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ABSTRACT This paper is concerned with the state fusion estimation problem for a class of stochastic hybrid
systems with asynchronous multi-sensors and multiple packet dropouts. The stochastic packet dropouts
over communication channels from sensors to the fusion center are formulated as independent Bernoulli
sequences. As one of the most cost-effective estimation approach for hybrid systems, the interactive multiple
model framework is adopted, where an inputmixing step is introduced at the beginning of each filtering cycle.
The asynchronous sensor measurements collected at the fusion center are first aligned to the fusion time,
and then fused to update the mode-matched filters based on the quasi-recursive form of linear minimum
mean square error estimation, where correlations induced by the synchronization process are carefully
calculated and the stochastic packet dropouts are taken into account. Finally, the overall estimate is obtained
by further fusing the mode-matched estimates with their updated posterior mode probabilities accordingly.
The feasibility and effectiveness of the proposed algorithm is illustrated by a numerical simulation.

INDEX TERMS Asynchronous multi-sensor, fusion estimation, networked system, packet dropout, stochas-
tic hybrid system.

I. INTRODUCTION
The past two decades have witnessed the successful applica-
tions of networked systems in an extensive range of areas,
such as the guidance and navigation, air traffic control,
remote diagnostics, and so on. Although the introduction
of network has a lot of advantages in practical engineering,
it also brings great challenges to the analysis and synthesis of
networked systems due to the noisy environment and limited
communication capacity of the network [1]. It is well rec-
ognized that the existence of network-induced phenomena,
such as delays, packet dropouts, and measurement missing,
would highly degrade the system performance if not handled
properly [2], [3]. Consequently, it is of great importance to
consider the network-induced phenomena in the filtering and
estimation problems of networked systems.

Packet dropouts may occur via the data transmission in
networked systems because of channel congestion, signal
degradation, and many other reasons. Actually, the filter-
ing and estimation problem of networked systems with data
packet dropouts has attracted considerable research attentions

in recent years, and a great number of approaches have been
presented in the literature [4]–[9]. In [10], optimal linear
filter, predictor and smoother for systems with transmission
delays and packet dropouts were proposed based on state
augmentationwith the convergence of the estimator analyzed.
A more general case in networked systems was considered
in [11], where one or multiple packets or nothing might be
received at the data processing center. An online optimal
linear filter in the sense of Linear Minimum Variance (LMV)
and an offline suboptimal filter were developed. A recursive
networked strong tracking filtering was presented in [5] for a
class of nonlinear systems with multiple packet dropouts as
well as parameter perturbations and unknown inputs.

For stochastic networked systems measured with multiple
sensors, the fusion filtering and estimation problem has also
been studied. In [12], centralized fusion estimators in the
LMV sense were designed based on the innovation analysis
approach. The stability of the proposed fusion estimators
was analyzed and a sufficient condition was given for the
corresponding steady-state fusion estimators. A centralized
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fusion strategy based on covariance intersection fusion of
local estimates was designed in [13] for networked systems
with random packet loss over multiple wireless channels.
Based on matrix-weighted fusion approach, a distributed
fusion filtering algorithm was proposed in [14] for a class of
networked multi-sensor systems, in which transmission delay
and packet loss in the communication channel from sensor
to local filters were considered. Different from [14], where
local estimates were transmitted to the fusion center over a
perfect connection, both missing measurements in sensor-to-
estimator channels and random delays and packet dropouts
in channels from local estimators to the fusion center were
taken into account in the proposed distributed fusion estima-
tion algorithm in [15]. For distributed sensor networks with
random packet losses, two-phases distributed fusion filters
were proposed in [16] with a given topology, where each node
was not only a sensor but also a fusion center. A prelimi-
nary least-square estimate was firstly obtained at each node
using its own measurements and those from its neighbors,
and then was further fused with other preliminary estimates
collected also from its neighbors using the matrix-weighted
fusion approach. Moreover, a networked federated filter was
presented in [17] for data-fusion systems with packet losses
and variable delays. On the recent progress of estimation,
filtering and fusion for networked systems with network-
induced phenomena, we refer readers to [18] for more details.
However, we want to point out that although fruitful results
have been presented, most of those are focused on single
model networked systems. In terms of hybrid networked
systems consisting of not only continuous state evolutions but
also discrete mode transitions, the corresponding results are
quite few, and thus, the purpose of this paper is to shorten
such a gap.

Motivated by the aforementioned analysis, the state fusion
estimation problem for a class of networked stochastic
hybrid systems is studied in this paper. Sensor measure-
ments are transmitted to the fusion center via multiple imper-
fect networks which suffer from stochastic packet dropouts.
Moreover, we consider the general case in practice that mea-
surements received at the fusion center are not time-aligned,
in other words, they are obtained at different sampling times
by multiple asynchronous sensors. This is because sensors
in practical applications usually have distinct sampling rates
and/or initial sampling times, especially for heterogeneous
multiple sensors [19], [20]. A networked state fusion estima-
tion algorithm is developed for a class of stochastic hybrid
systems with multiple asynchronous sensors and multiple
data packet dropouts based on the IMM framework, one of the
most cost-effective algorithms for hybrid system estimation.
Similar to IMM, the proposed fusion estimator begins with
an input mixing step, and then the mode-matched filters
and their mode probabilities are updated with measurements
from multiple asynchronous sensors after synchronization.
Correlations induced by the synchronizing process are calcu-
lated and data packet dropouts over multiple communication
channels are taken into account. At last, the overall estimate

is obtained by weighting the mode-matched estimates with
their mode probabilities accordingly.

The rest of this paper is organized as follows. The stochas-
tic hybrid system considered and the fusion estimation prob-
lem are formulated in Section II. In Section III, the proposed
networked fusion estimation algorithm is derived. Section IV
gives the simulation results to illustrate the effectiveness
of the proposed algorithm and the conclusions are drawn
in Section V.

II. PROBLEM FORMULATION
Consider a class of stochastic hybrid systems with altogether
M candidate modes and the m-th mode is given by the fol-
lowing dynamic equation

x(tj) = 8m(tj, ti)x(ti)+ ωm(tj, ti) (1)

where x ∈ Rdx is the continuous-valued system state,
8m(tj, ti) is the state transition matrix of mode m from ti to tj,
ωm(tj, ti) is zero mean white Gaussian noise with covariance
Qm(tj, ti). The mode evolution is described by homogeneous
Markov chain {—m(t), t ≥ 0} with transition rate matrix 3.

System (1) is observed by a number of N asynchronous
sensors. Since sensors work asynchronously, an individual
sensor may have more than one measurement in the k-th
fusion time interval (tk−1, tk ]. Once for a given sensor, more
than one measurement is collected during (tk−1, tk ], only the
latest one whose sampling time instant is nearest to tk is
taken into account. Denote the latest measurement of sensor
n obtained at time tnk as

znk = Hn
k x(t

n
k )+ v(t

n
k ) (2)

where znk ∈ Rdnz ,tk−1 < tnk ≤ tk , v(tnk ) is zero mean white
Gaussian measurement noise with covariance Rn. We also
have E[v(tnk )v

T (tn
′

k ′ )] = Rnkδnn′δkk ′ , where δ is the Kronecker
delta function.

Sensor measurements are transmitted to the fusion filtering
center through a communication network, which suffers from
random packet dropouts. The observation obtained at the
fusion filtering center after data transmission is

ynk = θ
n
k z
n
k +

(
1− θnk

)
ynk−1 (3)

where θnk ∈ {0, 1} is a Bernoulli stochastic variable, indicat-
ing whether measurement znk is received by the fusion center.
θnk = 0 means that data packet dropout occurs and in this case
the latest measurement received by the fusion center from
sensor n is used. The distribution of θnk is

Prob
{
θnk = 1

}
= βn Prob

{
θnk = 0

}
= 1− βn (4)

where βn ∈ [0, 1] is an exactly known scalar, denoting the
packet arriving rate of sensor n. We assume that the stochastic
data packet dropout θnk are i.i.d., that is

E
{
(θnk − β

n
k )(θ

n′
k ′ − β

n′
k ′ )

T
}
= [βn − (βn)2]δkk ′δnn′ (5)

Also, it is assumed that the system process noise w(t),
sensor measurement noise v(tnk ), the filtering initial state
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x(0), and the stochastic data packet dropout θnk are mutually
independent.

III. PROPOSED STATE FUSION ESTIMATION ALGORITHM
The purpose of this paper is to find the estimate of sys-
tem state x at time tk based on asynchronous measurements
Y k :=

{
ynk ′ , n = 1, · · · ,N , k ′ = 1, · · · , k

}
at the fusion cen-

ter. Using the total probability formula, we have

x̂k = E{x(tk )|Y k} =
M∑
m=1

x̂mk µ
m
k (6)

and

Pk = E{
[
x̂k − x(tk )

] [
x̂k − x(tk )

]T
}

=

M∑
m=1

[Pmk + (x̂k − x̂mk )(x̂k − x̂
m
k )

T ]µmk (7)

where x̂mk = E{x(tk )|—m(tk ) = m,Y k} is the state estimate
conditioned on mode m with its estimation error covari-
ance Pmk = E{

[
x̂mk − x(tk )

] [
x̂mk − x(tk )

]T
|—m(tk ) = m}, and

µmk = Prob
{
—m(tk ) = m|Y k

}
is the posterior probability that

mode m is in effect at time tk .
The exact calculation of conditional estimate x̂mk and its

estimation error covariance Pmk involves all possible mode
sequence histories. As time k goes on, the number of mode
sequence histories increased exponentially, which makes the
optimal approach impractical. To deal with above problem,
IMM introduces an input mixing step at the beginning of
each filtering cycle based on Gaussian mixing and moment
matching [21]. It is this effective input mixing process that
makes it possible for IMM to achieve the best compromise
between computational complexity and estimation perfor-
mance. Specifically, the input to each element filter at the
current time is re-initialized by mixing the previous estimates
of all element filters as

x̌mk−1 = E{x(tk−1)|—m(tk ) = m,Y k−1}

=

M∑
i=1

x̂ ik−1µ̌
i|m
k−1 (8)

P̌mk−1 = Cov{x(tk−1)− x̌mk−1|—m(tk ) = m}

= Cov{x̃mk−1|—m(tk ) = m}

=

M∑
i=1

[Pik−1+(x̌
m
k−1−x̂

i
k−1)(x̌

m
k−1−x̂

i
k−1)

T ]µ̌i|mk−1 (9)

where x̃mk−1 = x(tk−1)− x̌mk−1, and

µ̌
i|m
k−1 = Prob{—m(tk−1) = i|—m(tk ) = m,Y k−1}

=
π
i,m
tk−tk−1µ

i
k−1

µmk|k−1
(10)

µmk|k−1 = Prob{—m(tk ) = m|Y k−1}

=

M∑
i=1

π
i,m
tk−tk−1µ

i
k−1 (11)

where π
i,m
tk−tk−1 is the ith row mth column element of

5(tk − tk−1) = e3(tk−tk−1)

Lemma 1: Assumemodem is in effect within time interval
(tk−1, tk ]. Denote the asynchronous networkedmeasurements
received at the fusion center within this time interval as an
augmented measurement

ȳk = [(y1k )
T , (y2k )

T , · · · , (yNk )
T ]T (12)

Then ȳk can be taken as a pseudo-measurement of x(tk ) with
its observation equation given by

ȳk = 2k H̄m
k x(tk )+2k η̄

m
k + (I −2k )ȳk−1 (13)

where

2k = diag{θnk Idnz }
N
n=1 (14)

H̄m
k =

[
(Hm,1

k )T , (Hm,2
k )T , · · · , (Hm,N

k )T
]T

(15)

η̄mk =
[
(ηm,1k )T , (ηm,2k )T , · · · , (ηm,Nk )T

]T
(16)

and for ∀n ∈ 1, 2, · · · ,N ,

Hm,n
k = Hn

k [8
m(tk , tnk )]

−1 (17)

η
m,n
k = vnk − H

m,n
k wm(tk , tnk ) (18)

Meanwhile, η̄mk is zeromeanwhiteGaussian noise vector with
its covariance R̄mk = E{η̄mk (η̄

m
k )

T
} given by

R̄mk (n, n
′) = E{ηm,nk (ηm,n

′

k )T }

=

{
Rnk + H

m,n
k Qm(tk , tnk )(H

m,n
k )T n = n′

Hm,n
k Qm(tk ,max{tnk , t

n′
k })(H

m,n′
k )T n 6= n′

(19)

where n, n′ ∈ 1, 2, · · · ,N , and R̄mk (n, n
′) denotes the nth row

n′th column submatrix of R̄mk . In addition, we have

9m
k = E{wm(tk , tk−1)(η̄mk )

T
}

= −[Qm(tk , t1k )(H
m,1
k )T ,Qm(tk , t2k )(H

m,2
k )T ,

· · · ,Qm(tk , tNk )(H
m,N
k )T ] (20)

Proof 1: Substituting (1) into (2), we have

znk = Hn
k [8

m(tk , tnk )]
−1 [x(tk )− wm(tk , tnk )]+ vnk

= Hn
k [8

m(tk , tnk )]
−1x(tk )+ vnk

−Hn
k [8

m(tk , tnk )]
−1wm(tk , tnk )

= Hm,n
k x(tk )+ η

m,n
k (21)

From (3) and (21), it follows

ynk = θ
n
kH

m,n
k x(tk )+ θnk η

m,n
k + (1− θnk )y

n
k−1 (22)

Then, (13) can be obtained directly through
definition (14)-(16).

In addition, from (18), we know that

E{ηm,nk (ηm,nk )T }

= E{[vnk − H
m,n
k wm(tk , tnk )][v

n
k − H

m,n
k wm(tk , tnk )]

T
}

= Rnk + H
m,n
k Qm(tk , tnk )(H

m,n
k )T (23)
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and for n 6= n′

E{ηm,nk (ηm,n
′

k )T }

= E{[vnk − H
m,n
k wm(tk , tnk )][v

n′
k − H

m,n′
k wm(tk , tn

′

k )]
T
}

= Hm,n
k Qm(tk ,max{tnk , t

n′
k })(H

m,n′
k )T (24)

Meanwhile, we have

E{wm(tk , tk−1)(η
m,n
k )T }

= E{wm(tk , tk−1)[vnk − H
m,n
k wm(tk , tnk )]

T
}

= −Qm(tk , tnk )(H
m,n
k )T (25)

Consequently, (20) can be obtained directly from (25) and the
definition of η̄mk by (16).
Theorem 1: Given that mode m is in effect within the

kth fusion interval (tk−1, tk ], for networked system described
by (1)-(3), the predicted state x̂mk|k−1 = E{x(tk )|—m(tk ) =
m,Y k−1} and its error covariance Pmk|k−1 = Cov{x(tk ) −
x̂mk|k−1|—m(tk ) = m} are given by

x̂mk|k−1 = 8
m(tk , tk−1)x̌mk−1 (26)

Pmk|k−1 = 8
m(tk , tk−1)P̌mk−1[8

m(tk , tk−1)]T + Qm(tk , tk−1)
(27)

where x̃mk|k−1 = x(tk )−x̂mk|k−1. Meanwhile, by fusing all asyn-
chronous observations {ynk}

N
n=1 received at the fusion center,

the updated estimate x̂mk and its error covariance Pmk|k−1 are
obtained by

x̂mk = x̂
m
k|k−1+0

m
k

(
Cov{ỹmk|k−1|—m(tk )=m}

)−1
ỹmk|k−1 (28)

Pmk =P
m
k|k−1−0

m
k

(
Cov{ỹmk|k−1|—m(tk )=m}

)−1
0mk (29)

where

ỹmk|k−1 = ȳk − E{ȳk |—m(tk ) = m,Y k−1}

= ȳk −4k H̄m
k x̂

m
k|k−1 − (I −4k )ȳk−1 (30)

0mk = Pmk|k−1(H̄
m
k )

T4k +9
m
k 4k (31)

and

4k = E{2k} = diag{βnIdnz }
N
n=1 (32)

Proof 2: From (1), we have

x(tk ) = 8m(tk , tk−1)x(tk−1)+ ωm(tk , tk−1) (33)

It follows that

x̂mk|k−1
= E{x(tk )|—m(tk ) = m,Y k−1}
= E{8m(tk , tk−1)x(tk−1)+ωm(tk , tk−1)|—m(tk )=m,Y k−1}
= 8m(tk , tk−1)x̌mk−1 (34)

and

x̃mk|k−1
= x(tk )− x̂mk|k−1
= 8m(tk , tk−1)x(tk−1)+ωm(tk , tk−1)−8m(tk , tk−1)x̌mk−1
= 8m(tk , tk−1)[x(tk−1)− x̌mk−1]+ ω

m(tk , tk−1)
= 8m(tk , tk−1)x̃mk−1 + ω

m(tk , tk−1) (35)

Thus, we have

Pmk|k−1 = Cov{x̃mk|k−1|—m(tk ) = m}

= 8m(tk , tk−1)Cov{x̃mk−1|—m(tk ) = m}[8m(tk , tk−1)]T

×Cov{ωm(tk , tk−1)}
= 8m(tk , tk−1)P̌mk−1[8

m(tk , tk−1)]T + Qm(tk , tk−1)
(36)

Now, using Lemma 1, the fusion filtering problem of net-
worked system described by (1)-(3) can be transformed to
the fusion filtering problem of system consisting of discrete-
time dynamic equation (33) and the equivalent measurement
equation (12). Then, it follows from the results of quasi-
recursive form of LMMSE estimation [22], [23] that

x̂mk = x̂mk|k−1 + Cov{x̃
m
k|k−1, ỹ

m
k|k−1|—m(tk ) = m}

×

(
Cov{ỹmk|k−1|—m(tk ) = m}

)−1
ỹmk|k−1 (37)

Pmk = Pmk|k−1 − Cov{x̃
m
k|k−1, ỹ

m
k|k−1|—m(tk ) = m}

× (Cov{ỹmk|k−1|—m(tk ) = m})−1

×Cov{ỹmk|k−1, x̃
m
k|k−1|—m(tk ) = m} (38)

and (30) stands obviously from (13), (32) and the definition
of x̂mk|k−1.
In addition, from (13), (32), and the definition of x̂mk|k−1,

(30) stands obviously. Furthermore, substituting (13) into
(30), we have

ỹmk|k−1 = ȳk −4k H̄m
k x̂

m
k|k−1 − (I −4k )ȳk−1

= 2k H̄m
k x(tk )+2k η̄

m
k + (I −2k )ȳk−1

−4k H̄m
k x̂

m
k|k−1 − (I −4k )ȳk−1

= 2k H̄m
k x̃

m
k|k−1 + (2k −4k )H̄m

k x̂
m
k|k−1

− (2k −4k )ȳk−1 +2k η̄
m
k (39)

Consequently, it follows

0mk = Cov{x̃mk|k−1, ỹ
m
k|k−1|—m(tk ) = m}

= Cov{x̃mk|k−1,2k H̄m
k x̃

m
k|k−1 + (2k −4k )H̄m

k x̂
m
k|k−1

− (2k −4k )ȳk−1 +2k η̄
m
k |—m(tk ) = m}

= Cov{x̃mk|k−1,2k H̄m
k x̃

m
k|k−1 +2k η̄

m
k |—m(tk ) = m}

= Pmk|k−1(H̄
m
k )

T4k + Cov{x̃mk|k−1,2k η̄
m
k |—m(tk ) = m}

= Pmk|k−1(H̄
m
k )

T4k

+Cov{8m(tk , tk−1)x̃mk−1 + ω
m(tk , tk−1),2k η̄

m
k }

= Pmk|k−1(H̄
m
k )

T4k + Cov{ωm(tk , tk−1),2k η̄
m
k }

= Pmk|k−1(H̄
m
k )

T4k +9
m
k 4k (40)

Theorem 2: Cov{ỹmk|k−1|—m(tk ) = m} in (28) and (29) is
given by

Cov{ỹmk|k−1|—m(tk ) = m}

= Cov{2k H̄m
k x̃

m
k|k−1|—m(tk ) = m}

+Cov{2k η̄
m
k |—m(tk ) = m}

+Cov{(2k −4k )(H̄m
k x̂

m
k|k−1 − ȳk−1)|—m(tk ) = m}

+Cov{2k H̄m
k x̃

m
k|k−1,2k η̄

m
k |—m(tk ) = m}

+Cov{2k η̄
m
k ,2k H̄m

k x̃
m
k|k−1|—m(tk ) = m} (41)
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where

Cov{2k H̄m
k x̃

m
k|k−1|—m(tk ) = m}

= 4k H̄m
k P

m
k|k−1(H̄

m
k )

T4k

+ (4k −4
2
k )diag{H

m,n
k Pmk|k−1(H

m,n
k )T }Nn=1 (42)

Cov{(2k −4k )(H̄m
k x̂

m
k|k−1 − ȳk−1)|—m(tk ) = m}

= (4k −4
2
k )

× diag{(Hm,n
k x̂mk|k−1 − y

n
k−1)(H

m,n
k x̂mk|k−1 − y

n
k−1)

T
}
N
n=1

(43)

Cov{2k η̄
m
k |—m(tk ) = m}

= (4k −4
2
k )diag{R

n
k + H

m,n
k Qm(tk , tnk )(H

m,n
k )T }Nn=1

+4k R̄mk 4k (44)

Cov{2k H̄m
k x̃

m
k|k−1,2k η̄

m
k |—m(tk ) = m}

=

{
Cov{2k η̄

m
k ,2k H̄m

k x̃
m
k|k−1|—m(tk ) = m}

}T
= (42

k −4k )diag{H
m,n
k Qm(tk , tnk )(H

m,n
k )T }Nn=1

+4k H̄m
k 9

m
k 4k (45)

Proof 3: From (39), it follows (46), shown at the bottom of
the next page. Based on Lemma 1, and the orthogonality prop-
erties of LMMSE, we have (47) and (48), shown at the bottom
of the next page. Consequently, (41) stands. Moreover, since
θnk ∈ {0, 1} is a Bernoulli stochastic variable, it follows that
E{θnk } = E{(θnk )

2
} = βn, and then we can have (42), (43),

and (44), and it can be obtained that

Cov{2k H̄m
k x̃

m
k|k−1,2k η̄

m
k |—m(tk ) = m}

= Cov{2k H̄m
k [8

m(tk , tk−1)x̃mk−1 + ω
m(tk , tk−1)],2k η̄

m
k }

= Cov{2k H̄m
k ω

m(tk , tk−1),2k η̄
m
k }

= (42
k −4k )diag{H

m,n
k Qm(tk , tnk )(H

m,n
k )T }Nn=1

+4k H̄m
k 9

m
k 4k (50)

Accordingly, the mode probabilities are updated by

µmk = Prob
{
–m(tk ) = m|Y k

}
=

Prob
{
–m(tk ) = m|Y k−1

}
p
(
ȳk |–m(tk ) = m,Y k−1

)
M∑
i=1

Prob
{
–m(tk ) = i|Y k−1

}
p
(
ȳk |–m(tk ) = i,Y k−1

)
=

µmk|k−1p
(
ȳk |–m(tk ) = m,Y k−1

)
M∑
i=1
µik|k−1p

(
ȳk |–m(tk ) = i,Y k−1

) (51)

where p
(
ȳk |–m(tk ) = m,Y k−1

)
is given by (49), shown at the

bottom of the next page.
Once we get the conditioned estimate x̂mk , its estimation

error covariance Pmk , and the corresponding mode probability
µmk , the combined estimate x̂k and its error covariance Pk
can be directly obtained by (6) and (7) based on the total
probability formula, respectively.

IV. SIMULATION RESULTS
In this section, we consider a single target tracking scenario
in a 2D horizonal space. The position and velocity of the

moving target along X and Y axis are taken as system state,
which means the system state vector x = [X , Ẋ ,Y , Ẏ ]T .
Three moving mode are considered: the Coordinated Turn
(CT) moving with turning rate ω = 0.2 deg/s (named as
CT mode 1), CT mode with ω = 0.3 deg/s (named as CT
mode 2), and the Constant Velocity (CV) mode. We assume
that the target starts to move according to CTmode 1 with ini-
tial state [100, 10, 100, 10]T , then switches to the CV mode
at t = 20s, and finally switches to CT mode 2 at t = 40s.
Consequently, themoving of the target is a typical jump linear
system. The simulation ends up at t = 90s. The dynamics of
the target is given by (1) with parameters given by
CT model:

8(tj, ti)=


1

sin(ωτji)
ω

0
cos(ωτji)−1

ω
0 cos(ωτji) 0 − sin(ωτji)

0
1−cos(ωτji)

ω
1

sin(ωτji)
ω

0 sin(ωτji) 0 cos(ωτji)

 (52)

where turning rate ω takes the value of 0.2 deg/s and
0.3 deg/s in CT mode 1 and CT mode 2, respectively, and
τji = tj − ti. Q(tj, ti) is given by (53), shown at the bottom of
the next page.

CV model:

8(tj, ti) =


1 τji 0 0
0 1 0 0
0 0 1 τji
0 0 0 1

 (54)

Q(tj, ti) =


τ 3ji/3 τ 2ji/2 0 0
τ 2ji/2 τji 0 0
0 1 τ 3ji/3 τ 2ji/2
0 0 τ 2ji/2 τji

×10−2 (55)

The moving target is observed by three asynchronous sen-
sors with initial sampling instants t1 = 0.2s, t2 = 0.3s,
t3 = 0.4s and sampling periods T 1

= 0.5s, T 2
= 0.5s,

T 3
= 0.9s, respectively. The corresponding measurement

matrix and measurement noise covariance of these sensors
are

H1
= H2

= H3
=

[
1 0 0 0
0 0 1 0

]
R1 = R1 = R3 =

[
25 0
0 25

]
The sensor measurements are transmitted to the fusion

center through communication network with random packet
dropouts described by (3) and the packet arriving rates in (4)
given by β1 = 0.9, β2 = 0.8, β3 = 0.8. respectively. Fig. 1
illustrate the packet dropouts of three asynchronous sensors
in one-time realization.

The proposed Networked Asynchronous IMM (NAIMM)
fusion estimation algorithm is used to estimate the target
state. The fusion filtering period is T = 1s and the initial
fusion filtering time instant is t = 0s. The initial model prob-
ability distribution is [0.8, 0.1, 0.1] and the model transition
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FIGURE 1. Packet dropouts of three asynchronous sensors.

probability matrix is appointed as

3 =

 0.9 0.05 0.05
0.05 0.9 0.05
0.05 0.05 0.9


Fig.2 depicts transition curves of model posterior proba-

bility of the proposed NAIMM fusion algorithm. From Fig.2
we can see that the posterior probability of CT model 1 is
dominant at the beginning stage since the target starts to move

FIGURE 2. Model posterior probabilities of proposed algorithm.

according to CT model 1. After t = 20s, when the moving
of the target switches to CV model, the posterior probabil-
ity of CT model 1 decreases sharply, and that of the CV
model increases rapidly and becomes dominant. Meanwhile,
the second switch of the target motion pattern fromCVmodel
to CT model 2 at t= 40s can also be correctly reflected in the
evolution of the posterior model probability curves in Fig.2.

Cov{ỹmk|k−1|—m(tk ) = m} = Cov{2k H̄m
k x̃

m
k|k−1 + (2k −4k )H̄m

k x̂
m
k|k−1 − (2k −4k )ȳk−1 +2k η̄

m
k |—m(tk ) = m}

= Cov{2k H̄m
k x̃

m
k|k−1|—m(tk ) = m} + Cov{(2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1)|—m(tk ) = m}

+Cov{2k η̄
m
k |—m(tk ) = m} + Cov{2k H̄m

k x̃
m
k|k−1,2k η̄

m
k |—m(tk ) = m}

+Cov{2k H̄m
k x̃

m
k|k−1, (2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1)|—m(tk ) = m}

+Cov{(2k −4k )(H̄m
k x̂

m
k|k−1 − ȳk−1),2k η̄

m
k |—m(tk ) = m}

+Cov{(2k −4k )(H̄m
k x̂

m
k|k−1 − ȳk−1),2k H̄m

k x̃
m
k|k−1|—m(tk ) = m}

+Cov{2k η̄
m
k ,2k H̄m

k x̃
m
k|k−1|—m(tk ) = m}

+Cov{2k η̄
m
k , (2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1)|—m(tk ) = m} (46)

Cov{2k H̄m
k x̃

m
k|k−1, (2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1)|—m(tk ) = m}

=

{
Cov{(2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1),2k H̄m

k x̃
m
k|k−1|—m(tk ) = m}

}T
= 0 (47)

Cov{(2k −4k )(H̄m
k x̂

m
k|k−1 − ȳk−1),2k η̄

m
k |—m(tk ) = m}

=

{
Cov{2k η̄

m
k , (2k −4k )(H̄m

k x̂
m
k|k−1 − ȳk−1)|—m(tk ) = m}

}T
= 0 (48)

p
(
ȳk |–m(tk ) = m,Y k−1

)
= (2π )

−
1
2

N∑
n=1

dnz (
det

{
R̄mk
})− 1

2 exp
{
−
1
2
(ỹmk|k−1)

T (R̄mk )
−1ỹmk|k−1

}
(49)

Q(tj, ti) =



2[ωτji − sin(ωτji)]
ω3

1− cos(ωτji)
ω2 0

ωτji − sin(ωτji)
ω2

1− cos(ωτji)
ω2 tj − ti

sin(ωτji)− ωτji
ω2 0

0
sin(ωτji)− ωτji

ω2

2[ωτji − sin(ωτji)]
ω3

1− cos(ωτji)
ω2

ωτji − sin(ωτji)
ω2 0

1− cos(ωτji)
ω2 tj − ti


(53)
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FIGURE 3. Comparison of RMSE cures of position and velocity estimates.

Fig.3 shows the comparison of Root Mean Square
Error (RMSE) curves of the proposed NAIMM fusion algo-
rithm and the standard IMM with individual sensors over
500 Monte Carlo runs. The four sub-figures denote the four
components of the target state, namely, positions and veloc-
ities of the target along X and Y directions, respectively.
In these sub-figures, the solid curves denote the proposed
NAIMM fusion algorithm, and the dashed, the dash dotted,
and the dotted curves denote the standard IMM filterings
with individual sensor 1, sensor 2 and sensor 3, respectively.
It can be seen from Fig.3 that the proposed NAIMM fusion
algorithm has not only the smallest RMSEs during the time a
given model is in effect, but also the fastest response to model
switches and the smallest model switching errors, which
illustrates the feasibility and effectiveness of the proposed
fusion algorithm. Besides, the standard IMM with individual
sensor 1 has better accuracy than the standard IMM with
individual sensor 2 and the standard IMM with individual
sensor 3. This is because sensor 1 has smaller sampling period
than sensor 3 and higher packet arriving rate than sensor 2.
And also this is consistent with our intuition.

V. CONCLUSIONS
A networked state fusion estimation algorithm has been pro-
posed in this paper for a class of stochastic hybrid sys-
tems. The proposed algorithm has a similar structure as the
standard IMM, but is applicable to asynchronous measure-
ments and takes into account the phenomenon of stochastic
packet dropouts of networked systems. After input mixing,
the mode-matched estimates are obtained based on the recur-
sive form of LMMSE using the time aligned measurements
from multiple asynchronous sensors with noise correlations

carefully calculated. The overall estimate is then obtained by
weighting the mode-matched estimates with corresponding
posterior mode probabilities. Simulation results illustrate the
feasibility and effectiveness of the proposed fusion filtering
algorithm and verify that it has improved performance than
single sensors.

The proposed algorithm can be applicable to networked
hybrid systems with multiple asynchronous sensors, such as
wireless sensor networks or networked control systems. Fur-
ther researches can focus on IMM fusion filtering problems
for event-triggered networked systems or networked systems
with random sensor delays, packet dropouts, and missing
observations presented simultaneously.
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