k+1|k + Kk+1(Zk+1 − Ẑk+1|k )

Kk+1 = Pk+1|k (Hk+1)T [Hk+1Pk+1|k (Hk+1)T + Rk+1]−1

Pk+1 = (I − Kk+1Hk+1)Pk+1|k (35)
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In application, the suboptimal calculation method is usually
exploited for the fading factor λk+1 [28].

2) MODIFIED FADING FACTOR
Before introducing the modified fading factor, Theorem 1 is
given as follows.
Theorem 1: The STF can’t meet Eq. (33) and Eq. (34)

simultaneously if the fading factor is introduced on the state
prediction error covariance matrix.

As such, the introduced position should be relocated under
the SCKF condition.

For Eq. (1) and Eq. (2), expand Zk+1 and Xk+1 around Xk
and X̂k+1|k and neglect its Taylor’s series over two orders:

Xk+1 ≈ f (X̂k )+ Fk+1|k (Xk − X̂k )+W k (36)

Zk+1 ≈ h(X̂k+1|k )+Hk+1(Xk+1 − X̂k+1|k )+ V k+1 (37)

where Hk+1 =
∂h

∂Xk+1

∣∣∣
Xk+1=X̂k+1|k

, Fk+1|k =
∂f
∂Xk

∣∣∣
Xk=X̂k

.

Additionally, Eq. (34) satisfies theorem 2 [20], [29]:
Theorem 2: Assume that εk = Xk − X̂k , where X̂k is the

state prediction value, if O(|εk |2) � O(|εk |), the covariance
of residual error sequences in different times is

E[νk+1+j(νk+1)T ]

= Hk+1+jFk+j(Fk+j−1 − Kk+jHk+jFk+j−1) · · ·

(Fk+1 − Kk+2Hk+2Fk+1)

×E
{
Pk+1|k (Hk+1)T − Kk+1E[νk+1(νk+1)T ]

}
(38)

The equivalent formulation is

Pk+1|k (Hk+1)T − Kk+1E[νk+1(νk+1)T ] = 0 (39)

Assume that PXZk+1|k is cross-covariance matrix between the
state prediction error and the residual error before introducing
the fading factor,

PXZk+1|k = E[(Xk+1 − X̂k+1|k )(Zk+1 − Ẑk+1|k )T ] (40)

Due to X̂k+1 − X̂k+1|k and V k+1 are mutually independent,
substitute Eq. (37) into Eq. (40):

PXZk+1|k
= E[(Xk+1 − X̂k+1|k )(Zk+1 − Ẑk+1|k )T ]

= E
{
(Xk+1 − X̂k+1|k )[Hk+1(Xk+1 − X̂k+1|k )+ V k+1]T

}
= E[(Xk+1 − X̂k+1|k )(Xk+1 − X̂k+1|k )T ](Hk+1)T

= Pk+1|k (Hk+1)T (41)

Therefore, Eq. (39) is equal to

PXZk+1|k − Kk+1E[νk+1(νk+1)T ] = 0 (42)

Kk+1(PZZk+1|k − E[νk+1(νk+1)
T ]) = 0 (43)

Note thatKk+1 6= 0. Therefore, the sufficient condition of the
orthogonality is

PZZk+1|k − E[νk+1(νk+1)
T ] = 0 (44)

Above all, the fading factor is introduced on the position
of PZZk+1|k and PXZk+1|k . The residual error covariance matrix
and the cross-covariance matrix in Step 2.4 and Step 2.5 in
Section IV A should be recalculated as follows.

PZZ (λ)k+1|k = λk+1(PZZk+1|k − Rk+1)+ Rk+1 (45)

PXZ (λ)k+1|k = PXZk+1|kλk+1 (46)

After introducing the fading factor, Kk+1, X̂k+1|k+1 and
Sk+1|k+1 also need to be recomputed. The other steps are the
same as Section IV A.
Substitute Eq. (45) into Eq. (44),

E[νk+1(νk+1)T ]− Rk+1 = λk+1(PZZk+1|k − Rk+1) (47)

E[νk+1(νk+1)T ]

=

ν1(ν1)T k = 0
ρE[νk (νk )T ]+ νk+1(νk+1)T

1+ ρ
k ≥ 1

(48)

where ρ is the forgetting factor, satisfying 0 < ρ ≤1. Due
to the invalid problem of the traditional fading factor, it is
modified as:

λk+1 =

{
ck+1 ck+1 > 1
1 ck+1 ≤ 1

(49)

ck+1 = max
{
[diag(Nk+1)]i
[diag(Mk+1)]i

}
, i = 1, 2, . . . , l (50)

Nk+1 = E[νk+1(νk+1)T ]− Rk+1 (51)

Mk+1 = PZZk+1|k − Rk+1 (52)

where diag(.) is the vector structured by diagonal elements.
[.]i is ith element in the vector [.]. l is the total number of
measurement dimension. Eq. (50) indicates that the maxi-
mum ratio in different dimensionswill be chosen as the fading
factor, thereby, the fading factor remains the same sensitive to
different dimensions.

The differences between the modified fading factor and
traditional ones are summarized as follows. (1) Traditional
fading factor is introduced on the state prediction error covari-
ance matrix, which can’t simultaneously meet the two suffi-
cient conditions of STF. However, the effective position of
the proposed fading factor is deduced from the orthogonality
principle and satisfies Eq. (33) and Eq. (34) simultaneously.
(2) The proposed fading factor can adaptively tune the gain
matrix according to the residual error. As such, the good
tracking performance can be provided when faced with the
abrupt state change. (3) The calculation of the proposed
fading factor is determined by the maximum ratio in different
dimensions of measurement. Therefore, the same sensitivity
on different dimensions can be maintained, and the invalid
problem can be avoided.

V. SIMULATIONS AND RESULTS
The simulations are run on a single Intel (R) Core (TM)
i7-4790CPU(3.6GHz) processor with 4 GB memory, Win-
dows 7 OS, and MATLAB 2014a. Two scenarios of aircraft
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maneuvering are tested and the three following algorithms
are utilized as the baseline to compare against the proposed
algorithm. The first is the integration of the CSmodel with the
multiple-fading-factor SCKF [24] (CS-MSCKF). The second
is the combination of the modified CS model [6] and the
SCKF-STF [25] (MCS-SCKF-STF). The third is the IMM-
SCKF. In the CS-MSCKF, amax = 100m/s2 and a−max =

−120m/s2. The initial maneuvering frequency α0 = 0.06
and the forgetting factor ρ = 0.95 in the CS-MSCKF, MCS-
SCKF-STF and the proposed algorithm. CV-CA-Singer mod-
els are adopted in IMM-SCKF. The standard deviations of the
process noise of the CV model and CA model are 0.1 and
1 respectively. In the Singer model, α = 0.06, amax =

100m/s2, p0 = 0.1 and pm = 0.8. The transition probability
is πii = 0.9, πij = 0.05, i, j = 1, 2, 3, i 6= j. The
statistically average results are obtained through 500 Monte
Carlo simulations. The root-mean-square error (RMSE) in
time kT and the mean error (ME) in the whole simulation time
are utilized as evaluation metrics:

ERMSE,k =

 1
M

M∑
j=1

∥∥∥X i,k − X̂
j
i,k

∥∥∥2
2


1/2

(53)

EME =
1
N

N∑
k=1

ERMSE,k (54)

whereX i,k and X̂
j
i,k are the real value and the estimation value

of ith component of state vector in time kT in jth simulation
respectively. M is the total number of simulations, and N is
the total steps of simulation.

In the simulation, the state vector is X = [x, ẋ, ẍ, y, ẏ, ÿ]T ,
the measurement vector is Z = [r, ṙ, θ]T + V k . Where
r =

√
x2 + y2, ṙ = (ẋx + ẏy)/r , θ = arctan(y/x), V k ∼

N (0,Rk ), Rk = diag[σ 2
r , σ

2
ṙ , σ

2
θ ], which is the measurement

noise covariance. σr = 100m, σṙ = 10m/s, σθ = 0.1rad.
The measurement position (radar’s position) is located in
the original point of the coordinate system, and the aircraft
trajectory is located in the same plane with the radar. The
sample time T = 1s.

A. SCENARIO 1: MANEUVERING IN STEP ACCELERATION
In this scenario, the aircraft acceleration changes as steps.
Fig. 1 (a) ∼ Fig. 1 (c) show the real trajectory, real velocity
and real acceleration respectively. Fig. 2 (a)∼ Fig. 2 (c) show
RMSEs on the position estimation, velocity estimation and
acceleration estimation of the four algorithms respectively.
Table 1 shows MEs and runtime of the four algorithms.

Fig. 2 (a) ∼ Fig. 2 (c) show that the tracking precision
on position, velocity and acceleration of the proposed algo-
rithm are better than the three other algorithms whenever
the aircraft is in the highly maneuvering state or the weak
maneuvering state. Especially in the step jump accelerating
state and the decelerating state, the peak error and the con-
vergence time of the proposed algorithm are much smaller
than the three other algorithms. Note that during 42 ∼ 52 s
and 102 ∼ 112 s, the aircraft highly maneuvers in the angle

FIGURE 1. (a) Aircraft real trajectory. (b) Aircraft real velocity. (c) Aircraft
real acceleration.

dimension and weakly maneuvers in the distance dimension.
As such, the fading factors in the CS-MSCKF and the MCS-
SCKF-STF are both invalid. However, the proposed algo-
rithm maintains the same sensitivity on different dimensions
by introducing the modified fading factor. As such, the good
performance is well maintained.

Table 1 depicts that the average tracking precision of
the proposed algorithm is also better than the other three

VOLUME 6, 2018 10057



H. Zhang et al.: Adaptive ST-SCKF for Maneuvering Aircraft Tracking

FIGURE 2. (a) Comparison of RMSEs on position estimation.
(b) Comparison of RMSEs on velocity estimation. (c) Comparison of
RMSEs on acceleration estimation.

algorithms. MEs on the three dimensions are significantly
decreased compare with the three other filters. Additionally,
the proposed algorithm increases a little runtime compared
with the two single-model filters. However, the much more
performance improvement should be highlighted.

FIGURE 3. (a) Aircraft real trajectory. (b) Aircraft real velocity. (c) Aircraft
real acceleration.

B. SCENARIO 2: HIGHLY MANEUVERING IN
SNAKE SHAPES
In this scenario, the aircraft is firstly in the constant veloc-
ity, and then runs into highly maneuvering state, when
accelerations in X coordinate and Y coordinate change
drastically. Fig. 3(a) ∼ Fig. 3(c) show the aircraft real
trajectory, real velocity and real acceleration respectively.
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FIGURE 4. (a) Comparison of RMSEs on position estimation.
(b) Comparison of RMSEs on velocity estimation. (c) Comparison of
RMSEs on acceleration estimation.

Fig. 4(a) ∼ Fig. 4(c) show RMSEs on position estimation,
velocity estimation and acceleration estimation of four algo-
rithms respectively. Table 2 shows MEs and runtime of the
four algorithms.

Fig. 4 (a)∼ Fig. 4 (c) show that the tracking performance of
the four algorithms approaches to each other when the aircraft

is in the constant velocity state. However, when the aircraft is
in the highly maneuvering state, RMSEs on the position and
the velocity of the proposed algorithm is much lower than
the other three algorithms. Though the peak of RMSE on the
acceleration of the proposed algorithm is a little higher, it con-
verges much quicker. Note that the maneuvering acceleration
is within the preset a±max in the CS model, thus, the proposed
adaptive CS model does perform better than the CS model.
Additionally, during 80 ∼ 180 s, the aircraft continuously
maneuvers in the distance and the angle dimension, leading
to higher estimation errors of all algorithms. However, due
to the modified fading factor, the same sensitivity on differ-
ent dimensional maneuvering is maintained of the proposed
algorithm. Furthermore, the adaptive adjustment of the CS
model is realized and thus, the proposed algorithm achieves
higher estimation precision.

Table 2 shows that MEs on the position, velocity and
acceleration of the proposed algorithm are lower than the CS-
MSCKF and the MCS-SCKF-STF. When compared with the
IMM-SCKF, the proposed algorithm achieves better tracking
performance on the position and approximate performance
on the velocity and the acceleration. It is because the long
time when the aircraft is in the constant velocity, with which
the CVmodel in the IMM-SCKF can best matches. However,
the proposed algorithm ismodified from the CSmodel, which
is originally designed for the maneuvering aircraft tracking.
Thus, the tracking performance on the constant velocity of
the proposed algorithm is a little worse than the IMM-SCKF,
resulting in a little worse MEs on the velocity and the accel-
eration compared with the IMM-SCKF algorithm. However,
the runtime of the proposed algorithm is much less than the
later one.

C. ANALYSIS ON THE COMPUTATIONAL COMPLEXITY
Two dimensions of the state vector are added on the basis
of the CS-MSCKF, thus, the computational complexity of
the proposed algorithm increases around 1/3 compared with
the former one. Though the state vector of the proposed
algorithm also increases by two dimensions compared with
theMCS-SCKF-STF, the calculation of the state noise covari-
ance matrix is unnecessary and the fading factor calculation
method in the MCS-SCKF-STF is more complex. Therefore,
the computational complexity of the two algorithms is close.
There is no need for the parameter calculation in the IMM-
SCKF, but three models and SCK filters should work in par-
allel. Moreover, the input and the output interactive process
are added. Therefore, the computational burden of the IMM-
SCKF is 2.3 times of the CS-MSCKF [31] and thus 1.7 times
of the proposed algorithm.

Above all, the proposed algorithm achieves better perfor-
mance while maintaining a reasonably computational burden
compared with the CS-MSCKF and the MCS-SCKF-STF.
Additionally, the proposed algorithm obtains better perfor-
mance on the continuous maneuvering by the more simple
structure and less computational burden compared with the
IMM-SCKF.

VOLUME 6, 2018 10059



H. Zhang et al.: Adaptive ST-SCKF for Maneuvering Aircraft Tracking

TABLE 1. Comparison of MES and runtime.

TABLE 2. Comparison of MES and runtime.

VI. CONCLUSION
A novel strong tracking square-root cubature Kalman filter-
ing algorithm based on the adaptive CS model is proposed
aiming at the maneuvering aircraft tracking problem. The
main work of this paper is summarized as follows.
(1) Two assumptions of the maximum acceleration and

the mean acceleration in the CS model are combined
with the MIE algorithm to introduce the Jerk input
estimation and structure a modified CSmodel, which is
connected with elements in the state estimation covari-
ance matrix, thus, parameters in the proposed model
can be adaptively adjusted.

(2) The introduced position of the fading factor is relocated
from the orthogonality principle. Moreover, a new cal-
culation method for the fading factor is proposed aim-
ing at the problem of weakmaneuvering on the distance
and the velocity covering highly maneuvering on the
angle in the existing fading factor.

(3) Simulation results of two maneuvering scenarios show
that the proposed algorithm possesses better perfor-
mance compared with the CS-MSCKF and the MCS-
SCKF-STF. When compared with the IMM-SCKF,
the proposed algorithm achieves better tracking per-
formance on the position and the approximate tracking
performance on the velocity and the acceleration while
decreasing the runtime by 40%.
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