
SPECIAL SECTION ON FAIRNESS IN FUTURISTIC WIRELESS NETWORKS: APPLICATIONS,
IMPLEMENTATION, ISSUES, AND OPPORTUNITIES

Received January 9, 2018, accepted February 18, 2018, date of publication February 22, 2018, date of current version April 4, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808481

Profit-Aware Distributed Online Scheduling for
Data-Oriented Tasks in Cloud Datacenters
WEI LU 1, PING LU1, QUANYING SUN1, SHUI YU2,
AND ZUQING ZHU 1, (Senior Member, IEEE)
1School of Information Science and Technology, University of Science and Technology of China, Hefei 230027, China
2School of Information Technology, Deakin University, Burwood, VIC 3125, Australia

Corresponding author: Zuqing Zhu (zqzhu@ieee.org)

This work was supported in part by the NSFC Project under Grant 61701472, in part by the CAS Key Project under Grant
QYZDY-SSW-JSC003, in part by the NGBWMCN Key Project under Grant 2017ZX03001019-004, in part by the China Postdoctoral
Science Foundation under Grant 2016M602031, and in part by the Fundamental Research Funds for the Central Universities under
Grant WK2100060021.

ABSTRACT As there is an increasing trend to deploy geographically distributed (geo-distributed) cloud
datacenters (DCs), the scheduling of data-oriented tasks in such cloud DC systems becomes an appealing
research topic. Specifically, it is challenging to achieve the distributed online scheduling that can handle
the tasks’ acceptance, data-transfers, and processing jointly and efficiently. In this paper, by considering
the store-and-forward and anycast schemes, we formulate an optimization problem to maximize the time-
average profit from serving data-oriented tasks in a cloud DC system and then leverage the Lyapunov
optimization techniques to propose an efficient scheduling algorithm, i.e., GlobalAny. We also extend the
proposed algorithm by designing a data-transfer acceleration scheme to reduce the data-transfer latency.
Extensive simulations verify that our algorithms can maximize the time-average profit in a distributed online
manner. The results also indicate that GlobalAny and GlobalAny_Ext (i.e., GlobalAny with data-transfer
acceleration) outperform several existing algorithms in terms of both time-average profit and computation
time.

INDEX TERMS Datacenter networks, Lyapunov optimization, distributed online scheduling, data-transfer
acceleration.

I. INTRODUCTION
Nowadays, there is an increasing trend to deploy geograph-
ically distributed (geo-distributed) cloud datacenters (DCs)
for achieving enhanced user experience and service avail-
ability [1], [2]. In such cloud DCs, emerging applications
usually involve numerous data-oriented tasks [3]–[7]. These
tasks need to transfer certain amount of data to remote DC(s)
for further processing. For instance, e-Science and backup
applications may need to transfer data among multiple geo-
distributed DCs [8], [9]. As the data-oriented tasks can cause
high-capacity data-transfer among DCs, they would impact
the service capacity and resource management in cloud DC
systems significantly. Therefore, we need to schedule them
adaptively to ensure efficient DC operations.

The scheduling of data-oriented tasks bears some inter-
esting features. First of all, the data-transfers can utilize
the anycast routing scheme, i.e., data can be forwarded to
and processed by any DC within a destination DC set. For
example, the data backup tasks can use the mutual backup

model [1] and choose any DC within a backup group as its
backup site. Secondly, the data-transfers usually can tolerate
certain setup delay [10]–[13]. Hence, they can leverage the
store-and-forward scheme [10]. Specifically, the intermediate
DCs along the routing path can store the data when the subse-
quent network link is congested, and send it out to the destina-
tion DC later. Note that, these features make the scheduling
of data-oriented tasks more flexible, and hence we need to
incorporate more sophisticated scheduling algorithms. More-
over, the tasks are usually highly-dynamic, and their arrival
pattern can hardly be predicted. Therefore, we need to find
the optimal scheme to schedule them in an online manner
without much pre-knowledge on the arrival pattern, which is
obviously challenging.

In this work, by considering the anycast and store-and-
forward schemes, we investigate how to allocate network
resources and IT resources to support the data-oriented tasks
dynamically and cost-effectively, i.e., maximizing the time-
average profit. Here, the profit is the margin between the

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

15629

https://orcid.org/0000-0001-5893-6897
https://orcid.org/0000-0002-4251-788X

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

revenue from task serving and the cost due to resource con-
sumption. We formulate the optimization problem and design
a distributed online scheduling algorithm, i.e., GlobalAny,
by leveraging the Lyapunov optimization techniques [14].
WithGlobalAny, the destination DC of a task can be adjusted
adaptively during the data-transfer, rather than being deter-
mined in its source DC directly. Our proposed algorithm
maximizes the time-average profit in a distributed online
manner and obtains the profit that is arbitrarily close to
the optimal value. We then extend it by designing a data-
transfer acceleration scenario to unify the benefits of direct-
transfer and store-and-forward schemes. Finally, extensive
simulations are performed to evaluate the performance of the
algorithms and the results indicate that they can outperform
several existing algorithms in terms of both time-average
profit and computation time.

The rest of the paper is organized as follows. Section II
reviews the related work, and we formulate the problem in
Section III. The distributed scheduling algorithm is proposed
in Sections IV. Section V describes the data-transfer acceler-
ation scenario and the performance evaluation is discussed in
Section VI. Finally, Section VII summarizes the paper.

II. RELATED WORK
Previously, people have studied the task scheduling across
cloud DCswith the objectives of load balancing [15] and bud-
get minimizing [16]. Meanwhile, task scheduling was also
considered for the Big Data applications [17]–[19]. However,
these investigations did not address the data-transfer process
in inter-DC networks, and might lead to long processing
latency.

In order to handle inter-DC traffic well, researchers
have considered the store-and-forward scheme for traffic
scheduling [10], [20]. The authors of [10] studied the store-
and-forward and time-expanded networking schemes for
minimizing data-transfer time. The work in [20] tried to
maintain the service fairness for data-transfers with the store-
and-forward scheme. Note that, these studies optimized the
scheduling of data-transfers based on the pre-knowledge of
their arrival patterns, and thus could only get the optimal
solution for certain time period. Moreover, the computational
complexity of their approaches increased significantly with
the length of the period.

From the perspectives of network framework and protocol,
the studies in [21]–[24] and [25]–[28] have considered how to
realize virtual network embedding (VNE) and network func-
tion virtualization (NFV) in inter-DC networks, respectively,
and Kettimuthu et al. [29] have tried to optimize the data-
transfers in cloud DC systems. With the software-defined
networking (SDN) based scheduling schemes, Google and
Microsoft have developed systems such as B4 [12] and
SWAN [30], respectively, to manage the inter-DC traffic in
their DCs. Wu et al. investigated the data-transfers across
SDN-controlled geo-distributed DCs in [31]. Our work is
different from these studies, as we do not require central-
ized network control and management (NC&M) and the

proposed algorithms can be implemented in a truly distributed
way.

It is known that Lyapunov optimization techniques can be
used to design online scheduling algorithms that can arbi-
trarily close to the time-average optimum without any pre-
knowledge on the requests’ arrival patterns [14]. Hence, they
have been used to solve the scheduling problems in cloud
computing [32], DC power management [33], etc. In [34],
Liu et al. leveraged the Lyapunov optimization techniques to
address the task scheduling and server/virtual machine (VM)
management within a single DC. However, they did not
consider how to determine the routing path and bandwidth
allocation for the data-transfer of each task, which is essen-
tial for scheduling the data-transfers in inter-DC networks.
Hence, their algorithms cannot be used to solve the problem
studied in this work. Previously, with the Lyapunov opti-
mization techniques, people have proposed the back-pressure
algorithm to manage the data-transfers in multi-hop wireless
networks [35]. However, it is known that this scheme can
cause long and unnecessary data-transfer latency, especially
when the traffic load is relatively low. Even though the data-
oriented tasks can be delay-tolerant, obsessively long latency
can still impact user experience. Hence, the data-transfer
latency of the back-pressure algorithm has been addressed
in [36] and [37]. In [36], the authors tried to perform routing
path selection based on the information of the shortest paths,
while the technique based on shadow queues was proposed
in [37], to shorten the data-transfer latency. However, these
studies were still based on the hop-by-hop store-and-forward
scheme, which cannot reduce the data-transfer latency to the
maximum extent.

FIGURE 1. Geo-distributed cloud DC system that carries data-oriented
tasks.

III. PROBLEM FORMULATION
A. NETWORK MODEL
We consider a geo-distributed cloud DC system as shown
in Fig. 1. To facilitate distributed online task scheduling,
the system operates based on discrete time-slot (TS) with
a duration of 1t . Note that in a real cloud DC system,
1t can range from a few seconds to several minutes [34],
depending on the traffic dynamics. Specifically, it should be
sufficiently long for the system to implement the updates

15630 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

from the scheduling algorithm, w.o.l.g., we normalize TS in
the rest of the paper. Hence, we have 1t = 1, and the
system time t is t ∈ {1, 2, · · · }. There are multiple DCs in
the system, and we denote the network as G(D, E), where D
is the DC set (D = {1, . . . , |D|}) and E represents the set
of inter-DC links. Generally, cloud DC provides numerous
computing, storing or I/O resources in the form of VM for
task processing. In this paper, we use IT resources to represent
the resources that would be used to process the data-oriented
tasks and assume the available IT resources inDC i isCi. The
available bandwidth on link (i, v) ∈ E is Bi,v, where i and v
represent two adjacent DCs in the network (i, v ∈ D).

TABLE 1. Key notations.

In order to mimic the real cases, we assume that the data-
oriented tasks in the cloud DC system can be classified into
|K| categories and denote the set of categories as K. Each
category has its own source and destination DC sets and
data-size. Specifically, for the k-th category, the tasks are
generated in a DC in source DC set Sk ⊂ D to deliver a
block of δk data to any DC in destination DC set Dk ⊂ D
for further processing. For instance, for the first category
in Fig. 1, the tasks originating from DC 2 need to deliver
certain data to DC 4 or 5. Apparently, as we consider inter-
DC traffic, the source and destination DC sets should not
overlap, i.e., Sk ∩ Dk = ∅,∀k ∈ K. A weight coefficient
wk is assigned to the k-th category to facilitate differentiated
services. We use Ki to represent the set of categories that can
be processed in DC i. Table 1 lists the key notations used in
the paper.

We use Amaxk to denote the maximum number of k-th
category tasks generated per TS. Then, the arrival rate for the
k-th category tasks in DC i at time t (i.e., Aki (t)) satisfies

0 ≤ Aki (t) ≤ A
max
k · I{i∈Sk } ∀i, k, (1)

where I{i∈Sk } is a boolean flag to indicate whether DC i is
included in source DC set Sk , as

I{i∈Sk } =
{
1, ∀i ∈ Sk ,
0, ∀i /∈ Sk .

B. DATA-ORIENTED TASKS SCHEDULING IN DCs
1) TASK ACCEPTANCE
With the anycast scheme, the destination DC of a task can
be adjusted by any of the intermediate DCs along its routing
path, before it finally reaches a feasible destination DC.
As the destination DCs are selected in a global manner,

FIGURE 2. GlobalAny scenario for scheduling data-oriented tasks in DC i .

we name this scheduling scheme as GlobalAny. Specifically,
each DC uses the scenario illustrated in Fig. 2 to handle
the data-oriented tasks. In each DC, we determine whether
a locally-generated task should be accepted or not based on
the status of a few queues, each of which stores the tasks to
a remote DC. We arrange the queues in each DC based on
the tasks’ categories, i.e., Qki (t) denotes the queue that stores
all the tasks that belong to the k-th category in DC i and it is
initialized as Qki (0) = 0. With all the queues in the cloud DC
system (i.e., {Qki (t), i ∈ D, k ∈ K}), we can obtain the queue
matrix Q(t) as

Q(t) =

Q1
1(t) Q2

1(t) · · · Q|K|1 (t)
Q1
2(t) Q2

2(t) · · · Q|K|2 (t)
...

...
. . .

...

Q1
|D|(t) Q2

|D|(t) · · · Q|K|
|D|(t)

. (2)

In DC i, the number of accepted k-th category tasks at
time t is denoted as aki (t), and we have

0 ≤ aki (t) ≤ A
k
i (t), ∀i, k. (3)

The time-average expectation of aki (t) is

aki = lim
t→∞

1
t

t−1∑
τ=0

E{aki (τ)}, ∀i, k.

2) DATA-TRANSFER WITH STORE-AND-FORWARD SCHEME
The data-transfer in the cloud DC system can be realized
with the store-and-forward scheme [10], i.e., by utilizing the
storage space in the intermediate DCs along the routing path
to relay the data hop-by-hop. It is known that this scheme
can provide higher data-transfer throughput than the one that
delivers the data end-to-end directly [10].

For data-transfer, a decision variable bki,v(t) is defined as the
amount of k-th category data that is sent over link (i, v). Here,
DCs i and v are adjacent in G(D, E). Apparently, the total
transferred data should not exceed the available bandwidth

VOLUME 6, 2018 15631

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

on each link, i.e.,∑
k

bki,v(t) ≤ Bi,v, ∀i, ∀(i, v) ∈ E . (4)

The time-average expectation of bki,v(t) is denoted as bki,v.
And the total used bandwidth bi,v(t) can be obtained by
summarizing the bandwidth used by all the task categories,
and its time-average value bi,v should satisfy

bi,v =
∑
k

bki,v, ∀i, ∀(i, v) ∈ E .

Then, for queueQki (t), ∀k /∈ Ki inDC i, we insert both the
locally-accepted and remotely-sent-over tasks (all belonging
to the k-th category), while the sojourn tasks are removed and
sent to the next hop. Since the storage space in a DC is usually
big enough, we can treat the queues as infinite ones. Hence,
Qki (t) for task acceptance and transfer is updated as

Qki (t + 1) = max

Qki (t)− ∑
{v:(i,v)∈E}

bki,v(t), 0

+

∑
{v:(v,i)∈E}

bkv,i(t)+ a
k
i (t) · δk , ∀i, k /∈ Ki.

(5)

3) TASK PROCESSING
When a task arrives at one of its feasible destination DCs,
it is inserted into the queue for final processing and will
not be sent to other DCs anymore. Then, the destination DC
allocates IT resources to process the task. We denote the
allocated resources to the k-th category tasks in DC i as
cki (t). Apparently, the total amount of IT resources should not
exceed those available in each DC, as∑

k

cki (t) ≤ Ci, ∀i. (6)

Similarly, we denote the time-average expectation of cki (t) as
cki . Then, as for queue Q

k
i (t), ∀k ∈ Ki in DC i, the remotely-

sent-over tasks are added and the sojourn requests are
removed for final processing.We useµk to denote the number
of k-th category tasks that unit IT resource can process per TS.
Hence, we can update the queue for task processing as

Qki (t + 1) = max
(
Qki (t)− c

k
i (t) · µk · δk , 0

)
+

∑
{v:(v,i)∈E}

bkv,i(t), ∀i, k ∈ Ki. (7)

Fig. 2 gives an example to illustrate theGlobalAny schedul-
ing scheme. We assume that there are four categories of tasks
running in the cloud DCs. DC i is the source DC of tasks
belonging to first two categories, and it is also a destination
DC of the tasks in the last two categories, i.e., Ki = {3, 4}.
Firstly, the tasks generated as ones in the first two categories
will be accepted or dropped. Then, the accepted ones and
tasks from adjacent DCs will be inserted into the corre-
sponding queue Qki (t). If the tasks can be processed in DC i

(i.e., they are in the last two categories), we should allocate IT
resources to process them. Otherwise, we should transfer the
tasks to the adjacent DCs. And all the tasks are transferred
according to this strategy until they arrive at one of their
destination DCs. In addition, Eqs. (5) and (7) indicate that
the more bandwidth resources and IT resources be allocated,
the faster the tasks can be transferred and processed.

C. PROFIT-DRIVEN OPTIMIZATION MODEL
The discussion above indicates that the data-oriented tasks
consume both bandwidth resources in the network and IT
resources in the DCs and there is a tradeoff between the
tasks processing latency and resource consumption. Since the
customers in the multi-DC system connect to their source
DCs and can submit data-oriented tasks there, we formulate
a profit model by considering the revenue from serving the
tasks and the cost due to the usages of bandwidth and IT
resources. The revenue is calculated based on two payments.
The CSP gets the first payment from the customer who
submits the task, when the corresponding source DC accepts
the task. And the second payment comes in (i.e., also from
the customer) when the task’s data has been processed by
its destination DC. As the DCs handle task acceptance and
processing separately, the revenue model addresses the two
important milestones of serving a data-oriented task in the
multi-DC systemwith the two payments. Apparently, the rev-
enue from the first payment is related to the time-average
expectation of task acceptance rates, i.e., {aki , ∀i, k}. Here,
we use a logarithmic utility model, which follows the law
of diminishing marginal utility [34] and is widely used in
previous work.

f1(aki) = log(1+ αk · aki), ∀i, k, (8)

where αk is the revenue coefficient for the k-th task category.
The second payment is based on the number of tasks that
have been processed. At time t , the number of processed k-th
category tasks is mk (t), as

mk (t) =
∑
i

cki (t) · µk , ∀k. (9)

The time-average expectation of mk (t) is mk . Then, with the
linear utility model in [38], we get this part of revenue as

f2(mk) = γk · mk , ∀k, (10)

where γk is the coefficient for tasks in the k-th category.
The cost of the bandwidth usage on link (i, v) ∈ E is

h1(bi,v) = βi,v · bi,v, ∀(i, v) ∈ E, (11)

where βi,v is the cost of unit bandwidth usage on link (i, v).
The last part of cost comes from the IT resource usage due
to the store-and-forward operations. At time t , the amount of
data that arrives at an intermediateDC i andwill be forwarded
to a remote DC later is ni(t), as

ni(t) =
∑

k,v:(v,i)∈E
bkv,i(t) · I{k /∈Ki}, ∀i, (12)

15632 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

and the time-average expectation of ni(t) is ni. Then, the time-
average cost due to IT resource usage in DC i is

h2(ni) = ρi · ni, ∀i, (13)

where ρi is the cost coefficient of the IT resources used by the
store-and-forward operations in DC i.

Finally, the time-average profit from serving the tasks can
be obtained as

P =
∑
i,k

f1(aki)+
∑
k

f2(mk)−
∑
i,v

h1(bi,v)−
∑
i

h2(ni).

(14)

Here, we try to maximize the time-average profit while
all the constraints should be satisfied. In addition, all the
queues in the system should keep stable, otherwise the pro-
cessing latency of accepted tasks may be infinite [14]. Hence,
the profit-driven optimization is modeled as

Maximize P,

s.t. Eqs. (1) - (7),

Qki (t) keeps stable, ∀i, k. (15)

IV. GLOBALANY SCHEDULING ALGORITHM
A. LYAPUNOV OPTIMIZATION TECHNIQUES
We use the Lyapunov optimization techniques to solve the
optimization in Eq. (15) and develop a profit-driven dis-
tributed online scheduling algorithm. As the utility function
f1(·) is nonlinear, we first introduce an auxiliary variable,
xki (t), to transform the original problem into the standard
drift-minus-profit framework in Lyapunov optimization, as

0 ≤ xki (t) ≤ A
max
k · I{i∈Sk }, ∀i, k. (16)

And we denote the time-average expectation of xki (t)
as xki . Then, the original problem is transformed into

Maximize
∑
i,k

f1(xki)+
∑
k

f2(mk)

−

∑
i,v

h1(bi,v)−
∑
i

h2(ni),

s.t. Eqs. (1) - (7),

xki ≤ a
k
i , ∀i, k,

Qki (t) keeps stable, ∀i, k, (17)

where we have

f1(xki) = lim
t→∞

1
t

t−1∑
τ=0

E{log(1+ αk · xki (τ))}, ∀i, k.

Then, we use the virtual queues, {X ki (t), ∀i, k} with initial
values as X ki (0) = 0, to transform the constraint

xki ≤ a
k
i , ∀i, k,

in Eq. (17) into a queue-stable problem [14]. Similar to
Q(t) in Eq. (2), we use X(t) to denote the queue matrix for
{X ki (t), ∀i, k}, and X

k
i (t) is updated as

X ki (t + 1) = max(X ki (t)− a
k
i (t)+ x

k
i (t), 0) ∀i, k. (18)

Let �(t) = [Q(t),X(t)], and we define the Lyapunov
function L(�(t)) as

L(�(t)) =
1
2

∑
i,k

(Qki (t) · wk)
2
+

∑
i,k

(X ki (t) · ηk)
2

, (19)

The Lyapunov drift function is the conditional expectation of
the Lyapunov function in Eq. (19) for different TS’, as

1(�(t)) = E{L(�(t + 1))− L(�(t)) | �(t)}. (20)

If we define ζ (t) as

ζ (t) =
∑
i,k

f1(xki (t))+
∑
k

f2(mk (t))

−

∑
i,v

h1(bi,v(t))−
∑
i

h2(ni(t)),

the drift-minus-profit expression can be obtained as

8(�(t)) = 1(�(t))− V · E{ζ (t) | �(t)}, (21)

where V is the tradeoff parameter to balance the queue
lengths and the time-average profit. Eq. (21) satisfies the
inequality below because [max(q− c, 0)+ a]2 ≤ q2 + a2 +
c2 + 2q(a− c).

8(�(t)) ≤ B+81(�(t))+82(�(t))

+83(�(t))+84(�(t)), (22)

where B is a constant that satisfies

B ≥
1
2
·

∑
i,k

E

{[
aki (t)− x

k
i (t)

]2
· η2k

+

[
(
∑
v

bkv,i(t)+ a
k
i (t) · δk)

2
+ (
∑
v

bki,v(t))
2

]
·w2

k · I{k /∈Ki}

+

[
(
∑
v

bkv,i(t))
2
+ (cki (t) · µk · δk)

2

]

·w2
k · I{k∈Ki} | �(t)

}
.

And 81(�(t)), 82(�(t)), 83(�(t)) and 84(�(t)) have the
expressions as

81(�(t)) =
∑
i,k

E{X ki (t) · η
2
k · x

k
i (t)− V · f1(x

k
i (t)) | �(t)},

(23)

82(�(t)) =
∑
i,k

E{Qki (t) · δk · w
2
k · a

k
i (t)

−X ki (t) · η
2
k · a

k
i (t) | �(t)}, (24)

83(�(t)) =
∑
i,v,k

E{Qki (t) · (b
k
v,i(t)− b

k
i,v(t)) · w

2
k

+V · (βi,v + ρv · I{k /∈Kv})) · b
k
i,v(t)|�(t)}. (25)

84(�(t)) =
∑
i,k

E{(−Qki (t) · w
2
k · c

k
i (t) · µk · δk

−V · cki (t) · γk · µk) · I{k∈Kv} | �(t)}. (26)

VOLUME 6, 2018 15633

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

B. DISTRIBUTED ONLINE SCHEDULING
We design a scheduling algorithm (i.e.,GlobalAny) to handle
the auxiliary variables, tasks’ acceptance, data-transfers and
processing in an online and distributed manner. We will also
verify that only small communication overhead is needed for
information exchange.

1) AUXILIARY VARIABLES
We can get the optimal solutions of {xki (t), ∀i, k, t} by mini-
mizing Eq. (23). For these independent variables, we have

Minimize X ki (t) · η
2
k · x

k
i (t)− V · log(1+ αk · x

k
i (t))

s.t. 0 ≤ xki (t) ≤ A
max
k , ∀i, k, (27)

and the optimal solutions of {xki (t), ∀i, k, t} are

xki (t)
∗

=

0, X ki (t) >
V · αk
η2k

,

V

X ki (t) · η
2
k

−
1
αk
,

X ki (t) ∈

[
V · αk

(1+ αk · Amaxk) · η2k
,
V · αk
η2k

]
,

Amaxk , X ki (t) ∈

[
0,

V · αk
(1+ αk · Amaxk) · η2k

)
.

(28)

2) TASK ACCEPTANCE POLICY
When the real queue is not longer than the virtual queue,
i.e., Qki (t) ≤ X ki (t) · δk , GlobalAny should accept all
the newly-generated k-th category tasks Aki (t) in DC i at
time t , otherwise, it should drop all of them. This is because
we can get the optimal task acceptance policy by minimizing
Eq. (24), as

Minimize Qki (t) · δk · w
2
k · a

k
i (t)− X

k
i (t) · η

2
k · a

k
i (t),

s.t. 0 ≤ aki (t) ≤ A
k
i (t) · I{i∈Sk }, ∀i, k, (29)

and thus the optimal solution aki (t)
∗ is

aki (t)
∗
=

{
Aki (t), Qki (t) ≤ X

k
i (t) · δk ,

0, otherwise.
(30)

3) BANDWIDTH ALLOCATION
To get the optimal bandwidth allocation, we first defineBki,v(t)
as

Bki,v(t) = (Qki (t)− Q
k
v (t)) · w

2
k

−V · (βi,v + ρv · I{k /∈Kv}), ∀i, v, k. (31)

Then, we can conclude that if the queue lengths are not
considered, GlobalAny should provide all the bandwidth on
link (i, v) to the queue that has themaximum positiveBki,v(t) at
time t . This is because the optimal bandwidth allocation can
be obtained by minimizing83(�(t)) in Eq. (25). If the queue
lengths are not considered, we can assume that the bandwidth
allocation would not result in empty queues, i.e., there are

always enough data-transfers on each link. Hence, Eq. (25) is
independent of link status and can be transformed into

Maximize
∑
k

Bki,v(t) · b
k
i,v(t)

s.t. 0 ≤
∑
k

bki,v(t) ≤ Bi,v, ∀(i, v) ∈ E, (32)

and we can get the optimal bki,v(t)
∗ as follows.

bki,v(t)
∗
=

{
Bi,v(t), k = k∗,
0, otherwise,

(33)

where we have

k∗ = argmax{Bki,v(t)|B
k
i,v(t) > 0,∀k ∈ K}.

Therefore, we verify that in DC i, GlobeAny should allo-
cate the bandwidth on each link to the queue that has the
maximum positive Bki,v(t). Note that, Bki,v(t) equals to the
weighted differential queue length (i.e., (Qki (t) − Qkv (t)) ·
w2
k) subtracting a fixed value, which is determined by the

cost of data-transfer using store-and-forward. As GlobalAny
allocates the bandwidth to the task category that has max-
imum weighted differential queue length, we can provide
differentiated services to the task categories by adjusting their
weights {wk}.

However, the analysis above overlooks the scenario that
the queue with the maximum positive Bki,v(t) does not have
enough data to fully utilize the allocated bandwidth. For this
scenario, the bandwidth allocation according to the aforemen-
tioned scheme becomes inefficient since bandwidth could
be wasted. Hence, we introduce a new constraint to make
sure that all the allocated bandwidth is fully utilized in
each DC.

0 ≤
∑

v:(i,v)∈E
bki,v(t) ≤ Q

k
i (t), ∀i, k. (34)

Since each data-oriented task will be forwarded to one and
only one destination DC, the allocated bandwidth should be
in integer times of the data-size of each task category. Thus,
we introduce an integer variable N k

i,v to represent the number
of tasks can be transferred on link (i, v) and we have

bki,v(t) = N k
i,v · δk , ∀i, k, ∀(i, v) ∈ E . (35)

Then, we design a new optimization model for the data-
transfer in each DC as follows.

Maximize
∑
v,k

Bki,v(t) · b
k
i,v(t)

s.t. 0 ≤
∑
k

bki,v(t) ≤ Bi,v, ∀(i, v) ∈ E,

0 ≤
∑

v:(i,v)∈E
bki,v(t) ≤ Q

k
i (t), ∀k,

bki,v(t) = N k
i,v · δk , ∀k, (i, v) ∈ E . (36)

15634 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

And the optimization in Eq. (36) can be rewritten as follows
if we notice the relation between bki,v(t) and N

k
i,v.

Maximize
∑
v,k

Bki,v(t) · δk · N
k
i,v

s.t. 0 ≤
∑
k

N k
i,v · δk ≤ Bi,v, ∀(i, v) ∈ E,

0 ≤
∑

v:(i,v)∈E
N k
i,v · δk ≤ Q

k
i (t), ∀k. (37)

Note that, the optimization in Eq. (37) represents a
bounded multiple knapsack problem, which is known to
be NP-hard [39]. Therefore, we design an approximation
algorithm that leverages the linear program relaxation (LP-
relaxation) with rounding, as shown in Algorithm 1. Specif-
ically, in each DC, we first solve the problem in Eq. (37)
by relaxing the integer variables and then round down the
solution to get {N k

i,v, ∀v, k}. Then, we allocate the residual
bandwidth Bi,v on each link (i, v) to the remaining data in
{Qki (t), ∀k}. This means that we sort the combinations of
{v, k} in descending order of Bki,v(t) · δk , and then for each
sorted {v, k}, we allocate the bandwidth on link (i, v) to queue
Qki (t) accordingly. Finally, the bandwidth allocation b

k
i,v(t) is

obtained.

Algorithm 1 Bandwidth Allocation of GlobalAny for DC i
Input:

Q(t), {Bi,v, ∀v}.
1: calculate {Bki,v(t), ∀v, k} with Eq. (31);
2: get {N k

i,v, ∀v, k} with LP-relaxation of Eq. (37);
3: N k

i,v = bN
k
i,vc, ∀v, k;

4: Qki (t) = Qki (t)−
∑
v
N k
i,v · δk , ∀k;

5: Bi,v = Bi,v −
∑
k
N k
i,v · δk , ∀v;

6: sort {v, k} in descending order of Bki,v(t) · δk ;
7: for each {v, k} in sorted order do
8: if Bki,v(t) ≥ 0 then

9: 1 = b
max(min(Qki (t),Bi,v),0)

δk
c;

10: N k
i,v = N k

i,v +1;
11: Qki (t) = Qki (t)−1 · δk ;
12: Bi,v = Bi,v −1 · δk ;
13: else
14: break;
15: end if
16: end for
17: bki,v(t) = N k

i,v · δk , ∀v, k;

4) TASK PROCESSING
To get the optimal IT resource allocation for task processing
in destination DCs, we define

Ck
i (t) = (Qki (t) · w

2
k · δk + V · γk) · µk , ∀i, k ∈ Ki.

Then, GlobalAny should allocate IT resources in destination
DCs for task processing according to Ck

i (t). This is because

according to Eq. (26), the IT resource allocation can be
obtained by solving the optimization problem below

Maximize
∑
k∈Ki

Ck
i (t) · c

k
i (t),

s.t.
∑
k∈Ki

cki (t) ≤ Ci, ∀i. (38)

Since Ck
i (t) ≥ 0, ∀i, k ∈ Ki is always true, we can get the

optimal cki (t)
∗ with the following procedure. Firstly, in DC

i, we sort the queues {Qki (t), ∀k ∈ Ki} in descending order
of Ck

i (t). Secondly, we allocate IT resources to them in sorted
order, until they all get sufficient IT resources to handle the
tasks or all the IT resources are allocated.

5) OVERALL DISTRIBUTED ONLINE SCHEDULING
Based on the analysis above, we get the overall procedure
of GlobalAny for scheduling data-oriented tasks at time t
in DC i, which is shown in Algorithm 2. Specifically, for
each task category, the auxiliary variable and task acceptance
are first calculated independently with Eqs. (28) and (30),
respectively. Then, we use Algorithm 1 to get the bandwidth
allocation and forward the related tasks to adjacent DCs.
Meanwhile, all the tasks received from adjacent DCs should
be accepted. Next, GlobalAny handles the tasks whose desti-
nation DCs areDC iwith the scheme proposed in Section IV-
B.4. Finally, we update {Qki (t)} and {X

k
i (t)} with Eqs. (5),

(7) and (18), and share the queue lengths of {Qki (t)} with
adjacent DCs.

Algorithm 2 Tasks Scheduling in DC i using GlobalAny
1: for each task category k ∈ K do
2: calculate auxiliary variable xki (t) with Eq. (28);
3: accept tasks according to xki (t) using Eq. (30);
4: end for
5: use Algorithm 1 to obtain the bandwidth allocation;
6: send tasks in queues to adjacent DCs with the allocated

bandwidth;
7: accept all the tasks from adjacent DCs;
8: process the tasks whose destination DC set includes DC
i with the scheme proposed in Section IV-B.4;

9: update {Qki (t), X
k
i (t), ∀k};

10: send queue lengths of {Qki (t),∀k} to adjacent DCs;

We should point out that GlobalAny realizes the
inter-DC data-oriented tasks transferring and processing in
a distributed way. Basically, all the accepted tasks will be
delivered with the store-and-forward scheme in Algorithm 1,
until they reach any of their destination DCs. Then, each
task’s data will be stored and processed. Meanwhile, all
the DCs should exchange the information on queue lengths
to their adjacent DCs with Algorithm 1 in each TS. Note
that, the bandwidth overhead for the information exchange is
negligible, when compared with the bandwidth used for the
data-transfer.

VOLUME 6, 2018 15635

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

C. OPTIMALITY ANALYSIS
With the procedure demonstrated in [14] and [34], we can
easily prove that the time-average profit P obtained by Glob-
alAny can approach to the theoretical maximum profit P∗

arbitrarily within a constant gap O(1V).

V. DATA-TRANSFER ACCELERATION
GlobalAny can schedule the data-oriented tasks in the cloud
DC system to achieve the profit that is arbitrarily close to the
optimal one. However, since we do not put queue lengths
in the optimization objective, the resulting data-transfer
latency could become an issue. Specifically, the store-and-
forward scheme and hop-by-hop bandwidth allocation gov-
erned byAlgorithm 1 could induce relatively long latency. For
instance, in Fig. 3, the data in DC s needs to be sent to DC d .
Then, the data-transfer will take at least 3 TS’ if the data
is forwarded hop-by-hop on s-u-v-d . Moreover, store-and-
forwardmight cause routing loops, i.e., data can be forwarded
back and forth in a loop before reaching its destination DC.
Note that, the latency can be reduced, if we modify the
bandwidth allocation scheme to bypass certain intermediate
DC(s). Hence, we design a data-transfer acceleration scheme
for this purpose.

FIGURE 3. Example on data-transfer acceleration.

The basic idea of the data-transfer acceleration is that in
each TS, we make the DCs calculate bandwidth allocation
collaboratively in multiple iterations to determine a forward-
ing path segment instead of the next hop for each data-
oriented task. For instance, in Fig. 3, we make DCs s, u
and v calculate the bandwidth allocation scheme in three
iterations to set up the direct-transfer path s-u-v-d . Firstly,
DC s determines the bandwidth allocation on link (s, u) and
forwards the related information to DC u. Note that here, DC
s only lets DC u know that the data will go through it, but the
actual data still stays in DC s. Then, DC u updates its queue
as it has already received the data, obtains the bandwidth
allocation on link (u, v), and sends the related information to
DC v. DC v repeats the same procedure to get the bandwidth
allocation on link (v, d). All these operations are performed
within one TS, and then we start the actual data-transfer. Note
that when the data is sent out from DC s, each intermediate
DC on s-u-v-d checks whether the bandwidth has already
been allocated for it to the next hop, if yes, the data is sent
out directly, otherwise, it is buffered in the intermediate DC
and waits for the next TS.
Algorithm 3 shows the data-transfer acceleration scheme

designed for GlobalAny. Lines 1-2 are for the initialization.

Algorithm 3 GlobalAnyWith Data-Transfer Acceleration
Input:

Q(t), {Bi,v}, {Bki,v(t)}.
1: Fki,v = 1, bki,v(t) = 0, ∀i, v, k , n = 0;
2: while n < M do
3: n = n+ 1;
4: get {N k

i,v, ∀v, k}with LP-relaxation of Eq. (37) and the
constraint in Eq. (39);

5: N k
i,v = bN

k
i,vc, ∀v, k;

6: for each {v, k} do
7: if N k

i,v > 0 then
8: Fkv,i = 0;
9: end if
10: end for
11: bki,v(t) = bki,v(t)+ N

k
i,v · δk , ∀v, k;

12: Bi,v = Bi,v −
∑
k
N k
i,v · δk , ∀v;

13: exchange Fki,v, F
k
v,i and N

k
i,v with adjacent DCs;

14: Qki (t) = Qki (t)− (
∑
v
N k
i,v +

∑
v
N k
v,i) · δk , ∀k;

15: exchange queue lengths of Q(t) with adjacent DCs;
16: update Bki,v(t) with Eq. (31);
17: end while
18: sort {v, k} in descending order of Bki,v(t) · δk ;
19: for each {v, k} in sorted order do
20: if Bki,v(t) ≥ 0 then

21: 1 = b
max(min(Qki (t),Bi,v),0)

δk
c;

22: bki,v(t) = bki,v(t)+1 · δk ;
23: Qki (t) = Qki (t)−1 · δk ;
24: Bi,v = Bi,v −1 · δk ;
25: else
26: break;
27: end if
28: end for

Here, we use flag Fki,v = 1 to indicate that the data-transfer of
the k-th task category can use link (i, v), and Fki,v = 0 other-
wise. Hence, reverse data-transfer can be avoided tominimize
the probability of forming routing loops. Specifically, if a
link is used by the data-transfer of a task category, we forbid
the data-transfer in the reverse direction in the subsequent
iterations by setting the corresponding Fki,v = 0. Hence,
we have

0 ≤ N k
i,v · δk ≤ Q

k
i (t) · F

k
i,v, ∀i, k, ∀(i, v) ∈ E . (39)

In each iteration of the while-loop that covers Lines
3-18, DC i tries to extend the forwarding path segments to
one more hop. Here, due to the time constraint from TS on
the information exchanges among the DCs, we assume that
each DC can only extend the forwarding path segments to
M hops at most within one TS. In Lines 5-13, DC i tries
to determine the new bandwidth allocation on each link that
origins from it. Specifically, Line 5 calculates the bandwidth
allocation by using LP-relaxation to solve the problem of
Eq. (37) with the constraint in Eq. (39). Andwe also forbid the

15636 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

data-transfers in the reverse direction in the subsequent
iterations. Lines 12-13 update the corresponding variables.
We performmessage exchanges amongDCs and update other
variables in Lines 14-17. Although the data-transfer accel-
eration increases the information exchanges in GlobalAny,
each DC still only needs to exchange information with its
adjacent DCs. And at last, we perform the residual bandwidth
allocation for the remaining data in Lines 19-29, which is
similar to GlobalAny algorithm. We denote the algorithm
that incorporates the data-transfer acceleration scheme as
GlobalAny_Ext.

VI. PERFORMANCE EVALUATION
Numerical simulations with two different topologies are per-
formed to evaluate our proposed algorithms. One is the
full-mesh 7-node Amazon EC2 network topology in [40].
We adopt the same link bandwidth and scale down the link
cost with 10−5 proportionally for normalization. The other
is the 12-node B4 topology in [12]. The link available band-
width is randomly selected within [10, 100] Gb/s, whose unit
cost is [1, 10]×10−2 per Gb/s. The number of task categories,
i.e., |K|, is set as 100. The arrivals of the data-oriented tasks
follow the uniform distribution, and the time average arrival
rate is half of the maximum value, i.e., 1

2A
max
k . The data-

size of each category δk is randomly selected within [1, 10]
M-bits. The source and destination DC sets of each cate-
gory are also randomly selected and do not overlap. The IT
resources in each DC are set as 104, and the number of k-th
category tasks that can be processed with a unit IT resource
in one TS, i.e., µk , is selected within [1, 10].

TABLE 2. Simulation parameters.

For the data-transfer acceleration, we determine M as the
diameter of the topology, i.e., the maximum hop-count of
the shortest paths between DC-pairs in the network. Hence,
GlobalAny_Ext becomes GlobalAny as M = 1 in the
EC2 topology. For the B4 topology, we have M = 5.
TS is set as 1 minute and we simulate 10,000 TS’ in
each simulation. Table 2 summarizes all the key simulation
parameters. In the simulations, we introduce two perfor-
mance metrics, i.e., the time-average delay and throughput.
Here, we adopt D to denote the average delay of all the
processed tasks, and represent the time-average throughput,
which is the average amount of processed data per TS in the
network, as T .

A. BENCHMARK ALGORITHMS
1) LOCALANY
A more straight-forward idea to schedule the data-oriented
tasks is that when a task is generated, its source DC decides
whether to serve it or not and where its destination DC should
be in one shot. As the destination DCs are selected locally in
source DCs, we name this scheduling algorithm as LocalAny.
Here, for LocalAny, Qki,j(t) is used to denote the queue that
stores all the tasks that belong to the k-th category and have
DC j as the destination DC. In DC i, we use aki,j(t) to denote
the accepted tasks that have DC j as the destination DC, and
bj,ki,v (t) to denote the allocated bandwidth on link (i, v) for
the tasks that target to DC j, respectively, while cki (t) is the
allocated IT resources for task processing. Then, the queues
for task acceptance and transfer are updated as

Qki,j(t + 1) = max

Qki,j(t)− ∑
{v:(i,v)∈E}

bj,ki,v (t), 0

+

∑
{v:(v,i)∈E}

bj,kv,i (t)+ a
k
i,j(t) · δk ,

{i, j, k : i, j ∈ D, i 6= j, k /∈ Ki}. (40)

The queues for task processing are updated as

Qki,i(t + 1) = max
(
Qki,i(t)− c

k
i (t) · µk , 0

)
+

∑
{v:(v,i)∈E}

bi,kv,i (t), ∀i ∈ D, k ∈ Ki. (41)

FIGURE 4. LocalAny scenario for scheduling data-oriented tasks in DC i .

Fig. 4 shows an example on the data-transfer with
LocalAny, where for simplicity, we only include two task
categories. We assume that DC i is the source DC of tasks
in the first category and it is the destination DC of the tasks
in the second category, i.e., i ∈ S1 and i ∈ D2. The
destination DCs of the tasks are determined when they are
accepted. Then, the newly accepted tasks and those from
adjacent DCs will be inserted into the corresponding queues.
We allocate IT resources to the tasks that arrive at their pre-
selected destination DC, e.g., the tasks in Q2

i,i(t) in Fig. 4.
And the bandwidth allocation for other queues is performed
afterwards.

VOLUME 6, 2018 15637

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

With the Lyapunov optimization techniques, we get the
optimization for the task acceptance in LocalAny as

Minimize
∑
j

Qki,j(t) · a
k
i,j(t)− X

k
i (t) · δk · a

k
i (t),

s.t. 0 ≤ aki (t) ≤ A
k
i (t), ∀i, k,∑

j

aki,j(t) = aki (t), ∀i, k. (42)

Here, {X ki (t),∀i, k} are still the virtual queues. Supposing that
we have already got the optimal solution of aki (t) as a

k
i (t)
∗,

we can reduce the optimization to

Minimize
∑
j

Qki,j(t) · a
k
i,j(t),

s.t.
∑
j

aki,j(t) = aki (t), ∀i, k. (43)

And aki,j(t)
∗ can be obtained as

aki,j(t)
∗
=

{
aki (t)

∗, j = argmin{Qki,v(t),∀v ∈ Dk},

0, otherwise,
(44)

which means that all the newly-generated requests should
be allocated to the shortest feasible queue. Then, we put the
optimal solution aki,j(t)

∗ into Eq. (42), and get

Minimize (Qki,j∗ (t)− X
k
i (t) · δk) · a

k
i (t),

s.t. 0 ≤ aki (t) ≤ A
k
i (t), ∀i, k, (45)

where j∗ = argmin{Qki,v(t),∀v ∈ Dk} refers to the shortest
feasible queue in DC i. Finally, the optimal solution aki (t)

∗ is

aki (t)
∗
=

{
Aki (t), Qki,j∗ (t) ≤ X

k
i (t) · δk ,

0, otherwise.
(46)

The data-transfer and task processing in LocalAny are simi-
lar to those in GlobalAny. However, with LocalAny, the tasks
can only be processed in the pre-selected destination DCs,
rather than any feasible ones.

2) LOCALANY_EXT
Similar to GlobalAny_Ext, we refer to the algorithm
that incorporates the data-transfer acceleration scheme in
LocalAny as LocalAny_Ext. We use it as another benchmark
algorithm in the simulations.

3) BENCHMARK ALGORITHMS
Moreover, we also compare the performance of our proposed
algorithmswith several existing ones. The first one is to trans-
fer the tasks to their destination DCs directly, i.e., the direct-
transfer (DT). Specifically, in each TS, the source DC selects
the destination DC for each newly-generated task randomly
and then network bandwidth is allocated by calculating the
multi-source multi-destination maximum flow. If bandwidth
is insufficient, the task is buffered in its source DC until
there is enough out-bound bandwidth. The second one, i.e.,
TEN-SnF, adopts the store-and-forward scheme with the

time-expanded networking technique in [10], and selects each
task’s destination DC randomly.

FIGURE 5. Impacts of V on GlobalAny and LocalAny.

B. PARAMETER ANALYSIS
1) ADJUSTABLE PARAMETER V
We first investigate the impact of parameter V . Fig. 5 shows
the time-average profit P for GlobalAny and LocalAny.
We can see that for GlobalAny, P increases with V faster
when V is smaller. Eventually, when V keeps increasing, P
would converge to its optimal value smoothly, which verifies
that the time-average profit P can approach to the optimal
value arbitrarily within a constant gap O(1V). We notice that
GlobalAny achieves a higher profitP than LocalAny. In Fig. 5,
we also plot the average value of the total time-average queue
length in each DC, i.e., Q = 1

|D|
∑
i,k
Qki (t) for GlobalAny

and Q = 1
D

∑
i,j,k

Qki,j(t) for LocalAny. It can be seen that for

the same V , the Q from GlobalAny is less than that from
LocalAny, and this advantage becomes more obvious when
V increases.

2) CATEGORY WEIGHT wk
As explained in Section IV, GlobalAny can provide differ-
entiated services to different task categories by adjusting
their weights {wk}. To demonstrate this feature, we multi-
ply the weight of the first task category, i.e., w1, with a
parameter θ , and keep the remaining weights unchanged.
Here, we use D1 to denote the average task processing delay
of the first category, while the average delay of other cate-
gories are denoted as D−1. T1 and T−1 are used to denote the
throughput of the first category and other categories, respec-
tively. Fig. 6 shows the results on task processing delay and
throughput for different θ , which indicate that D1 decreases
with θ , and T1 increases with θ . This is because more tasks in
the first category can be accepted with a larger w1, and since
we would allocate more bandwidth and IT resources to this
task category, the task processing latency becomes shorter.
Meanwhile,D−1 and T−1 stay almost unchanged for different
θ . Hence, we verify that the performance of a task category
can be adjusted adaptively.

15638 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

FIGURE 6. Impact of task category weight w1.

FIGURE 7. GlobalAny with different bandwidth allocation policies.

C. BANDWIDTH ALLOCATION POLICIES
We then simulate GlobalAny with different bandwidth allo-
cation and data-transfer polices. Here, we denote the algo-
rithm that solves the integer linear programming (ILP)
model in Eq. (37) for bandwidth allocation and data-
transfer as GlobalAny_ILP1. According to the discussion in
Section IV-B.3, we can design a simple data-transfer policy
that lets the queue transfer data to the adjacent DCs randomly,
if it has the maximum positive Bki,v(t) on multiple links. The
algorithm with this policy is denoted as GlobalAny_HEU.
We set V = 3 × 104 and perform simulations with dif-
ferent maximum arrival rate Amaxk . Fig. 7 shows the results
on P and D, which indicate that P increases with Amax for
all the policies. Note that, compared with GlobalAny_ILP,
GlobalAny provides similar results on P and D, while the
performance of GlobalAny_HEU on them is much worse.
Meanwhile, the average computation time to get the band-
width allocation scheme for a DC in a TS is 32.7 msec, 19.1
msec and 125.3 msec, with GlobalAny, GlobalAny_HEU
and GlobalAny_ILP, respectively. Therefore, GlobalAny can
achieve the similar task scheduling performance as Global-
Any_ILP, with much shorter computation time. Even though
GlobalAny_HEU consumes the shortest computation time,
its performance is significantly worse than GlobalAny and
GlobalAny_ILP. To this end, we can see that GlobalAny can
obtain near-optimal scheduling performance with reasonably
short computation time.

1CPLEX is used to solve the ILP, and all the simulations in this paper run
on a computer with an Intel CPU (I3-2120, 3.30GHz) and 8 GB memory.

FIGURE 8. Comparison with benchmark algorithms in EC2 topology.

D. COMPARISON WITH BENCHMARK ALGORITHMS
Next, the simulations use differentmaximum arrival rateAmaxk
to emulate the change of traffic loads. And V is chosen to
balance the profit and delay as much as possible for Glob-
alAny and LocalAny. Fig. 8 shows the results on the time-
average profit and average delay from different algorithms.
Apparently, GlobalAny achieves the highest profit P among
the algorithms, especially when the traffic load is relatively
high. The average task processing delayD fromGlobalAny is
shorter than that from LocalAny, while it is longer than those
from DT and TEN-SnF. Actually, the results on average task
processing delay from GlobalAny and TEN-SnF are compa-
rable, but DT provides fixed and the shortest task processing
latency. However, as DT drops the requests when the system
can not transfer or process them directly and its profit is less
than that of GlobalAny significantly.

TABLE 3. Performance comparisons using EC2 topology.

Table 3 shows the results on the average throughput T and
computation time. We can see that T increases with Amaxk
andGlobalAny provides the highest T among the algorithms.
As for the computation time, GlobalAny is at least one-
magnitude faster than DT and TEN-SnF, which verifies that
GlobalAny can successfully address the scalability issue of
DT and TEN-SnF and operate in an onlinemanner.Moreover,
the computation time of GlobalAny keeps steady when Amaxk
increases, while that of TEN-SnF increases with Amaxk . This is
because TEN-SnF invokes more frequent network-expanding
operations when Amaxk is larger, which is time-consuming.

E. SIMULATIONS WITH B4 TOPOLOGY
Finally, we perform simulations with the B4 topology to
evaluate the proposed algorithms further. We set Amaxk = 100
and change V to investigate the impacts of parameter V .

VOLUME 6, 2018 15639

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

FIGURE 9. Impacts of V in B4 topology.

FIGURE 10. Time-average profits in B4 topology.

FIGURE 11. Time-average task processing delay in B4 topology.

Fig. 9 shows the time-average profit P and average total
queue length Q from GlobalAny, GlobalAny_ILP, and Glob-
alAny_Ext. We observe that both P andQ increase with V and
then converge to fixed values, which show similar trends as
those obtained with the EC2 topology. And the performance
of GlobalAny on P and Q is close to that of GlobalAny_ILP.
It is interesting to see that the profit from GlobalAny_Ext
is higher than that from GlobalAny and the Q from Global-
Any_Ext is less than that from GlobalAny. The results verify
the effectiveness of the data-transfer acceleration scheme.

We also simulate the algorithms with different Amaxk .
Figs. 10 and 11 show the results on the time-average profit
P and average task processing delayD, respectively. It can be
seen clearly that the algorithms with the data-transfer acceler-
ation scheme always provide higher profit and shorter delay,

TABLE 4. Performance comparisons using B4 topology.

when compared with their counterparts without the scheme,
especially for GlobalAny_Ext. Table 4 shows the results on
the average throughput T and computation time. We observe
that GlobalAny and GlobalAny_Ext achieve higher through-
put than the other algorithms. When comparing it with Glob-
alAny, we find that GlobalAny_Ext achieves much higher
throughput with just slightly longer computation time. Note
that, although the running time does become longer forGlob-
alAny_Ext, it is still acceptable for realizing online opera-
tions.

VII. CONCLUSIONS
This paper investigated the distributed online scheduling for
data-oriented tasks in cloud DC systems. By considering the
store-and-forward and anycast schemes, we formulated an
optimization problem to maximize the time-average profit
and then leveraged the Lyapunov optimization techniques
to propose an efficient scheduling algorithm, i.e., Global-
Any. We also designed a data-transfer acceleration scheme
to reduce the data-transfer latency. Numerical simulations
verified that our algorithms can maximize the time-average
profit in a distributed online manner. The results also indi-
cated that GlobalAny and GlobalAny_Ext (i.e., GlobalAny
with data-transfer acceleration) outperformed several exist-
ing algorithms in terms of both time-average profit and com-
putation time.

REFERENCES
[1] J. Yao, P. Lu, L. Gong, and Z. Zhu, ‘‘On fast and coordinated data backup

in geo-distributed optical inter-datacenter networks,’’ J. Lightw. Technol.,
vol. 33, no. 14, pp. 3005–3015, Jul. 15, 2015.

[2] P. Lu, L. Zhang, X. Liu, J. Yao, and Z. Zhu, ‘‘Highly-efficient data migra-
tion and backup for big data applications in elastic optical inter-datacenter
networks,’’ IEEE Netw., vol. 29, no. 9, pp. 36–42, Sep./Oct. 2015.

[3] P. Lu and Z. Zhu, ‘‘Data-oriented task scheduling in fixed- and flexible-
grid multilayer inter-DC optical networks: A comparison study,’’ J. Lightw.
Technol., vol. 35, no. 24, pp. 5335–5346, Dec. 15, 2017.

[4] W. Lu, Z. Zhu, and B. Mukherjee, ‘‘Optimizing deadline-driven bulk-data
transfer to revitalize spectrum fragments in EONs,’’ IEEE/OSA J. Opt.
Commun. Netw., vol. 7, no. 12, pp. B173–B183, Dec. 2015.

[5] X. Yi, F. Liu, J. Liu, and H. Jin, ‘‘Building a network highway for big
data: Architecture and challenges,’’ IEEE Netw., vol. 28, no. 4, pp. 5–13,
Jul. 2014.

[6] W. Lu and Z. Zhu, ‘‘Malleable reservation based bulk-data transfer to recy-
cle spectrum fragments in elastic optical networks,’’ J. Lightw. Technol.,
vol. 33, no. 10, pp. 2078–2086, May 15, 2015.

[7] W. Lu, Z. Zhu, and B. Mukherjee, ‘‘On hybrid IR and AR service provi-
sioning in elastic optical networks,’’ J. Lightw. Technol., vol. 33, no. 22,
pp. 4659–4669, Nov. 15, 2015.

15640 VOLUME 6, 2018

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

[8] A. Castro et al., ‘‘Experimental demonstration of heterogeneous cross
stratum broker for scientific applications,’’ in Proc. OFC, Mar. 2016,
pp. 1–3.

[9] X. Xie, Q. Ling, P. Lu, W. Xu, and Z. Zhu, ‘‘Evacuate before too late:
Distributed backup in inter-DC networks with progressive disasters,’’ IEEE
Trans. Parallel Distrib. Syst., to be published.

[10] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez, ‘‘Inter-datacenter
bulk transfers with Netstitcher,’’ in Proc. SIGCOMM, Aug. 2011,
pp. 74–85.

[11] Z. Zhu, M. Funabashi, Z. Pan, B. Xiang, L. Paraschis, and S. J. B. Yoo,
‘‘Jitter and amplitude noise accumulations in cascaded all-optical regener-
ators,’’ J. Lightw. Technol., vol. 26, no. 12, pp. 1640–1652, Jun. 2008.

[12] S. Jain et al., ‘‘B4: Experience with a globally-deployed software defined
WAN,’’ in Proc. SIGCOMM, Aug. 2013, pp. 3–14.

[13] S. Li, W. Lu, X. Liu, and Z. Zhu, ‘‘Fragmentation-aware service provision-
ing for advance reservation multicast in SD-EONs,’’ Opt. Exp., vol. 23,
pp. 25804–25813, Oct. 2015.

[14] M. Neely, Stochastic Network Optimization with Application to Commu-
nication and Queueing Systems. Province, CA, USA: Morgan Claypool,
2010.

[15] H. Goudarzi and M. Pedram, ‘‘Force-directed geographical load balancing
and scheduling for batch jobs in distributed datacenters,’’ in Proc. CLUS-
TER, Sep. 2013, pp. 1–8.

[16] P. Lu, Q. Sun, K. Wu, and Z. Zhu, ‘‘Distributed online hybrid cloud
management for profit-driven multimedia cloud computing,’’ IEEE Trans.
Multimedia, vol. 17, no. 8, pp. 1297–1308, Aug. 2015.

[17] W. Lu and Z. Zhu, ‘‘Dynamic service provisioning of advance reservation
requests in elastic optical networks,’’ J. Lightw. Technol., vol. 31, no. 10,
pp. 1621–1627, May 2013.

[18] P. Lu, Q. Ling, and Z. Zhu, ‘‘Maximizing utility of time-constrained
emergency backup in inter-datacenter networks,’’ IEEE Commun. Lett.,
vol. 20, no. 5, pp. 890–893, May 2016.

[19] K. Wu, P. Lu, and Z. Zhu, ‘‘Distributed online scheduling and rout-
ing of multicast-oriented tasks for profit-driven cloud computing,’’ IEEE
Commun. Lett., vol. 20, no. 4, pp. 684–687, Apr. 2016.

[20] Y. Wang, S. Su, A. X. Liu, and Z. Zhang, ‘‘Multiple bulk data transfers
scheduling among datacenters,’’ Comput. Netw., vol. 68, pp. 123–137,
Aug. 2014.

[21] M. Chowdhury, M. R. Rahman, and R. Boutaba, ‘‘ViNEYard: Virtual
network embedding algorithms with coordinated node and link mapping,’’
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 206–219, Feb. 2012.

[22] L. Gong and Z. Zhu, ‘‘Virtual optical network embedding (VONE) over
elastic optical networks,’’ J. Lightw. Technol., vol. 32, no. 3, pp. 450–460,
Feb. 1, 2014.

[23] L. Gong, Y. Wen, Z. Zhu, and T. Lee, ‘‘Toward profit-seeking virtual
network embedding algorithm via global resource capacity,’’ in Proc.
INFOCOM, Apr. 2014, pp. 1–9.

[24] H. Jiang, Y. Wang, L. Gong, and Z. Zhu, ‘‘Availability-aware survivable
virtual network embedding (A-SVNE) in optical datacenter networks,’’
J. Opt. Commun. Netw., vol. 7, pp. 1160–1171, Dec. 2015.

[25] W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, ‘‘Joint spectrum
and IT resource allocation for efficient vNF service chaining in inter-
datacenter elastic optical networks,’’ IEEE Commun. Lett., vol. 20, no. 8,
pp. 1539–1542, Aug. 2016.

[26] M. Zeng, W. Fang, and Z. Zhu, ‘‘Orchestrating tree-type VNF forwarding
graphs in inter-DC elastic optical networks,’’ J. Lightw. Technol., vol. 34,
no. 14, pp. 3330–3341, Jul. 15, 2016.

[27] Y.Wang, P. Lu,W. Lu, and Z. Zhu, ‘‘Cost-efficient virtual network function
graph (vNFG) provisioning in multidomain elastic optical networks,’’
J. Lightw. Technol., vol. 35, no. 13, pp. 2712–2723, Jul. 1, 2017.

[28] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, ‘‘On dynamic service function
chain deployment and readjustment,’’ IEEE Trans. Netw. Service Manage.,
vol. 14, no. 3, pp. 543–553, Sep. 2017.

[29] R. Kettimuthu, G. Vardoyan, G. Agrawal, and P. Sadayappan, ‘‘Modeling
and optimizing large-scale wide-area data transfers,’’ in Proc. CCGrid,
May 2014, pp. 196–205.

[30] C. Hong et al., ‘‘Achieving high utilization with software-driven WAN,’’
in Proc. SIGCOMM, Aug. 2013, pp. 15–26.

[31] Y. Wu, Z. Zhang, C. Wu, C. Guo, Z. Li, and F. C. M. Lau, ‘‘Orchestrating
bulk data transfers across geo-distributed datacenters,’’ IEEE Trans. Cloud
Comput., vol. 5, no. 1, pp. 112–125, Mar. 2017.

[32] S. Li, Y. Zhou, L. Jiao, X. Yan, X. Wang, and M. R. T. Lyu, ‘‘Towards
operational cost minimization in hybrid clouds for dynamic resource pro-
visioning with delay-aware optimization,’’ IEEE Trans. Services Comput.,
vol. 8, no. 3, pp. 398–409, May 2015.

[33] R. Urgaonkar, B. Urgaonkar, M. J. Neely, and A. Sivasubramaniam, ‘‘Opti-
mal power cost management using stored energy in data centers,’’ in Proc.
ACM Int. Conf. Meas. Modeling Comput. Syst. (SIGMETRICS), Jun. 2011,
pp. 221–232.

[34] F. Liu, Z. Zhou, H. Jin, B. Li, B. Li, and H. Jiang, ‘‘On arbitrating the
power-performance tradeoff in SaaS clouds,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 10, pp. 2648–2658, Oct. 2014.

[35] L. Georgiadis, M. J. Neely, and L. Tassiulas, ‘‘Resource allocation and
cross-layer control in wireless networks,’’ Found. Trends Netw., vol. 1,
no. 1, pp. 1–144, 2006.

[36] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, ‘‘On combining shortest-path
and back-pressure routing over multihop wireless networks,’’ IEEE/ACM
Trans. Netw., vol. 19, no. 3, pp. 841–854, Jun. 2011.

[37] L. Bui, R. Srikant, and A. Stolyar, ‘‘Novel architectures and algorithms for
delay reduction in back-pressure scheduling and routing,’’ in Proc. IEEE
INFOCOM, Apr. 2009, pp. 2936–2940.

[38] R. Urgaonkar, U. C. Kozat, K. Igarashi, and M. J. Neely, ‘‘Dynamic
resource allocation and power management in virtualized data centers,’’
in Proc. IEEE/IFIP Netw. Oper. Manage. Symp., Osaka, Japan, Apr. 2010,
pp. 479–486.

[39] D. Pisinger, ‘‘Algorithms for knapsack problems,’’ Ph.D. dissertation,
Dept. Comput. Sci., Univ. Copenhagen, Copenhagen, Denmark, Feb. 1995.

[40] Y. Feng, B. Li, and B. Li, ‘‘Jetway: Minimizing costs on inter-datacenter
video traffic,’’ in Proc. ACM MM, Oct. 2012, pp. 259–268.

WEI LU received the Ph.D. degree from the Department of Electrical Engi-
neering and Information Science, University of Science and Technology
of China (USTC), Hefei, China, in 2016. She is currently a Post-Doctoral
Researcher with USTC. Her research focuses on datacenter networks, optical
networks, and software-defined networking.

PING LU is currently pursuing the Ph.D. degree with the University of
Science and Technology of China, Hefei, China. His research focuses on
datacenter networks and task scheduling.

QUANYING SUN is currently pursuing the master’s degree with the Univer-
sity of Science and Technology of China, Hefei, China. Her research focuses
on datacenter networks and software-defined networking.

SHUI YU is currently a Senior Lecturer with the School of Information
Technology, DeakinUniversity, Australia. He has published twomonographs
and edited two books, over 200 technical papers, including top journals
and top conferences, such as the IEEE TPDS, TC, TIFS, TMC, TKDE,
TETC, ToN, and INFOCOM. His research interest includes security and
privacy, networking, big data, and mathematical modeling. He initiated the
research field of networking for big data in 2013. His h-index is 28. He
actively serves his research communities in various roles. He has served
over 70 international conferences as a member of organizing committee,
such as the Publication Chair for the IEEE GLOBECOM 2015, the IEEE
INFOCOM 2016 and 2017, the TPC Chair for the IEEE BigDataService
2015, and ACSW 2017. He is a member of AAAS and ACM, the Vice
Chair of Technical Committee on Big Data of the IEEE Communication
Society, and a Distinguished Lecturer of IEEE Communication Society. He
is currently serving the editorial boards of the IEEECOMMUNICATIONS SURVEYS

AND TUTORIALS, the IEEE Communications Magazine, the IEEE INTERNET OF

THINGS JOURNAL, the IEEE COMMUNICATIONS LETTERS, the IEEE ACCESS, and
the IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS.

VOLUME 6, 2018 15641

W. Lu et al.: Profit-Aware Distributed Online Scheduling for Data-Oriented Tasks in Cloud DCs

ZUQING ZHU (S’02–M’06–SM’12) received the Ph.D. degree from the
Department of Electrical and Computer Engineering, University of Califor-
nia, Davis, in 2007. From 2007 to 2011, he was a Senior Engineer with
the Service Provider Technology Group, Cisco Systems, San Jose. In 2011,
he joined the University of Science and Technology of China (USTC),
where he is currently a Full Professor. Since 2011, he has been leading
the Intelligent Networking system and the Future InterNet Infrastructure
Laboratory, USTC, and his research interests are optical networks, software-
defined networking, knowledge-defined networking, network function vir-
tualization, and datacenter networks. He has published over 200 papers on
referred journals and conferences of the IEEE and OSA. He is currently the

Secretary of the Technical Committee on Optical Networking of the IEEE
Communications Society (ComSoc). He is currently a Steering Committee
Member of the IEEE International Conference on High Performance Switch-
ing and Routing, and an IEEE ComSoc Distinguished Lecturer from 2018
to 2019. He has received the Best Paper Awards with his students from
ICC 2013, GLOBECOM 2013, ICNC 2014, and ICC 2015. He is a Senior
Member of OSA. He is a Series Editor of the Optical Communications Series
in the IEEE Communications Magazine, and is also on the editorial boards
of the IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, Optical
Switching and Networking (Elsevier), Photonic Network Communications
Journal (Springer), Telecommunication Systems Journal (Springer).

15642 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	PROBLEM FORMULATION
	NETWORK MODEL
	DATA-ORIENTED TASKS SCHEDULING IN DCs
	TASK ACCEPTANCE
	DATA-TRANSFER WITH STORE-AND-FORWARD SCHEME
	TASK PROCESSING

	PROFIT-DRIVEN OPTIMIZATION MODEL

	GLOBALANY SCHEDULING ALGORITHM
	LYAPUNOV OPTIMIZATION TECHNIQUES
	DISTRIBUTED ONLINE SCHEDULING
	AUXILIARY VARIABLES
	TASK ACCEPTANCE POLICY
	BANDWIDTH ALLOCATION
	TASK PROCESSING
	OVERALL DISTRIBUTED ONLINE SCHEDULING

	OPTIMALITY ANALYSIS

	DATA-TRANSFER ACCELERATION
	PERFORMANCE EVALUATION
	BENCHMARK ALGORITHMS
	LOCALANY
	LOCALANY_EXT
	BENCHMARK ALGORITHMS

	PARAMETER ANALYSIS
	ADJUSTABLE PARAMETER V
	CATEGORY WEIGHT wk

	BANDWIDTH ALLOCATION POLICIES
	COMPARISON WITH BENCHMARK ALGORITHMS
	SIMULATIONS WITH B4 TOPOLOGY

	CONCLUSIONS
	REFERENCES
	Biographies
	WEI LU
	PING LU
	QUANYING SUN
	SHUI YU
	ZUQING ZHU
	Secretary of

