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ABSTRACT While a vast amount of clustering algorithms of different types are available in the literature,
the majority of existing algorithms depend on carefully tuned parameters to obtain satisfactory results. In this
paper, we reduce the dependence on parameters on the basis of the dominant sets algorithm. The dominant
sets algorithm is a parameter-independent clustering approach, which uses the pairwise data similarity matrix
as input. If the data for clustering are in the form of feature vectors, it is necessary to measure the data
similarity and build the similarity matrix. With the commonly used Gaussian kernel, the involved parameter
is found to exert a significant influence on the clustering results. We study in depth why and how the
dominant sets clustering results are influenced by the parameter and attribute the influence to the dominant
set definition, which imposes a somewhat too strict constraint on internal similarity. A two-step clustering
algorithm is then proposed to solve this problem. First, we transform the similarity matrix by histogram
equalization before clustering, and this is shown to eliminate the influence of similarity parameter effectively.
In the second step, we expand the clusters to maximize the ratio of internal similarity with respect to external
similarity. Our algorithm is designed to achieve the balance between high internal similarity and low external
similarity, thereby relieving the dependence on the similarity parameter. In experiments on ten publicly
available data sets, our algorithm is shown to perform well in comparison with several other algorithms
which benefit from carefully tuned parameters.

INDEX TERMS Clustering, fault diagnosis, pattern classification, dominant set.

I. INTRODUCTION
Data clustering is an important machine learning tech-
nique and has received extensive attention for decades and
numerous clustering algorithms have been proposed [1]–[3].
In centroid-based clustering algorithms, k-means and its
variants are commonly used due to their simpleness and
effectiveness. Density-based algorithms, e.g., DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) [4] and OPTICS (Ordering Points To Identify the
Clustering Structure) [5], detect clusters based on the density
difference across cluster borders, and can usually be used to
detect non-spherical clusters. As a prominent distribution-
based algorithm, EM (Expectation Maximization) is based
on the assumption that the data distribution can be approx-
imated by the mix of a set of predefined distribution
models. Popular clustering algorithms also include mean-
shift and NCuts (Normalize Cuts) [6], which is a typical
example of spectral clustering [7]. In recent developments,

AP (Affinity Propagation) [8] is proposed to determine the
centers and members of clusters as the outcome of passing
among data the affinity messages. Rodriguez and Laio [9]
proposed to select cluster centers by making use of the local
density of data and the distance to the nearest neighbors with
larger density. On condition that the cluster centers are iden-
tified correctly, this algorithm generates excellent clustering
results on some datasets. Data clustering has been shown to be
quite useful and has potential to be applied in various fields,
including pattern recognition, data mining, image analysis
and fault diagnosis, etc [10]–[12].

While a large amount of clustering approaches have been
proposed from different perspectives, and some of them have
achieved impressive success in real applications, we still
need to deal with some issues in order to apply these algo-
rithms to practical clustering tasks. Firstly, the majority of
clustering algorithms require one or more user-specified
parameters as the input, and their results rely heavily on the
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input parameters. One of themost commonly required param-
eters is the number of clusters, which has a direct influence on
the clustering results of k-means-like algorithms, NCuts and
the general spectral clustering algorithms. Some algorithms
are able to determine the number of clusters automatically,
but their results depend on other parameters. For example,
the parameter input of DBSCAN includes Eps denoting a
neighborhood radius andMinPts denoting the minimum clus-
ter size, and AP requires as input the preference values of
all the data for clustering. The density peak based algorithm
in [9] is found to be sensitive to the cutoff distance, and
the cluster centers may need to be selected manually. Sec-
ondly, many algorithms, e.g., k-means-like algorithms, can
only generate clusters of spherical shapes. This means that
these algorithms are not able to generate satisfactory results
in many cases, even if they are assigned carefully tuned
parameters. In addition, outlier detection [4] and overlapping
clustering [13] may be quite useful in some cases, although
they are out of the ability of many existing algorithms.

While some solutions have been found for each of the
aforementioned problems, few of existing algorithms have
shown the potential to solve all these problems. In this aspect,
the dominant sets (DSets) algorithm [14] seems to provide a
promising approach. The DSets algorithm defines a dominant
set as a subset of data with high internal similarity and low
external similarity, enabling a dominant set to be regarded as
a cluster. Given the pairwise data similarity matrix as input,
the DSets algorithm extracts the clusters one by one and
the number of clusters is obtained in the clustering process
automatically. Since the data in a dominant set are highly
similar to each other, the outliers are left unclustered. Further-
more, the dominant set concept can be applied in overlapping
clustering by casting the problem in a game-theoretic frame-
work [15], [16]. Finally, in DSets clustering the ordering of
clusters reflects the density difference among these clusters,
and each data in a cluster is assigned a weight representing
the relationship with other data. These properties may also
be quite useful and are not shared by any other existing
algorithms, to the best of our knowledge. Based on these nice
properties, the DSets algorithm has been successfully applied
to various tasks [17]–[20]. Some closely related works also
include [21]–[25].

The DSets algorithm itself requires the pairwise data sim-
ilarity matrix as the single input and no parameters are
involved. However, in many cases the data for clustering are
in the form of feature vectors, and it is necessary to measure
the data similarity and build the pairwise similarity matrix.
Although it is possible to use non-parametric similarity mea-
sures, e.g., cosine similarity, the experimental study in [26]
shows that this is not a good option. With the Gaussian
kernel s(x, y) = exp(−d(x, y)/σ ), the similarity parameter
σ is introduced. Given a dataset, σ impacts on the similar-
ity matrix, and then influences the DSets clustering results.
We investigate how σ influences the clustering results and
attribute the influence to the dominant set definition, which
requires each pair of data in a cluster are similar to each other.

We then propose to use a two-step algorithm to solve the
problem. The similarity matrix is transformed by histogram
equalization [27] before clustering. This transformation is
shown to eliminate the dependence on σ ’s effectively and
generate small clusters. Then in the second step we expand
the small clusters to improve the clustering results [28]. The
effectiveness of our algorithm is validated in extensive experi-
ments on several datasets. Since the parameter σ is introduced
in applying the DSets algorithm to clustering data in vector
form, in this paper our work is limited to the special case that
data are represented as vectors and the pairwise similarity
is measured by s(x, y) = exp(−d(x, y)/σ ). In other words,
the parameter dependence problem is with this special case,
but not the DSets algorithm itself. For each of expression,
we use target case to denote the above-mentioned special case
in this paper. This paper has the following contributions. First,
we make an in-depth study on why and how the parameter σ
impacts on the DSets clustering results in the target case,
based on which we explain the experimental results in details.
Second, we show in theory that the influence of σ can be
eliminated completely by histogram equalization of similar-
ity matrices, and discuss practical issues in implementation.
Third, we use both Normalized Mutual Information (NMI)
and Rand index to evaluate the clustering results and make
the obtained conclusions more convincing.

We organize the rest of this paper as follows. The brief
introduction of the DSets algorithm and its problems are
presented in Section II. Then in Section III we show how
these problems can be solved and provide the details of
our algorithm. We use extensive experiments to validate the
major steps and the whole procedures of our algorithm in
Section IV and discuss some related issues in Section V.
Finally, the concluding remarks are given Section VI.

II. DOMINANT SETS CLUSTERING AND PROBLEMS
In this section we firstly introduce the definition of dominant
set and the DSets algorithm. Then we discuss the problem of
the DSets algorithm and analyze the reason.

A. DOMINANT SET
Dominant set is defined as a graph-based cluster concept
and the n data for clustering are represented with a graph.
As customary, we use an edge-weighted graphG = (V ,E,w)
to represent the pairwise relationship among the data. Here
V denotes the set of data to be clustered, E conveys the
edge relationship among the data, and w represents the edge
weight.With the pairwise similaritymatrixA = (aij), we have
wij = aij if (i, j) ∈ E andwi,j = 0 otherwise. Since we use the
graph in clustering and one data should not be similar to itself,
the graph G has no self-loops and aii = 0 for i = 1, · · · , n.

The basic requirement of a cluster is the high internal sim-
ilarity and low external similarity. In [14] a weight criterion
wS (i) is defined to differentiate between the high and low
similarities. Specifically, a positive wS (i) means that i has
high similarity with the data in a subset S ⊆ V and a negative
wS (i) indicates the reverse. Based on this criterion, it is natural
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to obtain a dominant set S by including all the data i with
positive wS (i) and excluding all those with negative weights.
The dominant set obtained this way satisfies the condition
of high internal similarity and low external similarity, and
therefore is qualified to be regarded as a cluster. We briefly
introduce the definition of dominant set in the following, and
the details can be found in [14].

The criterion wS (i) is defined as

wS (i) =

{
1, if |S| = 1,∑

j∈S\{i} φS\{i}(j, i)wS\{i}(j), otherwise.
(1)

where

φS (i, j) = aij − awS (i). (2)

and

awS (i) =
1
|S|

∑
k∈S

aik . (3)

with i ∈ S, j /∈ S and S ⊆ V .
We now present the formal definition of dominant set as

follows. With W (S) =
∑

i∈S wS (i), we call the subset S such
that W (T ) > 0 for all non-empty T ⊆ S as a dominant set if
1) wS (i) > 0, for all i ∈ S.
2) wS ⋃

{i}(i) < 0, for all i /∈ S.
It is shown in [14] that a dominant set can be extracted

with the replicator dynamics developed in evolutionary game
theory. Specifically, we use a vector x ∈ Rn to denote the
weights of all the n data, where the data with positive weights
belong to a dominant set. The weight vector can be obtained
with the replicator dynamics as

x(t+1)k = x(t)k
(Ax(t))k
x(t)TAx(t)

(4)

where k = 1, . . . , n. In this paper, however, we use the
more efficient infection and immunization dynamics pro-
posed in [29].

By treating a dominant set as a cluster, the DSets algo-
rithm generates clusters sequentially. Specifically, we obtain
a cluster, and continue to extract the next one in the remain-
ing unclustered data. In this way we accomplish the clus-
tering process and the number of clusters is determined
automatically.

B. PROBLEMS
The DSets algorithm requires only the pairwise data similar-
ity matrix as input. However, in applying the DSets algorithm
to the target case where data are in the form of feature vectors,
the similarity parameter σ is introduced. Given the data for
clustering, the variance of σ result in the change of similarity
matrices, which is then found to yield different clustering
results. For illustration, we apply the DSets algorithm to
ten datasets, including Aggregation [30], Pathbased [31],
D31 [32], R15 [32], Flame [33], Jain [34] and four UCI
datasets Wine, Iris, Glass and Yeast. The properties of these
datasets are shown in Table 1. We evaluate the clustering

TABLE 1. The properties of the datasets used in experiments.

FIGURE 1. Influence of σ on the DSets clustering results.

results with NMI (NormalizedMutual Information) and Rand
index. Both criterions compare the clustering results with the
ground truth and use high scores to denote accurate clustering
results. The DSets clustering results on the ten datasets with
different σ ’s are reported in Figure 1. Note that for ease of
expression, in Figure 1 the horizontal axes show only the
coefficients of σ ’s, and the real values of σ ’s are the products
of d and the horizontal axes.

In Figure 1 we observe that for all the datasets, σ has a
significant influence on the clustering results. This implies
that a careful parameter tuning process is necessary for satis-
factory clustering results. However, Figure 1 shows that the
best-performing σ ’s vary widely with different datasets, and
there doesn’t exist a fixed σ which is appropriate for different
datasets.

C. THE REASON
In order to relieve the parameter dependence problem shown
in the above subsection, we firstly study why σ influences the
clustering results of the DSets algorithm. Since in the DSets
algorithm the dominant sets are treated as clusters, we start
our investigation from the dominant set definition.

In dominant set definition each data i in a dominant set
S has a positive wS (i). Since wS (i) is defined in Eq. (1)
in a recursive form, its meaning is not straightforward.
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However, noticing that one major component in Eq. (1) is
φS\{i}(j, i), the value of wS (i) can be regarded as a weighted
sum of φS\{i}(j, i), where j ∈ S \ {i}. By ignoring the weight
items wS\{i}(j) in Eq. (1), we can approximate Eq. (1) to be

w′S (i) =

{
1, if |S| = 1,∑

j∈S\{i} φS\{i}(j, i), otherwise.
(5)

From Eq. (2) and Eq. (3), and by defining

δ(i, S) =
1
|S|

∑
k∈S

aik , (6)

δ(S) =
1

|S|(|S| − 1)

∑
j∈S,k∈S

ajk , (7)

we further obtain

w′S (i) =

{
1, if |S| = 1,
δ(i, S\{i})− δ(S\{i}), otherwise.

(8)

Here we see that wS (i) provides a measure of the comparison
between two similarity values, i.e., the average similarity
between i and the data in S \ {i}, and the average overall
similarity in S \ {i}. This is consistent with the statement
in [14] that wS (i) gives us a measure of the overall (rela-
tive) similarity between vertex i and the vertices of S \ {i}
with respect to the overall similarity among the vertices in
S \ {i}. Therefore a positive wS (i) means approximately that
δ(i, S\{i}) is greater than δ(S\{i}), which further indicates that
i is similar to all the other data in S. Since each data i in a
dominant set has a positive wS (i), we know that in a dominant
set each pair of data are similar to each other. In fact, we can
also understand this argument based on another statement
in [14] that dominant sets are the extension of maximal
cliques in unweighted graphs to edge-weighted graphs. Since
in a clique each pair of vertices are connected, we know that
in a dominant set each pair of data are similar to each other.

Based on the above conclusion, we are ready to explain
how σ impacts on the clustering results. It is evident from
s(x, y) = exp(−d(x, y)/σ ) that a large σ results in large
similarity values. In this case, it is easy to find large subsets
of data with high pairwise similarity and obtain large clusters.
On the contrary, a small σ results in small similarity values
and then small clusters. The influence of σ on cluster sizes
is illustrated in Figure 2. Evidently both too small and too
large clusters degrade the clustering quality, as illustrated
in Figure 1.

III. OUR ALGORITHM
In the target case the DSets clustering results are found
to be influenced by the parameter σ , and it is difficult to
find out an appropriate σ applicable to different datasets.
In addition, on some datasets even the best-performing σ ’s
perform unsatisfactorily. This means that it may not be a good
option to attempt to find out the appropriate σ . Therefore
we resort to a different solution. We firstly use histogram
equalization transformation of similarity matrices to remove

FIGURE 2. The average cluster sizes from DSets clustering with
different σ ’s.

the influence of σ on the clustering results, and then try to
solve the problem caused in the first step by means of cluster
expansion. The details of these two steps are presented in the
following subsections respectively.

A. HISTOGRAM EQUALIZATION TRANSFORMATION
In the last section we see that σ influences the similarity
values and then the clustering results. However, the similarity
measure s(x, y) = exp(−d(x, y)/σ ) shows that σ influences
only the absolutemagnitude of similarity values, and it cannot
change the relationship among similarity values. In other
words, if d(x1, y1) > d(x2, y2), then s(x1, y1) < s(x2, y2)
holds for any positive σ . Therefore if we sort the pairwise
similarity values in the increasing order, the ordering of these
similarity values keeps the same for arbitrary positive σ . This
observation motivates us to transform the similarity matrix by
histogram equalization, which generates the new similarity
values based on the ordering of original similarity values.

Histogram equalization, as a widely used image enhance-
ment technique, is proposed to increase the overall intensity
contrast in an image based on the intensity histogram [27].
It adjusts the intensity levels so that they are distributed in
the intensity range more evenly. By extending the intensity
level to general scalar data, we can transform a set of data by
histogram equalization in the following way. Let’s say that
N data to be transformed are denoted by γp, p = 1, · · · ,N .
In the first step we quantize the data into M bins and obtain
a M -bin histogram as H = {hq}, q = 1, · · · ,M , where hq is
the number of data falling in the q-th bin. Then the data in the
q-th bin are assigned the new value as

s′q =
1
N

q∑
k=1

hk . (9)

In Eq. (9) N is a constant, and the new value s′q is influ-
enced only by

∑q
k=1 hk , which is the total number of data

in the q-th bin and in the bins with smaller values. If M is
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sufficiently large that each bin contains only data of iden-
tical value, then the new value of one data is determined
only by the percentage of data with equal or smaller values.
In other words, the new values are influenced only by the
magnitude ordering of the original values. Since s(x, y) =
exp(−d(x, y)/σ ) shows that σ has no influence on the mag-
nitude ordering, it is evident that σ does not influence the
new values after histogram equalization transformation. This
means that if we use histogram equalization to transform the
pairwise similarity values in the similarity matrix, we are
able to remove the influence of σ on the similarity matrix
and then on the clustering result completely, on condition
that each histogram bin contains only identical similarity
values.

As the original similarity values are continuous and few
of them are identical, the number of bins M usually needs to
be very large in order that each bin contains only identical
similarity values. This means a large computation burden
in histogram equalization. With a relatively small M , it is
likely that one bin contains non-identical similarity values.
In this case, the different similarity values in one bin will
be assigned the same new value after histogram equalization.
The similarity value range of each bin is fixed, but the original
similarity values change with the variance of σ . As a result,
the membership of each bin also varies with σ . For example,
with σ1 the data aij and amn are in the same bin and assigned
the same new value by histogram equalization, and with σ2
their values change and they may be in different bins and
are assigned different new values. This means that σ still has
an influence on the new similarity values and new similarity
matrix. Consequently, the clustering results are still influ-
enced by σ . In order to use a relatively smallM in histogram
equalization, we need to study the influence of σ in this case
and limit the influence to an acceptable level. Intuitively, with
the increase of M , the number of data in a bin decreases
and the influence of σ will decrease correspondingly. This
argument is illustrated in Figure 3, where the influence of
σ ’s on clustering results with different histogram bins are
reported. For space reason, we only use NMI to evaluate the
clustering results here.

From Figure 3 we observe that withM ≥ 100 the influence
of σ has become negligible. Based on the above observation
and for efficiency reason, in this paper we adopt M = 100.
While σ can be selected arbitrarily in this case, we use
σ = d which generates medium similarity values. In the
remaining of this paper, we use DSets-histeq to denote the
DSets algorithm with the similarity matrix transformed by
histogram equalization.

Although Figure 3 shows that the influence of σ can be
removed effectively, it also indicates that the clustering results
are usually not very good. The reason is that the clusters
generated byDSets-histeq are usually smaller than the ground
truth (GT), as illustrated in Figure 4. This problem should be
solved in order to improve the clustering results. For space
reason, in this table and following, we use D1, D2, · · · , D10
to denote the ten datasets in the order of Aggregation,

FIGURE 3. The influence of σ ’s on clustering results, with different
histogram bins in histogram equalization. (a) M = 10. (b) M = 20.
(c) M = 50. (d) M = 100. (e) M = 200. (f) M = 500.

FIGURE 4. The average cluster sizes from DSets-histeq and comparison
with ground truth.

Pathbased, D31, R15, Jain, Flame, Wine, Iris, Glass and
Yeast.

B. CLUSTER EXPANSION
The property of good clustering results can be stated as
high internal similarity sinter and low external similarity
sexter , or high ratio of sinter with respect to sexter . As men-
tioned in Section II.C, the dominant set definition requires
one data to be similar to all the others in the same cluster.
Compared with DBSCAN where one data only needs to be
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FIGURE 5. The original cluster and clusters obtained after expansions.
(a) Original cluster. (b) to (h) denote the clusters after one to seven
expansions.

similar to the nearest neighbors in the same cluster, this
requirement is a little too strict. In addition, the histogram
equalization transformation increases the contrast of similar-
ity values in the similarity matrix. These two factors lead
DSets-histeq to generate small clusters, which are usually
subsets of the real clusters. In this case, while the internal
similarity is high, the external similarity is also quite high.
Consequently, the ratio of sinter with respect to sexter may not
be large. In order to solve this problem and improve clustering
results, we propose to expand clusters to maximize the ratio
of sinter with respect to sexter . In the following an example is
presented to illustrate the cluster expansion process.

We firstly use DSets-histeq to extract the first cluster S
on the Flame dataset, as illustrated in Figure 5(a). In the
next step, we repeatedly add the nearest neighbors into the
cluster and calculate the ratio of sinter with respect to sexter .
The obtained clusters and corresponding ratios are shown
in Figure 5 and Figure 6, respectively. The nearest neighbors

FIGURE 6. The inter-exter similarity ratios in the cluster expansion
process.

are selected based on their average similarity with the data in
the cluster. The internal similarity is calculated as

sinter =
1

‖S‖(‖S‖ − 1)

∑
i∈S

∑
j∈S

s(i, j). (10)

In order to calculate the external similarity, we find the set Se
of nearest neighbors as another cluster. The external similar-
ity is then defined as

sexter =
1

‖S‖‖Se‖

∑
i∈S

∑
j∈Se

s(i, j) (11)

The ratio of internal and external similarity is then repre-
sented as

Ratio =
sinter
sexter

(12)

From the correspondence between Figure 5 and Figure 6
we see that when S is still a subset of the real cluster
(Figure 5(a) to Figure 5(e)), Ratio keeps increasing. In con-
trast, Figure 5(f) to Figure 5(h) show that if S is expanded
outside the real cluster, Ratio starts to decrease. This observa-
tion indicates that we can use the switch between the increase
and decrease of Ratio to terminate the cluster expansion pro-
cess. In practical application the differences between adjacent
Ratio’s are usually quite small, and it may not be reliable
to use one decrease to judge the switch. Therefore we use
two consecutive decreases of Ratio as the cluster expansion
termination criterion.

In summary, the whole clustering process is accomplished
in the following steps.

1) Calculate the pairwise similarity matrix with s(x, y) =
exp(−d(x, y)/σ ) where σ = d .

2) Transform the pairwise similarity matrix by histogram
equalization.

3) Apply the DSets algorithm to generate one cluster.
4) Add the nearest neighbors to the cluster.
5) Calculate the ratio with Eq. (12).
6) Repeat Step 4 to Step 5, until the ratio decreases twice

consecutively.
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7) Remove the cluster, and continue to Step 3, until all
data are grouped into clusters.

IV. EXPERIMENTAL VALIDATION
Our clustering algorithm is composed of two major steps,
i.e., transforming similarity matrices by histogram equaliza-
tion and expanding clusters based on the ratio of internal and
external similarity. We have shown the effect of the first step
in previous sections. In the following we firstly evaluate the
cluster expansion step, and then the whole algorithm is tested
on several datasets and compared with other algorithms.

FIGURE 7. The clustering results of our algorithm and of DSets-histeq.

A. CLUSTER EXPANSION
As our algorithm includes DSets-histeq and the cluster expan-
sion step, we firstly compare the results of our algorithm with
those of DSets-histeq in Figure 7. From the comparison we
see that on six out of the ten datasets, our algorithm outper-
forms DSets-histeq with a significant advantage. On the other
four datasets, our algorithm is outperformed by DSets-histeq
only slightly. This comparison confirms the effectiveness of
the cluster expansion method in improving the clustering
results.

B. COMPARISON
Finally, a comparison is made between our algorithm and
some others, including the original DSets algorithm, NCuts,
k-means, DBSCAN and AP. With the original DSets algo-
rithm σ is selected to be 20d which generates the best average
accuracy. Since NCuts and k-means require the number of
clusters to be specified, we feed the ground truth numbers of
clusters to these two algorithms, and report the average results
of five tests. For DBSCAN, we manually select MinPts = 3
and determine Eps with the method proposed in [35]. As the
AP algorithm requires as input the preference value of all
data, we use the method provided by Brendan and Delbert [8]
to calculate the range [pmin, pmax] of this parameter, and
manually select pmin+9.3step as the preference value, where
step = (pmax − pmin/10). The comparison of the clustering
results is shown in Table 2.

From Table 2 we observe that on half or more of the ten
datasets, our algorithm generates the best or near-best results.

TABLE 2. Comparison of cluster results (NMI) among different algorithms
on ten datasets.

The average result of our algorithm on the ten datasets is
the best (with Rand index) or the second best (with NMI).
Considering that the algorithms for comparison benefit from
carefully selected parameters, we believe the effectiveness of
our algorithm is validated. In addition, in the ten clustering
algorithms tested in the experiments, none performs better
than the others consistently.

V. DISCUSSION
Compared with DSets-histeq, our algorithm uses cluster
expansion to increase cluster sizes and improve clustering
results. In this sense, it is easy to understand that our algo-
rithm performs better than DSets-histeq on six datasets,
as shown in Figure 7. However, we also observe that our
algorithm is outperformed by DSets-histeq on the remaining
four datasets, namely D3 (D31), D4 (R15), D9 (Glass) and
D10 (Yeast), indicating that cluster expansion degrades the
clustering results. We discuss the possible reasons of this
observation as follows. Our approach to improve cluster-
ing results by cluster expansion is based on the assumption
that the clusters from DSets-histeq are subsets of the real
ones. Although we have shown that DSets-histeq tends to
generate small clusters which are usually subsets of real
clusters, we have no guarantee that this assumption holds for
all datasets. In the case that the clusters from DSets-histeq
are already larger than the real ones, or one such cluster
contains data from multiple real clusters, cluster expansion
only degrades the clustering results further. Second, in our
approach the cluster expansion is accomplished by maximiz-
ing the ratio of internal and external similarity. This criterion
is suitable for spherical clusters, but may not be effective for
non-spherical ones. In fact, the common internal evaluation
criteria, e.g., Dunn index, Silhouette coefficient and Davies-
Bouldin index, are also based on an implicit assumption that
clusters are spherical. These observations show that in order
to improve the clustering results further, it is necessary to
design some internal evaluation criteria suitable for clusters
of non-spherical shapes. Third, it is easy to understand that
our imperfect cluster expansion method may not be able to
find out the cluster border accurately on some datasets.

With the above discussion, we are ready to explain the
observations in Figure 7. Considering that the clustering
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FIGURE 8. Clustering results on D31 and R15 datasets with DSets-histeq
and our algorithm. The results in the top row are from DSets-histeq, and
those in the bottom row are from our algorithm.

FIGURE 9. The 2D datasets. (a) Aggregation. (b) Pathbased. (c) Jain.
(d) Flame.

results of 2D datasets can be illustrated in figures, in the
followingwe limit out attention to the six 2D datasets, namely
D1 (Aggregation), D2 (Pathbased), D3 (D31), D4 (R15),
D5 (Jain) and D6 (Flame), and the observations on the
remaining four non-2D datasets can be explained similarly.
The clustering results on D31 and R15 with DSets-histeq and
our algorithm are shown in Figure 8. Here we see that in both
datasets the majority of all the clusters have been grouped
correctly with DSets-histeq, and only some neighboring data
are misclassified. In other words, the DSets-histeq clustering
results are already quite close to ground truth, as also shown
in Figure 7. In this case, our imperfect cluster expansion
method fails to identify the cluster borders accurately, and
some of obtained clusters cover the data of multiple real

FIGURE 10. The average cluster sizes from DBSCAN and comparison with
the ground truth.

FIGURE 11. The clustering results of DBSCAN before and after cluster
expansion.

clusters (the bottom row of Figure 8), resulting in a decrease
in clustering quality. The remaining four 2D datasets are
shown in Figure 9. It is evident that the Aggregation, Path-
based and Flame datasets are mainly composed of spherical
clusters. Correspondingly, Figure 7 shows that our algorithm
performs better than DSets-histeq significantly on these three
datasets. In contrast, the Jain dataset consists of non-spherical
clusters, and the advantage of our algorithm over DSets-histq
on this dataset is quite small. This difference on datasets with
spherical and non-spherical clusters confirms that our cluster
expansion method is more effective for spherical clusters.
Although on some datasets cluster expansion degrades the
clustering results, we also notice that the decrease in cluster-
ing quality is quite small. This shows the effectiveness of our
cluster expansion method from a different perspective as it is
able to limit the possible negative effective to a small level.

In uur algorithm, DSets-histeq as the first step gener-
ates clusters sequentially, and we then expand the gener-
ated (small) clusters to improve the clustering results. The
majority of existing algorithms, including k-means, NCuts,
AP and spectral clustering, are partitioning-based and all
the clusters are obtained simultaneously from the partition-
ing process. As a result, their clustering results cannot be
improved with cluster expansion. While with DBSCAN the

VOLUME 6, 2018 8923



J. Hou, A. Zhuang: Enhanced DSets Clustering by Cluster Expansion

clusters are obtained sequentially, this algorithm depends on
local density and requires one data to be similar to its nearest
neighbors only. In other words, DBSCAN has a relatively low
requirement on the internal similarity of a cluster, and tends
to generate large clusters. This observation is validated by the
comparison of the average cluster sizes of DBSCANwith the
ground truth in Figure 10, where in most cases the clusters
from DBSCAN are greater than real ones. Correspondingly,
expanding the clusters further is likely to degrade the cluster-
ing results, as shown in Figure 11.

VI. CONCLUSION
A cluster expansion algorithm is presented to reduce the
dependence on parameters on the basis of the dominant sets
algorithm. We firstly transform similarity matrices by his-
togram equalization to remove the influence from the simi-
larity parameter and generate small clusters. Then a cluster
expansion step is used to improve clustering results by max-
imizing the ratio of internal and external similarity. Exper-
iments on then datasets show that our algorithm performs
comparably to or better than some other algorithms with
carefully selected parameters.
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