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ABSTRACT This paper presents an automatic wearable electrocardiogram (ECG) classification and moni-
toring system with stacked denoising autoencoder (SDAE). We use a wearable device with wireless sensors
to obtain the ECG data, and send these ECG data to a computer with Bluetooth 4.2. Then, these ECG data are
classified by the automatic cardiac arrhythmia classification system. First, the ECG feature representation is
learned by the SDAEwith sparsity constraint. Then, the softmax regression is used to classify the ECG beats.
In the fine-tuning phase, an active learning is added to improve the performance. In the active learning phase,
we use the method that relies on the deep neural networks posterior probabilities to associate confidence
measures to select the most informative samples. Breaking-ties and modified breaking-ties methods are
used to select the most informative samples. We validate the proposed method on the well-known MIT-BIH
arrhythmia database and ECG data obtained from the wearable device. We follow the recommendations of
the Association for the Advancement of Medical Instrumentation for class labeling and results presentation.
The results show that the classification performance of our proposed approach outperforms the most of the
state-of-the-art methods.

INDEX TERMS Stacked denoising autoencoder, wearable device, active learning, breaking-ties, modified
breaking-ties.

I. INTRODUCTION
ECG abnormality plays a significant role in the prediction
of cardiovascular diseases (CVDs) events in both young and
old population [1], [2]. As the abnormality of the ECG is an
intermittent symptom, the arrhythmia beat may not emerge
in a short time. This causes that the diagnosis of ECG in the
hospital is limited. Moreover, the traditional ECGmonitoring
system often connects the individuals and the instrument with
a signal line; and the direct-wired connection confines the
ECG monitoring. While, the wearable device with wireless
sensors could monitor the cardiac activity without influ-
encing the user’s daily life [3], [4]. The wearable device
with wireless sensors could generate a large amount of data

easily. Although the anomaly of ECG waveform in the heart
rate or rhythm or change in the morphological pattern can
be confirmed easily by an expert cardiologist, it may be
infeasible to inspect each heartbeat among the large number
of ECG data for clinician.

To overcome the issue, automatic methods are proposed to
classify the ECG. Recently, several approaches were utilized
for automatic ECG classification, such as frequency analy-
sis [5], k-Nearest Neighbor clustering [6], mixture-of-experts
method [7], Classification and Regression Trees [8], [9], Arti-
ficial Neural Networks [10], Hidden Markov Models [11],
support vector machines (SVM) [12], Probabilistic Neural
Networks [13], recurrent NN (RNN) [14] and path forest [15].
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FIGURE 1. Overview of the proposed approach.

Despite the great task that the automatic ECG assessment
approaches have been done, in practice, these methods do
not perform well due to some reasons. Firstly, the ECG
signals can be contaminated by various kinds of noise and
physiological artifact, such as baseline wanders, power line
interference, and muscle contraction. The noise and physio-
logical artifact make the assessment of ECG difficult in auto-
matic computerized approach. Moreover, the inter-individual
variations of the ECG signals can make the methods have
an inconsistent performance when they are used to classify
different subjects. In addition, the time-varying dynamics
and morphological characteristics of ECG signals in the
same subject can also increase the difficulty of the automatic
assessment [16].

Furthermore, there is another severe problem. When
assessing and testing a particular method on a benchmark
dataset, it is lack of application of the common practice.
For this reason, the standards and recommended practices
for performance results of automated arrhythmia detection
algorithms are provided by the Association for the Advance-
ment ofMedical Instrumentation (AAMI) [17]. Explicitly, the
AAMI defines five heartbeat classes: normal (N), ventricular
(V), supraventricular (S), fusion of normal and ventricu-
lar (F) and unknown beats (Q). However, only few studies
have used AAMI standards to classify the ECG in automatic
approaches [18]–[21].

The afore-mentioned ECG classification systems use tra-
ditional methods or shallow neural networks. Compared with
shallow architectures (i.e., handcrafted features fed as input
to a kernel classifier), deep learning extracts the feature rep-
resentation automatically from the input data. Deep belief
networks (DBNs) [22], stacked auto-encoder (SAE) [23],
convolutional neural networks (CNNs) [24] are three typical
deep learning architectures. For the automatic ECG classifi-
cation, Meng and Zhang [25] proposed an approach based on
the combination DBN and SVM. They used DBN to learn
feature representation and then fed the features to SVM for
training and classification. And Kiranyaz et al. [26] pro-
posed a method with 1-D CNN to classify the ECG signals.
However, the performance of the classification remains to be
improved.

To overcome the above deficiencies, we propose a novel
approach to classify ECG signals based on the stacked denois-
ing autoencoder (SDAE) with sparity constraint and softmax
regression. Firstly, we use SDAE with sparsity constraint to

learn an adequate feature representation. Then we classify the
ECG signals according to the AAMI standard by the softmax
regression layer. In the fine-tuning phase, we added active
learning to improve the classification [27]. The illustration of
the proposed approach is shown in Fig 1. Two strategies are
used to perform active learning: 1) a criterion called breaking
ties (BT) [28], and 2) modified breaking ties (MBT) [29].
In the experiments, we validate our method on two databases.
The first database is the well-known MIT-BIH arrhythmia
Database. The second database is the arrhythmia data that we
obtained by the wearable device.

The rest of this paper is organized as follows. Section II
describes the wearable device using to obtain ECG data.
In Section III, the SDAE, softmax regression and active
learning method are described in detail. The database and
experimental results are presented in Section IV. Finally,
Section V and Section VI present the discussion and conclu-
sion, respectively.

FIGURE 2. The wearable device using to obtain ECG signals.

II. THE WEARABLE DEVICE USING TO OBTAIN ECG DATA
The wearable device using to obtain ECG signals is demon-
strated in Fig. 2. It consists of three parts: cloth carrier, biosen-
sor platform, and smart terminals. The cloth carrier is made
of elastic fabric for obtaining sufficient adhesion of textile
electrodes to the pectoral muscles. The magnetic connector
is used to guarantee the connection stability between textile
electrodes and hardware platform. In the biosensor platform,
the ADI ECG analog front-end (ADAS1001) is used for
obtaining the ECG signals. The Microcontroller (STM32)
is used to realize the data processing, packing and retrans-
mission to smart terminals via Bluetooth 4.2 protocol. LDO
DC-DC regulator with 95% conversion efficiency is intro-
duced for decreasing the power consumption further. As the
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ECG signal is weak and easy to be corrupted by multiple
noise, we design a digital filter group to reduce the influence
of extensive noises for later evaluation.

III. DESCRIPTION OF THE PROPOSED APPROACH
In this paper, SDAE is used to extract ECG feature represen-
tation. Then, a softmax regression is utilized to classify ECG
with the extracted feature vector. Additionally, active learning
is employed to improve the performance in the fine tuning
phase. In the next subsections, the details of the proposed
approach are described.

A. FEATURE EXTRACTION USING THE SDAE
An autoencoder is an unsupervised learning algorithm that
applies back-propagation. As a neural network, the autoen-
coder consists of three layers, including a visible layer, hid-
den layer, and reconstruction layer. The three-layered neural
network defines a non-linear hypothesis hw,b (xi)with param-
eters w and b that the data can be fitted. For a set of unlabeled
training examples {xi|xi ∈ Rn, i = 1, 2, . . . ,m}, it attempts to
learn an approximation function hw,b (x) ≈ x. In other words,
it tries to reconstruct visible layer data in the reconstruction
layer. Typically, the autoencoder consists of encoding part
and decoding part.

In the encoding part, the input xi is mapped to the hidden
representationhi ∈ RL though a non-linear activation func-
tion as follows:

hi = f (W (e)
· xi + b(e)). (1)

Where W (e)
∈ RL×n is the encoder weight matrix and

b(e) ∈ RL is the encoder bias vector. Usually, the sigmoid
function, i.e. f (z) = 1

1+exp(−z) and tanh function, i.e. f (z) =
ez−e−z
ez+e−z are used as the activation function. In this paper,
we select sigmoid function as the activation function.

In the decoding part, the hidden representation hi ∈ RL

reconstructs the input vector xi through the activation func-
tion as follows:

ri = f (W (d)
· hi + b(d)). (2)

Where W (d)
∈ Rn×L is the decoder weight matrix and

b(d) ∈ Rn is the decoder bias vector.
A denoising autoencoder is trying to reconstruct the input

from a noisy corrupted input. To reconstruct a robust feature
representation, noise is added to input data xi ∈ Rn . Then the
noisy corrupted version x̃i ∈ Rn is used to reconstruct
the input xi ∈ Rn. As the Eq. (1), in the encoding part,
the corrupted input x̃i is mapped to a hidden representation
hi = f (W (e)

· x̃i + b(e)); and as the Eq. (2), in decoding part,
the network reconstructs x̃i = f (W (d)

·hi+b(d)). To optimize
the parameters (w, b) = (W (e), b(e),W (d), b(d)), we try to
minimize the cost function as follows [30]:

J (w, b) =
1
m

m∑
i=1

(
1
2

∥∥hw,b (x̃i − xi)∥∥2)
+
λ

2

∑nl−1

l=1

∑sl

i=1

∑sl+1

j=1

(
w(l)ji

)2
. (3)

Where the nl is the number of layers in the network; the sl
denotes the number of hidden layer nodes. The first term in
Eq. (3) is the average sum-of-squares error term. The second
term denotes a regularization term (also called a weight decay
term) that tends to decrease the magnitude of the weight,
and help prevent overfitting. The λ controls the penalty term
facilitating weight decay.

In the denoising autoencoder with sparsity constraint,
a sparsity constraint is imposed on the hidden nodes. When a
sparsity constraint is forced on the hidden nodes, the autoen-
coder can detect interesting structure in the data, even if the
number of hidden units is large [31]. To enforce the neurons
to be inactive most of the time, hj (xi) denotes the activation
of the jth hidden node, and the average activation of hidden
node j is denoted as:

ρ̂j =
1
m

∑m

i=1
hj (xi). (4)

To constrain sparity, we enforce the ρ̂j = ρ. Where ρ is
a sparsity parameter, which is a small positive value close to
zero. To achieve this, we will add an extra penalty term to
our optimization objective that penalizes ρ̂j deviating signif-
icantly from ρ. Many choices of the penalty term will give
reasonable results. We choose the Kullback–Leibler (KL)
divergence similarity between ρ̂j and ρ:

JKL(ρ‖ρ̂) =
∑n′

j=1
ρlog

ρ

ρ̂j
+ (1− ρ)log

1− ρ
1− ρ̂j

. (5)

To prevent overfitting, a weight decay term is also added to
the cost function of the (3) [32]. Then, the final cost function
to achieve the sparsity target in the SDAE as follows:

Jsparse (w, b) = J (w, b)+ βJKL(ρ‖ρ̂). (6)

Where β controls the sparsity penalty term.

B. SOFTMAX REGRESSION MODEL USING
FOR CLASSIFICATION
The softmax regression model is a supervised learning algo-
rithm and is widely used during the supervised learning steps
of deep neural networks (DNN). Once the extraction of ECG
feature representation is complete, we add a softmax regres-
sion layer on the top of the resulting hidden representation
layers to classify the ECG beat. Then the back-propagation is
used to fine tune the entire DNN byminimizing the following
cost function:

J (θDNN )

= −
1
n

n∑
i=1

K∑
k=1

1
(
yi = k

)
log

(
exp(hθDNN (xi)∑K

k=1 exp
(
hθDNN (xi)

))

+
γ

2

(∥∥W softmax
∥∥2
F +

∑H

l=1
‖W l‖

2
F

)
. (7)

Where the first term is the cross-entropy loss for the soft-
max layer; the second term is the weight decay penalty; and
the hθDNN (xi) is the output of the DNN for an input xi.
And 1{·} is the indicator function, in other words, 1{a true
statement} = 1, and 1{a false statement} = 0.

VOLUME 6, 2018 16531



Y. Xia et al.: Automatic Cardiac Arrhythmia Classification System With Wearable ECG

C. ACTIVE LEARNING FOR FINE TUNING
In this paper, we use active learning to fine tune the DNN
and reduce the need for large amounts of labeled samples.
The basic concept of active learning is requested an expert
to label the most relevant new samples from the unlabeled
set, and then adds the most relevant new samples to the
train set. The most relevant question is how to select the
most informative samples. To select the most informative
samples, we use the method relies on the DNN posterior
probabilities to associate confidence measures [28], [29].
We get the posterior probabilities according to Platt’s method
with the support vector machines (SVM) [33], [34]. Then two
different sampling schemes, based on the posterior proba-
bilities, are implemented: 1) (BT) algorithm [28] and MBT
algorithm [29].

BT active learning algorithm is based on the posterior
probabilities to achieve diversity in the sampling. In a multi-
class setting, BT tries to improve the difference between
the two highest posterior probabilities, thus improving the
classification confidence. The decision criterion is

x̂BTi = argmax
xi,i∈Su

{
max
k∈L

p
(
yi = k|xi

)
− max

k∈L\{k+}
p
(
yi = k|xi

)}
.

(8)

where s = {1, 2, . . . , n denotes a set of ECG heart-
beats; the L = {1, 2, . . . ,K is the set of K labels; x =
{x1, x2, . . . , xn ∈ Rd×n denotes the d-dimensional feature
vectors; y = {y1, y2, . . . , yn ∈ L

n is the set of ECG heartbeat
labels; and k+ = argmax

k∈L
p
(
yi = k|xi

)
is the most probable

class for sample xi.
To obtain more diversity in the composition of the training

set, BT criterion focuses on the boundary region between
two classes. Although the BT performance well, it may still
induce biased sample when there are a large number of sam-
ples located close a boundary.

To promote the diversity in the sampling process,
Li et al. [29] proposed the MBT active learning. For a given
s ∈ L , let SUs ⊂ Su be the set of samples such that
p
(
yi = s|xi

)
≥ p

(
yi = k|xi

)
, for i ∈ SUs and s 6= k . Then,

the MBT criterion simply works as follows:
do
s = next class
select SUs

x̂MBTi = argmax
xi,i∈SUs ,k∈L\{s}

{
p
(
yi = k|xi

)}
, (9)

while stop rule.
Where the ‘‘next class’’ is chosen by scanning the index set

L in a cyclic fashion.

IV. EXPERIMENTAL RESULTS
A. DATASET DESCRIPTION
In this study, we used the well-known MIT-BIH arrhythmia
database to perform the assessment of proposed approach to
classify the ECG. Then we used the ECG data obtained from

TABLE 1. The class distribution in the two databases.

the wearable device to validate the performance of proposed
approach. The details of the two databases are described
as follows. Table 1 shows the class distribution in the two
databases.

1) MIT-BIH ARRHYTHMIA DATABASE (MIT-BIH)
This database contains 48 recordings, and each recording
contains two-lead ECG signals for approximately 30-min
long of 47 subjects. The ECG signals are band-pass filtered
at 0.1-100 Hz and then sampled at 360 Hz. This database
contains annotation for both timing information and beat
class information confirmed by independent experts. In our
study, 44 recordings (serial number: 101, 100, 103, 105,
106, 108, 109,111, 112, 113, 114, 115, 116, 117, 118, 119,
121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 208, 209,
210, 212, 213, 214, 215, 219, 220, 221, 222, 223, 228,
230, 231, 232, 233, 234) from the MIT-BIH arrhythmia
database are used, excluding 4 recordings (serial number:
102, 104, 107, 217), which contain paced heartbeats. The
first 20 recordings (serial number: 100–124), which include
representative samples of routine clinical records, are utilized
to select representative beats to be included in the common
training data. The remaining 24 used records (serial number:
200–234) contain uncommon but clinically important
arrhythmias, such as ventricular, junctional, and supraven-
tricular arrhythmias [35]–[37].

2) THE DATABASE OBTAINED FROM THE
WEARABLE DEVICE (WDDB)
This database consists of 75 recordings of approximately
30 min and sampled at 200 Hz. These recordings were col-
lected from 60 coronary artery disease patients (31 men and
29 women, age range 28 to 75 years). The beat type annota-
tions of the recordings were performed by the 8000 Holter
scanner and then reviewed and corrected by three medical
students.

B. EXPERIMENTS SETUP AND
PERFORMANCE EVALUATION
All of the ECG data in both of the two databases are prepro-
cessed firstly. The preprocessing of the data includes filtering
wave and denoising. All of the ECG signals are removed P
wave and QRS complex by using a 200 ms width median
filter. And the T wave is removed by a 600 ms width median
filter. The original signals subtract the resulted signals to
yield the baseline-corrected ECG signals. Then we remove
the power-line and high-frequency noise by a 12-order low-
pass filter with a 35Hz cut-off frequency.

Similar to [26] and [38], the training set contains the ECG
from 22 recordings (101, 106, 108, 109, 112, 114, 115, 116,
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TABLE 2. The results of classification in terms of VEB (11 testing records) and SVEB (14 testing records) of MIT-BIH.

118, 119, 122, 124, 201, 203, 205, 207, 208, 209, 215,
220, 223, 230). To evaluate the performance of the proposed
approach, the testing set includes bothMIT-BIH database and
the ECG data obtained from the wearable device. We present
the results in term of VEB (V class versus [N, S, and F])
and SVEB (S class versus [N, V, and F]) [18]. For MIT-BIH
database, we access the performance into three evaluation
datasets for building the test set: 1) using 11 test records
(200, 202, 210, 213, 214, 219, 221, 228, 231, 233, and 234)
for VEB detection and 14 test records (with the addition of
records 212, 222, and 232) for SVEB detection; 2) using
24 test recordings from 200 up to 234; and 3) using all of
the 44 recordings.

In order to achieve a suitable feature representation of
the ECG data, we use ECG morphology features and two
temporal features [18], [38]. We select the ECG morphol-
ogy features 100 ms before the R-peak and 450 ms after
the R-peak. The two temporal features are: 1) the Pre-RR
interval feature which is the distance between a current
R-peak and its previous R-peak; 2) the Post-RR interval fea-
ture representing the distance between the current R-peak and
the next R-peak. To extract these feature, we detect the QRS
bymeans of thewell-known ecgpuwave software available on
http://www.physionet.org/ physiotools/ecgpuwave/src/. As
the sampling rate of MIT-BIH database is different from the
sampling rate of the database obtained from the wearable
device, we resample all segmented ECG signals to the same
periodic length equal to 50 uniformly distributed samples.
The length of the ECG feature vector including morphology
and temporal features equals 52 for each beat.

The classification is evaluated using the standard mea-
sures: classification accuracy (Acc), sensitivity (Sen), speci-
ficity (Spe), and positive predictivity (Ppr) [18].

Since the range of sigmoid function is (0,1), we normalize
the ECG feature vector in the range of (0,1) firstly. Then

we pre-train the autoencoder. We setup the encoding part
architecture with 52 nodes in visible layer and 200 nodes in
hidden layer. The learning rate is 1. The epoch is 400, and
the batchsize is 10. The denoising parameter is 0.5. After
that, we initial the weight parameters to small values in the
range (-0.005, 0.005) randomly. To fine tune the DNN,we use
back-propagation algorithm. In the active learning phase, we
get the posterior probabilities using a 10-fold cross-validation
technique in the range (0, 0.5). We carry out the experiments
on a desktop with the following configuration: core i7, CPU
3.6 GHz, RAM 16 GB, and GPU Nvidia Quadro K620 2G.

C. THE RESULTS ON MIT-BIH DATABASE
Table 2 shows the result of classification in terms of VEB
(11 testing records) and SVEB (14 testing records) of
MIT-BIH database. When the active learning is not used in
the fine tune phase, the value of Acc, Ppr, Sen and Spe for
SVEB are 94.4%, 51.6%, 17.6% and 93.7%, respectively.
And the value of Acc, Ppr, Sen and Spe for VEB are 94.9%,
57.0%, 83.3% and 93.9%, respectively. Although the Acc and
Spe are quite high, the Ppr and Sen are quiet low, especially
for SVEB. When we add the active learning in the fine tune
phase, all of the four values are improved, especially the Ppr
and Sen. And these four values are increasedwith the increase
of the number of samples from the testing set to the training
set both in BT and MBT methods. And when the number of
samples increase to 300, all of these four values have reached
a quiet high level.

Table 3 and table 4 show the results of classification in
terms of VEB and SVEB using 24 testing records and 44 test-
ing records of MIT-BIH database, respectively. Similar to
table 2, the values of Acc, Ppr, Sen and Spe are also quite
low when the active learning is not added in the fine tune
phase, in terms of VEB and SVEB using 24 testing records
and 44 testing records of MIT-BIH database. When the active
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TABLE 3. The results of classification in terms of VEB and SVEB using 24 testing records of MIT-BIH.

TABLE 4. The results of classification in terms of VEB and SVEB using 44 testing records of MIT-BIH.

learning is added in the fine tune phase, all of the four values
are increased, especially the Ppr and Sen. The results in
tables 2-4 confirm that the performance of our proposed
method is better than the state-of-the-art methods.

Fig. 3 and Fig. 4 show the results of the classification for
SVEB and VEB using 44 records of MIT-BIH database with
different numbers of queries in both BT method and MBT
method. For each query, the expert labels 10 ECG beats from
the test set, and then these labeled beats are added to the
training set to update the weight of the SDAE through back-
propagation. As the figures shown, all of the four param-
eters are increased with the increase of the queries. After
10 queries, all of the four parameters reach a quiet high level
for SVEB and VEB in both BT method and MBT method.

D. THE RESULTS ON WDDB DATABASE
To estimate the generalization ability of the proposed
approach, we repeat the experiments on theWDDB database.

As mentioned in the 4.2 section, we use 22 records of MIT-
BIT database as the training set, and use the WDDB database
as the test set. The results of classification in terms of SVEB
and VEB using testing records of WDDB database are shown
in table 5. As the table 5 shown, the values of Acc, Ppr, Sen
and Spe do not perform well without the active learning in
the fine phase both for SVEB (92.2%, 43.1%, 42.5% and
92.9%, respectively) and for VEB (93.3%, 52.1%, 49.2% and
93.1%, respectively). When the active learning is added in
the fine tune phase, the values of Ppr and Sen are meliorated
on a large extent. After adding 300 samples in BT method,
the four parameters reach 99.8%, 95.8%, 93.7% and 99.9%
for SVEB, and 99.8%, 98.3%, 97.4% and 99.9% for VEB.
Similarly, when 300 samples are added in MBT method, the
four parameters are up to 99.8%, 95.3%, 94.3% and 99.9%
for SVEB, and 99.8%, 98.4%, 98.2% and 99.9% for VEB.
Fig. 5 and Fig. 6 show that the four parameters vary with the
number of the queries for SVEB and VEB, respectively.
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TABLE 5. The results of classification in terms of VEB and SVEB using testing records of WDDB database.

FIGURE 3. The results of classification in terms of SVEB using 44 testing
records of MIT-BIH.

FIGURE 4. The results of classification in terms of VEB using 44 testing
records of MIT-BIH.

E. THE RESULTS OF THE CLASSIFICATION WITH
DIFFERENT LAYERS ON BT METHOD
To explore influence of the layers of the DNN on the per-
formance of the proposed method, we repeat the above

FIGURE 5. The results of classification in terms of SVEB on the WDDB
dataset.

FIGURE 6. The results of classification in terms of VEB on the WDDB
dataset.

experiments with configuration of different hidden layers.
We set the number of hidden layers to 2, 3, 4, and use {200,
100}, {200, 100, 200} and {200, 100, 200, 100} nodes in each
hidden layer, respectively. Fig. 7 and Fig. 8 show the results
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FIGURE 7. The classification results in terms of SVEB obtained by BT
method with multiple hidden layers on: (a) 44 recordings of MIT-BIH and
(b) WDDB database.

FIGURE 8. The classification results in terms of VEB obtained by BT
method with multiple hidden layers on: (a) 44 recordings of MIT-BIH and
(b) WDDB database.

on different hidden layers on the two databases. The results
show that one and two hidden layers in the DNN have better
performance. And we find that the performance of the DNN
does not improve along with the number of the hidden layers
increased.

V. DISCUSSION
In this study, a deep neural network (DNN) is proposed to
classify the ECG signals automatically. We learn a suitable
feature representation using SDAE with sparity constraint.
In order to classify the ECG signals, the learned feature
representation is fed to a softmax regression. To fine tune
the DNN, the active learning is used in the fine-tuning phase.
We apply the DNN on the well-knownMIT-BIH database and
the database obtained from the wearable device. To assess the
results of the proposed method, Acc, Ppr, Sen and Spe are
used to evaluate the performance. Our results show that the
generalization capabilities of the DNN proposed in this paper
are acceptable.

In our experiments, we compare our proposed approach
with adaptive system [38], ‘‘mixture-of-experts’’ (MOE)
approach [7], using feature extraction based on principal
component analysis (PCA) [20], Block-based neural net-
works [19] and 1-D CNN [26]. Chazal and Reilly [38] used
MIT-BIH database to evaluate their adaptive system. As the
table 2 shown, when they added 500 samples in the adaptive
system, the Acc, Ppr and Sen reached 95.9%, 47% and 87.7%
for SVEB and 99.4%, 96.2% and 94.3% for SVEB, respec-
tively. Their results are close to our results in terms of VEB,
but our results outperform their results for SVEB. Hu et al.
used ‘‘mixture-of-experts’’ (MOE) approach [7] to classify
11 recordings of MIT-BIH database for VEB. Our results

(99.8%, 98.7%, 98.3% and 99.9% on BT) exceeds their
results (Acc 94.8%, Ppr 75.8%, Sen 78.9% and Spe 96.8%).
Ince et al. [20] extracted the feature representation using
wavelet transform and PCA, and then they classified the
ECG by artificial neural networks. Our results surpass their
results in all of the three evaluation datasets on the MIT-BIH
database. Jiang and Kong [19] utilized the block-based neural
networks to classify the ECG signals and elevated the results
on MIT-BIH database. As the table 2 and table 3 shown,
our results outperform the results in their experiments. 1-D
CNN was used for both feature extraction and classification
of the ECG data onMIT-BIH database [26]. In all of the three
evaluation datasets on the MIT-BIH database, our results are
better than their results. The results show that our approach
outperforms the state-of-the-art methods. Moreover, we also
elevate our approach on the ECGdata obtained from thewear-
able device. We use 22 recordings of MIT-BIT to train the
model, and in the fine-tuning phase, we add active learning.
When 300 samples are added into the training set from the
WDDB, the results of the classification also reach excellent
level.

The active learning procedure seriously plays a significant
role in improving the performance of ECG classification.
In both theMIT-BIH database and the database obtained from
the wearable device, we use the SDAE to learn a suitable fea-
ture representation of the ECG beat signals and classify them
with softmax regression. When the active learning procedure
is not added in the fine tune phase, although the Acc and Spe
present well, the Sen and Ppr are quite low both for SVEB
and for VEB in the two databases. However, when the active
learning procedure is added in the fine tune phase, the per-
formance of the classification is improved clearly, especially
the Sen and Ppr. Active learning reduces the experts’ labeling
efforts in classifying the ECG signals. In order to select the
most useful samples that can improve the model, BT [28]
and MBT [29] methods are used in the active learning phase.
Both of the two methods try to find the most ambiguous
samples and give them to an expert for labeling. Then these
labeled samples are used to retrain the classification model.
Both BT and MBT are based on DNN posterior probabilities.
In the BT method, the difference between the two DNN
posterior probabilities is calculated. When the difference is
small, it implies the classification confidence is low. Then the
samples with low difference are selected for labeling. As the
BT criterion focused on the boundary region between two
classes, it may produce biased sampling when there are a
large number of samples located close to a boundary. So we
add the MBT criterion in the active learning phase. Our
results show that both BT and MBT criterions obtain a quiet
outstanding performance.

Indeed, the active learning improves the model
performance. As a cost, it also increases the computational
complexity of the system. In the active learning phase,
the training process need provide posterior probabilities.
To get the posterior probabilities, we train SVM according
to Platt’s method [33], [34]. When we train SVM, we select
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radial basis function as the kernel function and use grid search
method to get the suitable parameters. Then we use BT and
MBT criterions to select the most useful samples from the test
set and then add these samples to the training set. After that,
we utilize SDAE with sparsity constraint to learn an adequate
feature representation and classify the ECG signals according
to the AAMI standard by the softmax regression layer. Both
training SVM and training SDAE enhance the computational
complexity of the system.

Furthermore, we also investigate whether the number of
hidden layers of the DNN has an impact on performance of
the proposed method. As Fig. 7 and Fig. 8 shown, when we
increase the hidden layers, the performance of our proposed
approach does not improve. On the contrary, the performance
of the model is reduced with the increase of hidden layers.
On the other hand, the increase of hidden layers also raises
the computational complexity of the system.

Notwithstanding the performance of our study is outstand-
ing, we should interpret the limitations of our study. Firstly,
the preprocessing of the ECG signals is simple. We just use
median filter to remove the noise, and use low-pass filter
to eliminate the power-line and high-frequency noise. When
the signal noise is not serious, the simple method can play
the role of filtering. However, when the noise is intricate,
this method is difficult to eliminate noise effectively. Then
it can have an adverse effect of the subsequent ECG feature
extraction. Moreover, we only use morphology and temporal
features as the feature vector. This method ignores the feature
values of ECG signal in the frequency domain, and it may
result in loss some useful information. Although the fact that
the results are very outstanding, we believe that there is still
a space for improving the performance by using other deep
learning techniques and more feature representation both in
time domain and frequency domain. We leave these methods
as future work.

VI. CONCLUSION
In this study, an automatic wearable ECG classification and
monitoring system with SDAE is presented. We use SDAE
to learn the ECG feature representation, and classify the
ECG beat by softmax regression. To elevate the performance
of the system, active learning is added in the fine tuning
of the DNN. In the active learning, the most informative
samples are selected by BT andMBTmethods. The results of
the classification on the MIT-BIH arrhythmia database show
that both the SVEB and the VEB detections outperform the
most of state-of-the-art methods. Moreover, on the WDDB
database, it also has an outstanding performance. It suggests
that the proposed approach is an effective and robust method
to classify the ECG signals.
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