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ABSTRACT Ultrasonic imaging of multi-layer materials with parallel interfaces is a challenging problem in
non-destructive testing. In multi-layer materials, since the sound velocity and the propagation path change
when sound travels from one layer into another, calculating the sound travel time is complicated. In this
paper, we develop a frequency-domain imaging algorithm for estimating the scattering coefficients of all the
points inside the second layer of a two-layer (liquid-solid) medium in order to obtain an image of the region of
interest. To do so, we first introduce our data model for the array received signals by modeling the interfaces
between the layers of a two-layer medium as a spatially distributed source. Then, we introduce a mapping
relationship between the two-dimensional image of the region of interest and the three-dimensional Fourier
transform of the received signals. This proposed algorithm has relatively lower computational complexity
and it can be used for online imaging. Computer simulations as well as experimental data show the accuracy
of the proposed algorithm.

INDEX TERMS Distributed source, array signal processing, non-destructive testing, immersion ultrasonic
imaging, multi-layer imaging.

I. INTRODUCTION
Non-destructive testing (NDT) includes a wide range of tech-
niques which are used to evaluate the integrity of materials
without causing any damage to them. Ultrasonic imaging is
a popular NDT technique for imaging inside materials, such
as pipelines, railways, and airplane parts. Indeed, ultrasonic
imaging is a common method to inspect materials for flaw
detection and thickness measurement in both industry and in
medical diagnosis. Ultrasonic imaging uses high-frequency
sound waves to detect any discontinuity inside the mate-
rial under test. Ultrasonic inspection is attractive for NDT
because it only needs to access one side of the materials
under test. Moreover, it is highly accurate in localizing the
scatterers and estimating the size and the shape of the flaws
inside solid materials. Since 1980s, ultrasonic phased arrays
have been drastically used for non-destructive testing in
industry and medical diagnosis. The diversity provided by
different positions of transmitters and receivers in an array of
transducers facilitates localizing scatterers inside the material
under test. Traditionally, ultrasonic arrays are used to emulate
a monolithic transducer with a large aperture. Independent
transmission circuits used for each transducer of the array

enable different transducers to fire with different time delays.
Therefore, the probing sound wave can be focused on each
point in the region of interest (ROI) within the sample under
test to generate a real-time image. However, in many NDT
applications, the targets are static and we can take advantage
of off-line post-processing methods. To do so, the data cor-
responding to all combinations of transmitter and receiver
transducers are collected in a matrix and are used in off-
line post-processing. Larger coverage area without need for
reconfiguration, improving sensitivity, and reducing the time
for conducting the test, are some of the advantages of using
transducer array compared to a conventional single-element
transducer. The ultrasonic arrays used in NDT have different
array geometries which are designed for different industrial
applications. The maximum array size, which is currently
used in NDT, is limited to 256 elements based on today’s
available computing power and electronic circuity size

In a test where an ultrasonic array is used, each transducer
fires a sound wave while the other transducers, including the
one transmitting, receive the signal backscattered from the
material under test. Then, all the backscattered signals are
collected in a three-dimensional tensor for post-processing.
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This method is referred to as full matrix capture (FMC).
There has been a considerable amount of research in the field
of ultrasonic array imaging for NDT applications [1]–[8].
In most of these studies, it is assumed that the material under
test is a homogeneous medium where the sound velocity is
constant inside the material under test. Several algorithms
have been proposed for imaging a homogeneous material
including the plane B-scan, the sector B-scan, the focused
B-scan, the total focusing method (TFM), and wavenum-
ber algorithm [2]–[4]. All these algorithms rely on delay-
and-sum beamforming technique which can be implemented
either in time- or in frequency-domain. Among these algo-
rithms, TFM, a time- domain algorithm for FMC, is easy
to implement and is still used in many applications [3]. The
wavenumber (ω-k) algorithm of [4] is a frequency-domain
algorithm for FMC, which is popular because its execution
time is considerably lower, compared to the TFM.

In many applications, the material under test is not homo-
geneous. One simple example is multi-layer material with
parallel interfaces. Assuming a sound source located inside
the first layer of a multi-layer medium, the sound wave
is refracted into lower layers at the interfaces between the
layers. As a result, the sound velocity and the shape of the
wave front change when sound travels from one layer into
another. Thus, in multi-layer materials, calculating the sound
travel time is complicated.

Another example of multi-layer imaging is in immersion
test in NDT, where a solid test object and a transducer
array are immersed in water. In fact, the immersion ultra-
sonic inspection is preferred in many applications because
of its speed and reliability advantages over the contact
method, as discussed in [9]–[13]. Also, immersible transduc-
ers have wide bandwidths, ranging from low MHz to more
than 10 MHz in water. Such wide-band transducers are of
interest for many imaging applications, for example see [12].

There are a few algorithms proposed for multi-layer
imaging, including the root-mean-square velocity based
technique [14], [15], the phase shift migration (PSM)
algorithm [9], and the multi-layer omega-k (MULOK)
method [10]. The root-mean-square velocity technique was
primarily proposed for seismology applications [14], [15].
In this technique, a weighted average velocity of the sound
velocities in different earth’s seismic layers is used to cal-
culate the sound travel time through different layers. This
method has also been used for ultrasonic biomedical imag-
ing1 in [23] and has been tested for two-layer NDT ultrasonic
imaging in [11]. The RMS velocity approach is appropri-
ate when the sound velocity is slightly different between
the layers and it is not recommended when the sound
velocities are significantly different in different layers. The
PSM algorithm which was also originally proposed for seis-
mic imaging, is applicable for imaging a multi-layer medium
with parallel interfaces. In the PSM algorithm, the sound

1Indeed, ultrasonic imaging has numerous biomedical applications, see
for example [16]–[22].

wave at each depth in the material under test is extrapolated
for a different depth by multiplying it with a unit-norm
complex exponential factor in frequency domain. In [10],
the MULOK algorithm, which is a combination of the
PSM and the wavenumber (ω-k) algorithms, has been pro-
posed, for multi-layer imaging. In the MULOK algorithm,
the wavenumber algorithm is used for imaging each layer
of a multi-layer medium, and the PSM algorithm is used to
extrapolate the wave amplitude from each layer to another
one. All the aforementioned three algorithms have been pro-
posed for multi-layer imaging in a synthetic aperture focusing
scenario, i.e., when a single transducer is used to emulate an
array by repeating the test when the transducer is located at
different positions. These algorithms have not been used for
ultrasonic imaging when a real array of transducers is used.
One idea for multi-layer array processing is time gating with a
correction factor for the refraction between the layers. In [24],
a modified version of TFM has been used for multi-layer
ultrasonic imaging.

In [25], to avoid all the problems associated with a two-
layer medium, the array is approximated with, and thus,
can be replaced by an equivalent array which operates in
the second medium only. Therefore, the two-layer problem
is converted to a single-layer scenario. However, there are
timing errors due to the approximation used in [25].

In all these aforementioned studies, the sound wave is
treated as a plane wave, thus the refraction at the interface
between two adjacent layers can be modeled using Snell’s
law. In many applications of ultrasonic imaging, the source
transducer is located at a finite distance from the receiving
transducer and the layer boundaries, thus the plane wave
modeling is not accurate. An alternative approach is to
model the sound wave as a non-planar (for example spher-
ical or cylindrical) wave. To tackle the problem of refraction
of a non-planar (for example spherical or cylindrical) wave at
the interface between twomedia with two different velocities,
in [26], we proposed an approach based on the Huygens-
Fresnel principle. According to this principle, a wave field
on a surface can determine the wave field off of that surface.
More specifically, each point on the surface can be viewed
as a source of a secondary wave. The superposition of these
secondary sources on the surface determines the strength of
the wave at any point off of that surface. This formulation
leads to the Rayleigh-Sommerfeld integral. In [26], we used
the Huygens’ principle and Rayleigh-Sommerfeld integral
over the interface between the two media and then, we devel-
oped a new array spatial signature for all points inside a
two-layer liquid-solid (LS) medium. Then, we used this
new array spatial signature in three different imaging tech-
niques, namely the conventional beamforming technique, the
MUSIC method, and the Capon algorithm, in order to image
two-layer LS materials. These techniques belong to the class
of spatial filtering methods which combine the sensor outputs
linearly (as in conventional beamforming) or non-linearly
fashion (as in MUSIC and Capon based methods) to create
an image of the ROI.
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The authors of [27] also use Rayleigh-Summerfeld integral
at the interface between the two layers of different materials
to calculate the reflected and transmitted ultrasonic fields.

In this paper, we use an alternative data model to develop
a Fourier transform based imaging algorithm to estimate the
scattering coefficients of all the points inside the second layer
of a two-layer LS medium in order to obtain an image of the
region of interest. In this proposed algorithm, the execution
time is considerably reduced compared to the three afore-
mentioned algorithms in [26], and it can be used in an online
imaging process.

Ourmethod is indeed performed in the spatio-temporal fre-
quency domain. That is, we work with the three dimensional
signals in Fourier domain. These three dimensions include
one temporal frequency dimension denoted as ω, and two
spatial frequency dimensions represented by kx and ky. The
major advantage of the proposed spatio-temporal frequency
domain algorithm is its much simpler computational com-
plexity. For large arrays and images, the proposed algorithm
is several orders faster.

Note that at the interface of the two layers, mode con-
version phenomenon happens whereby an incident wave is
converted to two or more modes, each of which have different
propagation velocity. Considering the mode conversion and
the contribution of the shear wave in the received signal,
makes the data model too complicated. To simplify the prob-
lem of interest, it is a common practice to assume that there is
no mode conversion at the interface between the two layers.
Indeed, this assumption is not out of place considering that
the velocity of shear waves is about half of the velocity of
the longitudinal waves, which means that the contributions
from the two modes appear well separated in time, at least
for deep reflectors, and hence, they can be separated from
each other. Also, the transmittance for shear waves is very
small compared with the longitudinal wave [9]–[11]. Also,
commercially available ultrasonic arrays are not designed
to receive shear wave. In this paper, we assume that the
interference due to the presence of shear wave in the received
signal as noise.

The remainder of this paper is organized as follows.
In Section II, we introduce our data model for the array
received signals using the concept of spatially distributed
sources. In Section III, we introduce a mapping relationship
between the two-dimensional image of the ROI and the three-
dimensional tensor of frequency-domain received signals,
which can be used to estimate the scattering coefficients of all
the points inside the second layer of a two-layer LS medium.
In Section IV, we present our algorithm for imaging the sec-
ond layer of a two-layer LS medium. In Section V, we use
computer simulations as well as experimental data to show
the accuracy of the proposed algorithm. Finally, conclusions
are drawn in Section VI.

II. DATA MODEL
We consider a solid object which is under ultrasonic immer-
sion test using a one-dimensional uniform linear array

FIGURE 1. A hypothetical point scatterer inside second layer of a
two-layer LS medium.

of M ultrasonic transducers.2 We assume that each layer
is a homogeneous medium with a constant sound velocity;
however, the sound velocity in each layer is different from
that in the other layer. Each transducer transmits a soundwave
and all the other transducers (including the one transmitting)
receive the sound wave backscattered from the test sample.
The M2 time domain received signals are sampled in time
and stored in a N × M × M tensor where N is the number
of time samples. The goal is to develop a data model for the
backscattered signals with the aim to use it for imaging the
material under test.

We assume that the upper surface of the test sample,
the interface between the layers, and the back wall of the test
sample are parallel planes (i.e., we deal with a two-layer LS
with parallel interfaces). The center of the two-dimensional
Cartesian coordinate system is assumed to be in the middle of
the second layer of the material under test, as shown in Fig. 1.
The width of the first layer in y direction is d1 and the width
of the second layer in y direction is 2d2. We present our data
model in a two-dimensional coordinate system, assuming that
the ultrasonic transducers, the test sample, and the defects
are infinitely long in the third dimension. This model can
easily be extended for three-dimensional volumetric imaging
scheme where a two-dimensional uniform array is employed.
All the transducers in the array are assumed to be identical
and with identical beam patterns gain.

In NDT, Fermat principle (Snell’s law) is often used to
model the behavior of planar wave at the planar interface
between two materials. The Fermat principle focuses on the

2The forthcoming approach is proposed for the case of unifrom linear
arrays, and it is not suitable for an arbitrary array. Note that linear ultrasonic
arrays has many application in NDT.
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problem of plane waves in layered media. In the theory of
acoustic wave propagation, however, it is important to take
into account that the sound reflector is located at a finite
distance from the receiver as well as from the boundaries.
The most simple example of this is the classical problem
of the field of a point source in the presence of an inter-
face between two homogeneous media. This example is a
problem of spherical wave reflection and refraction and Fer-
mat principle is not applicable in a straightforward manner.
To study such a problem, we model the interface between
the two layers as a spatially distributed source. Assuming
a two-dimensional model, this interface can be modeled as
a line consisting of infinite number of point sources [28].
At each point on the interface, the propagating sound wave
is refracted into the second layer, therefore, each point on
the interface acts as a point source for all the points inside
the second layer. Let us assume that there is a point scatterer
located at (x, y) inside the second layer of the test sample,
and the transducer located at coordinate (u,−d1 − d2) is
firing the probing sound wave. This sound wave is refracted
by all points on the interface between the two layers into
the second layer. Then, any point scatterer scatters the sound
wave back towards the interface.This backscattered sound
wave is refracted into the first layer by all the points on the
interface, and the transducer arraymeasures the superposition
of all these refracted signals. This superposition stems from
the Huygens-Fresnel principle. According to this principle,
a wave field on a surface can determine the wave field off of
that surface. More specifically, each point on the surface can
be viewed as a source of a secondary wave. The superposition
of these secondary sources on the surface determines the
strength of the wave at any point off of that surface.

Therefore, at frequency ω, in the absence of noise,3 the
backscattered signal received by the transducer located at
coordinate (v,−d1 − d2) due to the scattering of a point
scatterer, located at (x, y) in the second layer is denoted by
px,y(ω; u, v) and it can be written as [4], [26].

px,y(ω; u, v)

= φ(ω)f12 f21

+∞∫∫
−∞

B(ω; u,−d1 − d2; x ′,−d2)

×B(ω; v,−d1 − d2; x ′′,−d2, )s(x, y) gf (ω; x ′ − u, d1)

× gs(ω; x − x ′, y+ d2)gs(ω; x − x ′′, y+ d2)

× gf (ω; x ′′ − v, d1)dx ′dx ′′. (1)

Here, φ(ω) is the frequency-domain representation of the
probing signal at frequency ω, f12 is the transmission coeffi-
cient from Layer 1 into Layer 2, f21 is the transmission coef-
ficient from Layer 2 into Layer 1, s(x, y) is the real-valued
scattering coefficient of a hypothetical point scatterer located
at (x, y) inside the second layer, B(ω; u,−d1 − d2; x ′,−d2)

3Noise can be simply added to our data model without affecting the model
for the desired signal. Such additive noise can model all model imperfections
as well as the interference caused due to the presence of shear wave in the
received signal.

is the beam pattern gain of the source transducer, located at
(u,−d1 − d2), towards a point located at (x ′,−d2) on the
interface at frequency ω, and B(ω; v,−d1 − d2; x ′′,−d2, )
is the beam pattern gain of the receiving transducer, located
at (v,−d1 − d2), for a point source located at (x ′′,−d2) on
the interface at frequency ω. Also, gf (ω; x ′ − u, d1) is the
Green function corresponding to the propagation of sound
wave in the first layer from the source transducer, located at
(u,−d1 − d2), to a point located at (x ′,−d2) on the interface
at frequency ω, gs(ω; x − x ′, y + d2) is the Green function
corresponding to the propagation of soundwave in the second
layer from a point located at (x ′,−d2) on the interface to a
hypothetical point scatterer located at (x, y) inside the second
layer at frequency ω, gs(ω; x − x ′′, y + d2) is the Green
function corresponding to the propagation of sound wave in
the second layer from a hypothetical point scatterer located at
(x, y) inside the second layer to a point located at (x ′′,−d2)
on the interface at frequency ω, and gf (ω; x ′′ − v, d1) is the
Green function corresponding to the propagation of sound
wave in the first layer from a point located at (x ′,−d2) on the
interface to the receiving transducer located at (v,−d1 − d2)
at frequency ω. The Green functions in the first and second
layers can be written, respectively, as [4], [29]

gf (ω; x, y) =
−j
4π

+∞∫
−∞

exp
(
−jkxx − jy

√
k2f − k

2
x

)
√
k2f − k

2
x

dkx (2)

gs(ω; x, y) =
−j
4π

+∞∫
−∞

exp
(
−jkxx − jy

√
k2s − k2x

)
√
k2s − k2x

dkx . (3)

Here, kf , ω/cf and ks , ω/cs are the wavenumbers in
Layers 1 and 2, respectively, and cf and cs are the correspond-
ing sound velocities in Layers 1 and 2.

Note that the exact value of the transmission coefficient f12
depends on the location of the refracting point on the interface
and on the location of the hypothetical point scatterer. Also,
the transmission coefficient f21 depends on the location of
the refracting point on the interface and the location of the
receiving transducer [29]. The exact values of the transmis-
sion coefficients f12 and f21 can be calculated using Huygens’
principle as in [26]. However, the computational complexity
of the approach proposed in [26] is relatively high. In this
paper, to reduce the computational complexity, and conse-
quently, the execution time, we assume that the transmission
coefficients f12 and f21 are constant values across the interface
between the two layers. With this assumption, we aim to
propose an algorithm for ultrasonic imaging for two-layer
LS materials.

In the backscattered signal, px,y(ω; u, v) depends on the
probing signal φ(ω), and the transducers beam-pattern gains
B(ω; u,−d1− d2; x ′,−d2) and B(ω; v,−d1− d2; x ′′,−d2, ).
To further simplifying the model in (1), we assume that the
probing signal is an impulse and that the transducers are
omni-directional, i.e,

B(ω; u,−d1 − d2; x ′,−d2) = 1 (4)
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B(ω; v,−d1 − d2; x ′′,−d2, ) = 1 (5)

ϕ(t) = δ(t) (6)

where ϕ(t) is the time domain representation of φ(ω). Alter-
natively, in practice, these effects can be compensated in the
preprocessing steps [4]. Therefore, (1) can be written as

px,y(ω; u, v) = f12 f21

+∞∫∫
−∞

s(x, y) gf (ω; x ′ − u, d1)

× gs(ω; x − x ′, y+ d2)gs(ω; x − x ′′, y+ d2)

× gf (ω; x ′′ − v, d1)dx ′dx ′′. (7)

Note that px,y(ω; u, v) is the received signal due to the scat-
tering of only one point scatterer inside the second layer.
Therefore, using superposition principle the backscattered
signal, received at the transducer located at (v,−d1−d2) due
to the scattering of all potential point scatterers in the ROI,
can be written as

p(ω; u, v) = f12 f21

+∞∫∫
−∞

+∞∫∫
−∞

s(x, y)gf (ω; x ′ − u, d1)

× gs(ω; x − x ′, y+ d2)gs(ω; x − x ′′, y+ d2)

× gf (ω; x ′′ − v, d1)dx ′dx ′′dxdy (8)

Note that s(x, y) may be non-zero only for those points in the
ROI which reflect the sound wave.

III. FOURIER MAPPING
In this section, we use the data model in (8) to develop a rela-
tionship between the Fourier representation of the measured
data p(ω; u, v) and the Fourier representation of the image
s(x, y), for all the points in the ROI.

Using (2) and (3), we can write (8) as

p(ω; u, v)

= f12 f21

+∞∫∫
−∞

+∞∫∫
−∞

s(x, y)
dx ′dx ′′dxdy

(4π )4

×

 +∞∫
−∞

exp
(
−jk1(x ′ − u)− jd1

√
k2f − k

2
1

)
√
k2f − k

2
1

dk1



×


+∞∫
−∞

exp
(
−jk2(x − x ′)− j(y+ d2)

√
k2s − k

2
2

)
√
k2s − k

2
2

dk2



×


+∞∫
−∞

exp
(
−jk3(x − x ′′)− j(y+ d2)

√
k2s − k

2
3

)
√
k2s − k

2
3

dk3


×

 +∞∫
−∞

exp
(
−jk4(x ′′ − v)− jd1

√
k2f − k

2
4

)
√
k2f − k

2
4

dk4

. (9)

We now rewrite (9) as in (10), as shown at the bottom of the
next page. Let S(kx , ky) denote the two-dimensional Fourier
transform of s(x, y), that is

S(kx , ky) ,

+∞∫∫
−∞

s(x, y) exp
(
−jxkx − jyky

)
dxdy. (11)

Using (11), we can write

+∞∫∫
−∞

s(x, y) exp
(
−jx(k2+k3)−jy(

√
k2s − k

2
2 +

√
k2s − k

2
3 )
)

× dxdy = S
(
k2 + k3,

√
k2s − k

2
2 +

√
k2s − k

2
3

)
. (12)

We now use (12) to write (10) as in (13), as shown at the
bottom of the next page. To simplify (13), we define
Z (w, k2, k3) as

Z (ω; k2, k3) ,
exp

(
−jd2(

√
k2s − k

2
2 +

√
k2s − k

2
3 )
)

√
k2s − k

2
2

√
k2s − k

2
3

× S
(
k2 + k3,

√
k2s − k

2
2+

√
k2s − k

2
3

)
(14)

Therefore, we have the following relationships between
Z (w, k2, k3) and its two-dimensional inverse Fourier trans-
form which is denoted as z(w, x ′, x ′′):

z(ω; x ′, x ′′) ,
1
2π

+∞∫∫
−∞

exp(jx ′k2+jx ′′k3)Z (ω; k2, k3)dk2dk3

(15)

Z (ω; k2, k3) ,

+∞∫∫
−∞

exp(−jx ′k2−jx ′′k3)z(ω, x ′, x ′′)dx ′dx ′′.

(16)

Using (14), we can write (13) as in (17), as shown at the
bottom of the next page. Then using (15), we can write (17)
as in (18). Based on the definition in (16), we can write

Z (ω; k1, k4)

=
1
2π
×

+∞∫∫
−∞

exp(−jx ′k1 − jx ′′k4)z(ω, x ′, x ′′)dx ′dx ′′. (19)

Therefore, using (19), we can write (18), as shown at the bot-
tom of the next page, as in (20), as shown at the bottom of the
next page. Then, seeking the similarity with the definition of
inverse Fourier transform, we write (20) as in (21), as shown
at the bottom of the next page. We now define P(ω; k1, k4) as
the two-dimensional Fourier transform of p(ω; u, v) as

P(ω; k1, k4) ,
1
2π

+∞∫∫
−∞

exp(−jk1u− jk4v)p(ω; u, v)dk1dk4.

(22)
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p(ω; u, v) =
f12 f21
(4π )4

+∞∫∫
−∞

exp
(
jk1u+ jk4v− jd1

(√
k2f − k

2
1 +

√
k2f − k

2
4

))
√
k2f − k

2
1

√
k2f − k

2
4

×


+∞∫∫
−∞

exp(−jx ′k1 − jx ′′k4)


+∞∫∫
−∞

exp(jx ′k2 + jx ′′k3)
exp

(
−jd2

(√
k2s − k

2
2 +

√
k2s − k

2
3

))
√
k2s − k

2
2

√
k2s − k

2
3

×

+∞∫∫
−∞

s(x, y) exp
(
−jx(k2 + k3)− jy

(√
k2s − k

2
2 +

√
k2s − k

2
3

))
dxdy

 dk2dk3
 dx ′dx ′′

× dk1dk4 (10)

p(ω; u, v) =
f12 f21
(4π )4

+∞∫∫
−∞

exp
(
jk1u+ jk4v− jd1

(√
k2f − k

2
1 +

√
k2f − k

2
4

))
√
k2f − k

2
1

√
k2f − k

2
4

×


+∞∫∫
−∞

exp(−jx ′k1 − jx ′′k4)


+∞∫∫
−∞

exp(jx ′k2 + jx ′′k3)
exp

(
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f12 f21
(4π )4
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Using (21) and (22), we can write

P(ω; k1, k4)

=

f12f21Z (ω; k1, k4) exp
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(23)

Therefore, Z (ω; k1, k4) can be written as

Z (ω; k1, k4)

=

4(4π )2
√
k2f − k

2
1

√
k2f − k

2
4 P(ω; k1, k4)

f12 f21 exp
(
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)) . (24)
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Using (24) and (14), we can write

S
(
k1 + k4,

√
k2s − k

2
1 +

√
k2s − k

2
4

)
= H (ω; k1, k4) (25)

whereH (ω; k1, k4) is given as in (26), as shown at the bottom
of this page.

In the next section, we show how this relationship can be
used to obtain s(x, y) from the P(ω; k1, k4). Note that (25)
and (26) describe a mapping relationship between the Fourier
transform of s(x, y) and the Fourier transform of p(ω; u, v).
If we consider noise in (1), the noise will go under the same
transformation in (25) and (26).

IV. IMAGING ALGORITHM
In this section, we aim to present an algorithm for imaging
the second layer of a two-layer LS medium using the data
model we obtained in the previous section. To do so, we first
compute the three-dimensional Fourier transform of the time-
domain array received signals, denoted by p̃(t, u, v) to obtain
P(ω; k1, k4), where k1 and k4 are the spatial frequency
variables associated with the spatial coordinate u and v,
respectively.

In the second step, using the following variable mapping,

kx = k1 + k4 (27)

ky =
√
k2s − k

2
1 +

√
k2s − k

2
4 , (28)

we can write (25) as

S(kx , ky) = H (ω; k1, k4), (29)

which shows how we can obtain S(kx , ky) from H (ω; k1, k4).
The transformation in (29) shows how the three-dimensional
data H (ω; k1, k4) can be transformed into the two-
dimensional Fourier representation S(kx , ky) of the image
s(x, y). To apply this transformation, we hold k1 constant
and for each constant k1, we can estimate the S(kx , ky).
We denote the estimate of the S(kx , ky) corresponding to k1,
as Ŝ(kx , ky|k1) and it can be written as [4]

Ŝ(kx , ky|k1) = H (ω; k1, k4)

∣∣∣∣k4=kx−k1
ω=kscs

(30)

where ks is obtained as

ks =
±

√(
k4y + 2

(
k21 + k

2
4

)
k2y + k

4
1 + k

4
4 − 2k21k

2
4

)
2ky

. (31)

Indeed, Ŝ(kx , ky|k1) is an estimate of S(kx , ky) corresponding
to a given value of k1. To eliminate the affect of noise on the

image, we take average of Ŝ(kx , ky|k1) over all the values of k1
as [4]

S̃(kx , ky) =
∫
+∞

−∞

Ŝ(kx , ky|k1)dk1 (32)

where S̃(kx , ky) is the average of all estimate values of
S(kx , ky) over all the values of k1. As we assumed that s(x, y)
is real, the S̃(kx , ky) for the negative values of ky can bewritten
as

Ŝ(kx ,−ky) = Ŝ∗(−kx , ky) ky > 0 (33)

where ∗ is the complex conjugate operator. Now, having
S(kx , ky) for all the values of kx and ky, we take two-
dimensional inverse Fourier transform of Ŝ(kx , ky) to obtain
ŝ(x, y) which is introduced as the image of the ROI.

V. SIMULATION AND EXPERIMENTAL RESULTS
In this section, we evaluate the accuracy of our proposed
data model and the proposed algorithm for imaging the sec-
ond layer of a two-layer LS medium. As mentioned earlier,
one of the applications of two-layer imaging is immersion
ultrasonic test. In an immersion ultrasonic test, the ultrasonic
transducers and the test sample are immersed in a liquid
such as water, thereby coupling the probing sound wave
from the transducers to the material under test. We con-
ducted an immersion ultrasonic test using a uniform linear
array of ultrasonic transducers. In our experiment, we used
a 64-element Olympus uniform linear array (5L64-I1). There-
fore, all the parameter values correspond to this immersion
probe. The ultrasonic array is placed in water above a steel
test sample. The ultrasonic array probe is parallel to the upper
surface of the test sample. The center of the array is assumed
to be located at x = 0 mm and y = 27.5 mm. The test
configuration is depicted in Fig 1. The space between the
array probe and the test sample is d1 = 9.5 mmwhich is filled
by water. When one of the transducers fires a probing sound
wave, the sound wave travels through two homogeneous
materials including water and steel. The goal is to image the
steel test sample which acts as the second layer of a two-layer
LS medium.

The ultrasonic transducer array consists of M = 64
elements. Each transducer has a rectangular shape, and is
0.6 mmwide (in x direction) and 10 mm long (in z direction).
Therefore, the transducers are long enough (i.e., 10 mm �
0.6 mm) to be considered as long linear sources which
produce cylindrical sound waves. The distance between the
center of any two adjacent transducers (element pitch) is
0.6 mm amounting an active aperture of 38.4 mm. The

H (ω; k1, k4) =
P(ω; k1, k4)

√
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2
1

√
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4
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(
−jd2(

√
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2
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exp

(
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2
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√
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2
4

)) (26)
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material under test is a steel block with five drilled-sided-
holes. The test sample is a homogeneous medium with a
width of 160 mm (in x direction) and a height of 36 mm
(in y direction), and a length of 20 mm (in z direction).
The holes are drilled all the way through the length of the
test sample (in z direction). We assume that the holes are
long linear secondary sources which produce backscattered
cylindrical sound waves. The holes are considered as defects
to be localized using ultrasonic immersion test. The velocity
of the sound wave inside the test sample was measured to
be approximately 6300 m/s. Also, the velocity of the sound
wave in water is assumed to be 1480 m/s. The velocity of
sound in the metal and water was measured by the time of
sound travel in water andmetal using the backscattered signal
of the upper and lower surface of the test sample.

The ultrasonic transducers produce longitudinal sound
wave, and we have ignored the production of shear wave in
the mode conversion phenomenon. Each transducer fires a
probing sound wave toward the test sample through the water,
and other transducers receive the backscattered sound wave
from the test sample. There is enough time delay between
the firing adjacent transducers to avoid any undesired inter-
ference between firing subsequence transducers. The 4096
time-domain received signals are sampled with appropriate
sampling frequency and stored in a 64×64×5000 tensor for
post-processing. The sampling frequency is Fs = 100 MHz
and the number of samples, N is 5000. To avoid multi-path
interference signals, we process only the first 2400 samples
of all the received signals. Also, the first 1400 samples,
corresponding to the propagation of the sound wave in the
first layer are replaced with zero. The probing signal is a
wide-band signal with a center frequency of 5 MHz. To sup-
press the noise, the high frequency components are replaced
with zero. In the other words, we filter the signal using a
low pass filter. In Fig. 3a, we have shown the image of the
material under test using our proposed imaging algorithm
using 1320 frequency bins. The three-dimensional version of
this image is shown in Fig. 3c. The ROI is the area between
the lines x = −40 mm, and x = 40 mm, and y = −18 mm,
y = 18 mm corresponding to the steel test sample according
to the coordinate system shown in Fig. 2. All the images have
been normalized to their maximum values (brightest pixel in
the image). The three prominent peaks belong to Holes A, B,
and C, which are shown in Fig. 2.

We also image the steel block (the second layer of the
two-layer LS medium of water and steel) using the single-
layer wavenumber algorithm of [4]. To do so, we have cho-
sen the part of the signal corresponding to the propagation
of the sound in the steel block using time gating. To this
end, the time samples between 1400 and 2400 have been
chosen. These samples correspond to the wave reflected
from all points in the second layer, which are calculated
based on the aforementioned sound velocities in the two
layers. Using the single-layer wavenumber algorithm of [4],
in Fig. 3b, we have shown the image of the steel test sam-
ple. The three-dimensional version of this image is shown

FIGURE 2. Test configuration.

in Fig. 3d. The peaks in Fig. 3a and Fig. 3c, obtained using
our proposed algorithms are more prominent in comparison
to peaks in Fig. 3b and Fig. 3d obtained using single-layer
wavenumber algorithm [4] in conjunction with time-gating.
To better compare these two approaches, we have shown the
images of Holes A, B, and C, in Fig. 4. These images clearly
show that our proposed algorithm outperforms the single-
layer wavenumber algorithm. Indeed, these two figures show
that the shapes of the holes in our images are clearly closer
to a circle while the shapes of the holes obtained by using
the single-layer wavenumber algorithm of [4] are far from a
circle.

The performance of the proposed algorithm in terms of the
cut-off frequency in the low-pass filter (or equivalently the
number of frequency bins chosen from the Fourier represen-
tation of the signal) is investigated in Fig. 5. We can see from
these images that as we increase the number of frequency
bins or the cut-off frequency of the low-pass filter, the peaks
are more prominent leading tomore clearer images. However,
increasing the number of frequency bins will increase the
computational complexity of the algorithm. That is, there
is a trade-off between the image clarity and computational
complexity.

To evaluate the performance of our proposed method,
in terms of root mean squared error (RMSE), we now provide
an RMSE plot versus the SNR. To do so, we have added a
zero-mean Gaussian noise with different powers, correspond-
ing to different values of SNR, to the raw data. Note that here
the SNR is defined as the power of the additive noise to the
power of the backscattered signal at the receiving transducers.
We reconstruct the image using the data contaminated with
additive noise and calculate the RMSE of the location of the
peaks. The RMSE is calculated based on the assumption that
the true location of the peak in the image is the one which
is obtained from the original data (without additive noise).
Using 1320 frequency bins, Fig. 6 shows the RMSEs for the
holes’ location estimates obtained using different methods
including the proposed method, the single-layer wavenumber
algorithm of [4], the RMS velocity based approach of [11],
and our earlier work in [26].
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FIGURE 3. A comparison between our proposed algorithm and the single-layer wavenumber algorithm. (a) Image of the ROI obtained using the
proposed algorithm. (b) Image of the ROI obtained using the single-layer wavenumber algorithm. (c) Three-dimensional plot obtained using the
proposed algorithm. (d) Three-dimensional plot obtained using the single-layer wavenumber algorithm.

This figure clearly shows the superiority of the proposed
method compared to the single-layer wavenumber algorithm
and the RMS velocity based approach, while showing a
only slight performance degradation compared to the method
of [26]. Note however that the computational complexity of
the method of [26] is prohibitively high, and thus, the pro-
posed method offers an alternative low complexity solution
at a negligible performance loss. This slightly better perfor-
mance of the method of [26] stems from the fact that this
method uses the knowledge of the fired pulse shape in the
frequency domain to build the corresponding image. Hence,
in those frequencies where this pulse has low energy, the con-
tribution of the data in those frequencies to the image will
be relatively low. However, in the proposed method, based
on (6), the pulse shape is assumed to be flat in frequency
domain. Such an assumption is only an approximation to the
true shape of the pulse.

We now comment on the computational complexity of the
proposed algorithm. Considering an array of M ultrasonic
transducers, theM2 time domain received signals are sampled
in time and stored in a N × M × M tensor, where N is
the number of time samples. In the proposed Fourier-based
imaging technique, the computational cost of the 3-D FFT is
O(M2N log(M2N )). Then each 2-D slice of the Fourier trans-
formed data is interpolated into an L × K image. This inter-
polation has a computational complexity of O(LKM ). Then
a 2-D inverse FFT is applied to each of these L × K images
(a total of M images) with a total computational complexity
of O(MLK log(LK )). Therefore, the computational cost is
O(LKM + MLK log(LK ) + M2N log(M2N )). This compu-
tational complexity is the same as that of the wavenumber
algorithm. However, as shown through our numerical simu-
lations, our proposed technique outperforms the wavenumber
technique. Compared to the techniques studied in [26], our
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FIGURE 4. Images of the Holes A, B, and C using our proposed algorithm and for the single-layer wavenumber algorithm. (a) Image of hole A
obtained using the proposed algorithm. (b) Image of hole A obtained using the single-layer wavenumber algorithm. (c) Image of hole B
obtained using the proposed algorithm. (d) Image of hole B obtained using the single-layer wavenumber algorithm. (e) Image of hole C
obtained using the proposed algorithm. (f) Image of hole C obtained using the single-layer wavenumber algorithm.
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FIGURE 5. Image of the ROI using our proposed algorithm for different number of frequency bins. (a) Image of the ROI using 1320 frequency bins.
(b) Three-dimensional image of ROI using 1320 frequency bins. (c) Image of the ROI using 1350 frequency bins. (d) Three-dimensional image of ROI
using 1350 frequency bins. (e) Image of the ROI using 1400 frequency bins. (f) Three-dimensional image of ROI using 1400 frequency bins.

VOLUME 6, 2018 8987



N. Moallemi, S. Shahbazpanahi: Novel Spatio-Temporal Frequency-Domain Imaging Technique for Two-Layer Materials

FIGURE 6. The RMSE curves versus SNR.

algorithm is much faster. The reason is that calculating the
model introduced in [26] for array spatial signature involves
approximating a certain integral using numerical techniques.
While the computational complexities of these numerical
techniques are not easily quantifiable, one can say that to
ensure an accurate approximation of the aforementioned
integral, number of points in the corresponding numerical
approximation has to be to sufficiently large and this results
in a very high computational complexity for the algorithms
of [26]. Our proposed scheme trades off imaging performance
to gain computational advantage over the methods of [26],
see [30] for more details.

VI. CONCLUSIONS
In this paper, we used the distributed source modeling
approach for the interface between the layers of a two-layer
LS medium. Then, we developed a Fourier transform based
imaging algorithm to estimate the scattering coefficients of all
the points inside the second layer of a two-layer LSmedium in
order to obtain an image of the region of interest (ROI). This
algorithm is based on a mapping relationship which we estab-
lish between the two-dimensional image of the ROI and the
three-dimensional frequency-domain backscattered signals.
In this proposed algorithm, the computational complexity is
relatively low, and it can be used in an online imaging process.
Computer simulations as well as experimental data show the
accuracy of the proposed algorithm.
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