SPECIAL SECTION ON FAIRNESS IN FUTURISTIC WIRELESS NETWORKS: APPLICATIONS,

IMPLEMENTATION, ISSUES, AND OPPORTUNITIES

IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received January 8, 2018, accepted February 9, 2018, date of publication February 21, 2018, date of current version March 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808324

A Survey on Resource Management in

loT Operating Systems

ARSLAN MUSADDIQ', YOUSAF BIN ZIKRIA!, (Senior Member, IEEE), OLIVER HAHM?,
HEEJUNG YU', ALI KASHIF BASHIR “3, (Senior Member, IEEE), AND SUNG WON KIM"'!

! Department of Information and Communication Engineering, Yeungnam University, Gyeongsan 38541, South Korea

2Zuehlke Engineering GmbH, 65760 Eschborn, Germany

3Faculty of Science and Technology, University of the Faroe Islands, 100 Faroe Islands, Denmark

Corresponding author: Sung Won Kim (swon@yu.ac.kr)

This work was supported by the 2017 Yeungnam University Research Grant.

ABSTRACT Recently, the Internet of Things (IoT) concept has attracted a lot of attention due to its capability
to translate our physical world into a digital cyber world with meaningful information. The IoT devices
are smaller in size, sheer in number, contain less memory, use less energy, and have more computational
capabilities. These scarce resources for IoT devices are powered by small operating systems (OSs) that
are specially designed to support the IoT devices’ diverse applications and operational requirements. These
IoT OSs are responsible for managing the constrained resources of IoT devices efficiently and in a timely
manner. In this paper, discussions on IoT devices and OS resource management are provided. In detail,
the resource management mechanisms of the state-of-the-art IoT OSs, such as Contiki, TinyOS, and
FreeRTOS, are investigated. The different dimensions of their resource management approaches (including
process management, memory management, energy management, communication management, and file
management) are studied, and their advantages and limitations are highlighted.

INDEX TERMS Internet of Things, operating systems, resource management, Contiki, TinyOS, FreeRTOS.

I. INTRODUCTION
The demands on Internet of Things (IoT) technologies have
grown rapidly due to the various application fields and
the advancements in wireless communications technolo-
gies [1], [2]. The term things in the Internet of Things
is a piece of equipment having a sensing, actuating, stor-
age, or processing capability. These devices possess unique
characteristics, i.e., little memory, reduced battery capacity,
and limited processing power [3]. The IoT has great potential
to impact our lives in the future. From home automation
to healthcare systems, the IoT has numerous applications
to improve industries and society by enabling smart com-
munication between objects and devices in a cost-effective
manner [4], [5]. Therefore, it is predicted that there will be
about 50 billion IoT devices by 2050 [6]. Due to the expan-
sion of IoT networks in the last decade, various hardware
platforms have been developed to support IoT sensors and
actuators. Similarly, a number of operating systems (OSs)
have gradually been developed to run these tiny sensors [7].
Various IoT communications standards have emerged
from different organizations. For example, the Internet
Engineering Task Force (IETF) [8], the International

Telecommunication Union-Telecommunication (ITU-T) [9],
the Institute of Electrical and Electronics Engineers (IEEE),
the European Telecommunications Standards Institute
(ETSD) [10], the International Organization for Standard-
ization (ISO) and the International Electrotechnical Com-
mission (IEC) [11], One Machine-to-Machine (M2M) [12]
and the 3rd Generation Partnership Project (3GPP) [13]
are actively working to provide efficient IoT communi-
cations protocols. The IETF currently has various work-
ing groups (WGs) that deal with IoT-related protocols on
any layer above the link layer (e.g., at the network layer).
The IETF Routing over Lossy and Low-Power Network
(ROLL) WG (RFC 6550) [14] is focused on providing
standardization of the IPv6 Routing Protocol for Low-Power
and Lossy Networks (RPL). Similarly, the IETF IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN)
(RFC 4944) [15] works on IPv6 networking protocol opti-
mization using IEEE 802.15.4. The IETF 6loBAC WG
(RFC Ed Queue) [16] provides specifications for transmis-
sion of IPv6 packets on master-slave/token-passing (MS/TP)
networks. The IETF 6TiSCH Operation Sublayer (6TOP)
WG (RFC Ed Queue) [17] defines the mode of operation

2169-3536 © 2018 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 6, 2018

Personal use is also permitted, but republication/redistribution requires IEEE permission. 8459

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-2601-9327
https://orcid.org/0000-0001-8454-6980

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

for IPv6 using an IEEE 802.15.4e (6TiSCH) network. Data-
gram Transport Layer Security (DTLS) in a Constrained
Environment (DICE) was drafted by the IETF WG DICE
(RFC 7925) [18]. At the application layer, the IETF Con-
strained Application Protocol (CoAP, RFC 7252) provides
web services to constrained devices [19]. Concise Binary
Object Representation (CBOR, RFC 7049) provides binary
representation of structured data [20]. The Object Signing
and Encryption (COSE) WG (RFC Ed Queue) focuses on
creating CBOR-based signing and encryption formats [20].
Application layer security for data exchange with CoAP using
the COSE format is provided by IETF’s Object Security of
CoAP (OSCoAP, RFC 7744) [21].

Similarly, ITU-T provided an overview of the IoT and
its reference model [22]. ITU-T Task Group 15 (TG-15)
is working on smart grid communications aspects of the
IoT [23]. Similarly, ITU-T TG 17 is focusing on secu-
rity and identity management aspects of the IoT [24].
An ISO/IEC joint technical committee does not develop
standards but it provides current and future IoT trends and
requirements [25]. The IEEE defines an architectural frame-
work for the IoT [26]. The IEEE P2413 working group
provided a description of “various IoT domains, definitions
of IoT domain abstractions, and identification of common-
alities between different IoT domains” [27]. The IoT IEEE
802.15 working group is dealing with medium access con-
trol (MAC) and physical layer specifications for wireless
personal area networks (WPANS), a mesh topology capa-
bility in WPANSs, and short-range wireless optical commu-
nications using visible light. ETSI has developed a low-
throughput network (LTN) as a wide area network (WAN)
for the IoT [28]. One M2M is a standardization body that
consists of eight world standard development organizations.
Their goal is to develop a common standard for M2M com-
munications. 3GPP is also working to meet IoT requirements
[29]. LTE Release 12 [30] from 3GPP provides a power-
saving mode and a lower overhead signaling procedure to
provide energy efficiency [31]. An IoT OS should be flexible
enough to support these protocols without violating the needs
of resource-constrained tiny devices.

IoT devices have limited memory and power and require
real-time capabilities in some scenarios. Additionally, they
should support heterogeneous hardware along with efficient
connectivity and security mechanisms [32]. Connecting and
operating this huge number of devices in an efficient way
is one of the most important design goals for the research
community. In an IoT system, the fundamental research issue
is to manage the available resources in an ordered and con-
trolled manner. The ultimate objective of an IoT resource
management mechanism is to satisfy [oT device requirements
efficiently [33].

IoT devices are classified into two general categories; i.e.,
high-end IoT devices and low-end IoT devices [7]. High-
end devices contain more processing power and energy, such
as smartphones and Raspberry Pi. The low-end devices,
on the other hand, are too resource-constrained. Therefore,

8460

a traditional OS, such as Linux, cannot run these small
resource-constrained devices. Hence, the IoT cannot achieve
its full potential until there is a de facto standard OS providing
support to run these low-end devices across a heteroge-
neous network [6]. Moore’s law [34] is not applicable to
IoT devices in terms of processing power. However, it can
be applied to device size and energy efficiency [35]. The
low-end devices possess very little random access mem-
ory (RAM) and few processing capabilities. The IETF [8]
developed the IPv6 over Low-power Wireless Personal Area
Networks (6LoWPAN) standard adaptation layer to enable
low-power low-data-rate communications [36]. These
devices also require real-time capabilities in scenarios like
vehicular communications, health care systems, and factory
automation and surveillance applications. Providing commu-
nications with energy efficiency and reliability is the main
objective of the IoT. IoT low-end devices contain small
amounts of memory and little processing power. Therefore,
in order to satisfy low-end device resources, choosing a
suitable lightweight OS is of vital importance. Several OSs
have been proposed by numerous companies that offer a
different approach to fundamental problems.

The future IoT environment needs to handle and perform
tasks independently. Similarly, an ultra-dense network yields
computational complexity. In order to cope with IoT low-
end—device challenges, such as limited resources, and dis-
tributed and dense environments, there is considerable need
for an efficient resource management mechanism in an IoT
OS [37]. An IoT OS is primarily responsible for managing
the device’s resources efficiently. Various OSs have presented
different solutions to satisfy low-end devices’ resource needs.
To achieve this goal, various mechanisms are provided by
the different OSs to provide proper functioning of sensing
nodes. Among various proposed OSs for low-end devices,
the Contiki [38], TinyOS [39], and FreeRTOS [40] are most
prominent for operating in a resource-starved network. IoT
low-end devices usually operate with limited battery power.
Consequently, providing an energy-efficient OS is of the
utmost importance [41]. These low-end devices transfer the
sensed data using a communications protocol. In order to be
energy-efficient, the communications protocols should save
the maximum amount of energy. Protocols at the transport
layer, MAC layer, and network layer need to be energy-
efficient [42]-[44].

IoT devices require computational capabilities for their
sensing operations. These constrained sensing motes do not
offer extensive memory and processing capabilities (usually
100 kB flash memory and 10 kB RAM). For example, Cross-
bow’s Telos B mote provides only 10 kB of RAM and 48 kB
of flash memory. Due to this limitation, IoT devices need
to manage their resources efficiently. Additionally, densifica-
tion, randomness, and uncertainty make IoT device resource
management a challenging task. An OS acts as a resource
manager for this complex IoT system [32]. To handle the
limited processing power and memory, an OS requires an
effective process and memory management mechanism. IoT

VOLUME 6, 2018

A. Musaddiq et al.: Survey on Resource Management in loT OSs

IEEE Access

devices are battery-operated and are mostly deployed in
remote environments. Thus, energy management provided by
an OS is highly important. The main objective of an IoT
system is to provide a sensing operation and transfer the
sensed data to the base station for further processing. The
communications design, signal processing, data reception,
data transmission, and radio sleep/wake mechanism need to
be efficient in terms of energy and communications. IoT OSs
store, catalog, and retrieve the data using a file system. There-
fore, the provision of an efficient, robust, and appropriate file
system is highly desirable in IoT OSs.

Moreover, an IoT OS should be highly concurrent to
support these low-end—device sensing operations. Hence,
the importance of efficient resource allocation in the OS
for low-end devices motivates us to write this paper. In this
paper, we consider the IoT low-end device resource manage-
ment solutions offered by various OSs. To the best of our
knowledge, this is the first paper that encompasses detailed
information about the resource management mechanisms in
Contiki, TinyOS, and FreeRTOS. Various resource manage-
ment operations, including process management, memory
management, energy management, communications manage-
ment, and file management (and their advantages) are dis-
cussed in order to make the low-end devices more and more
resource-efficient and flexible. Thus, this study has taken
all the resource management mechanisms into considera-
tion. A list of abbreviations is provided in Table 1, whereas
Table 2 provides a comparison of this study and already
existing surveys on tiny sensor device OSs.

The contributions of this paper compared to the recent
literature in the field are as follows.

a. It provides a literature review related to IoT OSs.

b. It covers the resource management aspects of Contiki,

TinyOS, and FreeRTOS, including:
e process management
e memory management
e energy management
e communication management, and
« file management
c. It provides future research directions and challenges in
resource management of IoT OSs.
The remainder of this paper is structured as follows. Section II
provides an overview of related work. Section III discusses
resource management classifications in detail. Section IV
provides open research issues and recommendations, fol-
lowed by Section V, which concludes the paper.

Il. RELATED WORK

Over the years, several OSs for the IoT have emerged.
Contiki, TinyOS, and FreeRTOS emerged as predominant
OSs to provide support to IoT devices. This section dis-
cusses the recent survey papers related to IoT OSs, e.g.,
Hahm et al. provided a detailed analysis of various require-
ments to satisfy low-end IoT devices [7]. The survey dis-
cussed various OSs that could become the de facto standard.
OSs in this survey are categorized into three types, including

VOLUME 6, 2018

TABLE 1. List of abbreviations.

Symbols Description

3GPP 3rd Generation Partnership Project

6LoWPAN Low-power Wireless Personal Area Networks

6TOP 6TiSCH Operation Sublayer

AEON Accurate Prediction of Power Consumption

BVR Beacon Vector Routing

CBOR Concise Binary Object Representation

CCA Clear Channel Assignment

CFS Coffee File System

CH Cluster Head

CoAP Constrained Application Protocol

COSE Object Signing and Encryption

DICE DTLS in Constrained Environment

DIO DODAG Information Message

DODAG Destination-oriented Directed Acyclic Graph

DSVR Destination Sequence Vector Routing

DTLS Datagram Transport Layer Security

DYMO Dynamic MANET on Demand

EATT Energy-aware Target Tracking

ELF Efficient Log-structured Flash

ERTP Energy-efficient and Reliable Transport Protocol

ETSI European Telecommunications Standards Institute

HAL Hardware Abstraction Layer

HDRTP Hybrid and Dynamic Reliable Transport Protocol

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

ISO/IEC International Organization for Standardization and
International Electrotechnical Commission

ITU-T International Telecommunication Union-
Telecommunication

LAD Location Aided Routing

LEACH Low Energy Adaptation Clustering Hierarchy

LPL Low Power Listening

LTN Low Throughput Network

MS/TP Master-Slave/Token-Passing

OF Objective Function

OSCoAP Object Security of CoAP

POSIX Portable Operating System Interface for Unix

RCRT Rate Controlled Reliable Transport Protocol

ROLL Routing over Lossy and Low-Power Network

RPL Routing Protocol for Low-Power and Lossy
Networks

STCP Stream Control Transmission Protocol

STI Software Thread Integration

TORP TinyOS Opportunistic Routing Protocol

TOS-PRO TinyOS Preemptive Original

TOSSTI TinyOS Software Thread Integration

TOSThread TinyOS Thread

UTOS Untrusted Extension for TinyOS

event-driven OSs, multithreading OSs, and pure real-time
operating systems (RTOSs). Along with the key design
choices, the characteristics of each category are presented

8461

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

TABLE 2. Overview of comparison between this study and available surveys.

Approaches Key Concepts This Study Hahm et al. Amjad et al. Strazdins et Reusing et al. | Farooq et al.
7] [47] al. [50] [51] [53]
C T F C|T F C | T F C|T F C T |F|C T F
Process Programming v v v NARV4 v v v v v v v
Management Model
Scheduling v v v VIV v v v v v v
Model
Memory Memory v v v v v v v v v
Management Allocation/De-
allocation
Memory v v v v v v v
Fragmentation
and Safety
Energy Software-level v N4 v N4 NARVA N4
Management Energy
Management
Energy Tracking v v v v
Communication Supported MAC | v v v v v
Management Layer Protocols
Supported v v v v v v v v
Network Layer
Protocols
Supported v v |V v v |V
Transport Layer
Protocols
File Storage v v v v v
Management Abstraction
File Storage and | N4 v N4 N4
Organization

C: Contiki, T: TinyOS, F: FreeRTOS

in the study. Based on the key design choices and low-end
device requirements, the most prominent OS representing
each category is identified.

Similarly, Amjad et al. discussed several aspects of TinyOS
design in detail [45]. This survey encompassed the design
paradigm and main features of TinyOS. It has event-driven
concurrency, a programming layout based on NesC (a dialect
of the C programming language), a monolithic architecture,
and a non-preemptive task scheduler. TinyOS memory man-
agement, energy management, and energy-efficient commu-
nications protocols were presented. TinyOS uses a software
thread integration (TOSSTI) mechanism for energy conserva-
tion, which helps an OS utilize busy—wait time in an efficient
manner [46]. Similarly, an energy tracking mechanism is
also utilized by TinyOS [47]. To maintain network stability
and lifetime, TinyOS supports several communications pro-
tocols at the transport layer, MAC layer, and network layer.
In addition, simulators for TinyOS and its various sensing
applications are also discussed in the paper.

Strazdins et al. surveyed wireless sensor network (WSN)
deployments and analyzed the collected data to study the
design rules for a WSN OS using 40 deployment scenar-
ios [48]. Deployments from 2002 to 2011 are reviewed to
study different WSN applications, including environmen-
tal monitoring, animal monitoring, human-centric applica-
tions, infrastructure monitoring, smart buildings, and military
applications. The authors studied Contiki, TinyOS, LiteOS,
and MansOS, and proposed 25 design rules. The rules

8462

include suggestions related to the task scheduler, networking
protocol, and energy-efficiency mechanism.

TinyOS and Contiki are the two best-known OSs for low-
end devices. A comparison between these two OSs is pre-
sented in a survey by Reusing [49]. The main requirements
an OS should fulfill for a sensor network include concur-
rency, flexibility, and energy efficiency [50]. The contrast
between TinyOS and Contiki is shown based on these require-
ments. Special emphasis was placed on a programming model
and execution model, along with the hardware platforms
supported by both OSs. This survey indicates that TinyOS
might be more useful in a resource-constrained environment,
whereas Contiki provides more flexibility in the network.

Farooq and Kunz highlighted major challenges for an OS
design, and identified the advantages and limitations in an
OS for a WSN [51]. For example, Contiki follows a modular
kernel concept. It is a layered approach in which application
modules are independent and can be linked with a kernel at
boot time. In this way, the kernel provides only core services,
while other services can be added when required. Hence,
it reduces the memory footprint and decreases boot time.
However, the kernel may crash due to modules that contain
bugs. Similarly, TinyOS follows a monolithic architecture
similar to Linux. The monolithic architecture helps to reduce
modular interaction costs. However, it may make the OS
unreliable and hard to maintain, because no clear boundaries
are provided between modules. The alternative is a microker-
nel architecture.

VOLUME 6, 2018

A. Musaddiq et al.: Survey on Resource Management in loT OSs

IEEE Access

Resource
Management
Process Memory Energy Communication File Management
Management Management Management Management 8
Supported MAC Supported Network
Features and Issues Features and Issues Features and Issues Layer Protocols Layer Protocols iuppm;ed‘Tralnsport F;aturesdand Issues
n b q " n ") ayer Protocols iscussed:
Discussed: Discussed: Discussed: Features and Issues Features and Issues Features and Issues e Storage
. Archltectur.e . Memm:y e Software and Discussed: Discussed: Discussed: Abstraction
s Programming Allocat'lon/De- Kernel Level —— |+ RadioDuty o Object Functions o Energy Efficient + File Storage and
LLOCH . 2liozatin Energy Cycling and DODAG TCP/IP Stack for Organization
. Scheduling . Memory Management . Sleep/Wake-up Construction 10T Low-End
Model Fragmentation . Energy Tracking i . Load. i Devices
VI
* Memory Safety s Energy Efficiency | |¢ Energy Efficient

FIGURE 1. Resources management classification.

FreeRTOS is an example of a microkernel structure which
provides robustness against bugs in the components. The
microkernel provides minimum functionalities to the kernel.
Hence, the kernel size is reduced significantly. All other func-
tions are provided by servers running at the user level. There-
fore, OS functionalities are extendable, and failure in one
user-level server does not crash the kernel itself. The disad-
vantage is poor performance due to user-to-kernel boundary
crossing. The OS architecture, programming model, schedul-
ing mechanism, memory management, and communications
protocol support a major design goal for an IoT OS. Along
with resource sharing, support for real-time applications is
of vital importance. It is pointed out that some OSs support
a priority application capability, whereas few provide real-
time applications. Some miscellaneous features, including
communication security, file system support, simulation sup-
port, and programming language, are also discussed.

Dariz et al. compared Contiki and TinyOS with a real-time
OS named ChibiOS to study the safety-relevant application
in a WSN [52]. Another OS called LiveOS was introduced
to conserve memory and energy for a WSN [53]. Over the
years, various OSs have emerged in the WSN community.
One of the critical issues for an OS is dealing with a large
number of resources to provide ubiquitous services to IoT
low-end devices [54]. In this study, we focus on three well-
known OSs: Contiki, TinyOS, and FreeRTOS. This study
aims to cover all the resource management aspects of a
low-end—device OS.

IlIl. RESOURCE MANAGEMENT CLASSIFICATION

OS provides a layer of abstraction for the hardware by manag-
ing the resources on each IoT device [55]. The OS provides
a programming interface and manages processor time. loT
devices operate in resource-constrained concurrent environ-
ments, and to handle this concurrent application, a suitable
execution model must be provided by OS. The execution
model must provide memory efficiency [56]. Similarly, OS
(being battery-powered) must provide a sleep mode when no

VOLUME 6, 2018

Routing Topology
* Sleep/Wake-up
Mechanism
. Energy Efficiency
. Packet Loss and
Congestion
Management

application is running [57]. Providing energy efficiency to
the communication components is more challenging for an
OS. The communication components must wake up during
a communication period. Therefore, an OS handles energy
efficiency during communication using various mechanisms,
for example, a separate radio duty cycling procedure [58],
a virtual carrier-sensing mechanism with a network alloca-
tion vector, and time-division multiple access (TDMA)-based
methods. Not all IoT devices have storage like flash memory.
Therefore, an appropriate file system is required to provide
storage needs for some applications. The file system needs
to efficiently map the data into sectors to make writing and
reading of data more efficient. Therefore, an OS must provide
a full file system interface [59], [60].

The communications needs of diverse applications are
handled by a communications architecture. Considering the
device’s resource scarcity, the communications protocols
must be energy- and memory-efficient during data collection,
event detection or tracking, device synchronization, neigh-
bor discovery, and data delivery [61], [62]. To address the
resource management challenges for low-end IoT devices,
various resource management mechanisms and schemes have
been proposed. These resource management schemes fall into
five subsections.

The flow chart of resource management in OS for low-end
devices is shown in Figure 1.

A. PROCESS MANAGEMENT
In the context of resource management, the kernel manages
processes and threads to share information, protect process
resources, and assign system resources in a safe way. In the
IoT environment, multiple activities may occur during a cer-
tain time period. Managing these activities and processes by
fairly sharing resources is essential, and it depends on the OS
execution model.

The Contiki and TinyOS follow an event-driven execution
model to provide memory efficiency and low complexity of

8463

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

state machines in the event-driven TCP/IP stack [63], [64].
Event handlers continuously wait for internal or external
events, such as an interrupt. The kernel allocates the mem-
ory stack to the process, and an event handler follows the
run-to-completion mechanism. All the processes effectively
share the same stack and utilize limited memory efficiently.
Some events are queued and processed in first in, first
out (FIFO) fashion. The event-driven concurrency model
introduces certain complexities if multiple events occur. The
task in an event-driven model cannot be blocked during
run-time. Sometimes, time-critical tasks need to be exe-
cuted first. Therefore, real-time performance of the event-
driven approach is poor. Hence, an OS needs multiple event
handlers.

Low-end IoT devices offer only few kilobytes of RAM.
The multithreading approach allocates a stack of memory
to each thread even if the thread is not utilizing memory.
Hence, most of this memory is unused. Therefore, a more
effective hybrid model is required for better memory effi-
ciency and low programming complexity. The Contiki sup-
ports a novel, lightweight, stackless threading mechanism
called a protothread [65]. The protothread utilizes a multi-
threaded model without increasing multiple-stack overhead.
In an event-driven approach, the program runs to completion,
which is not desirable in some scenarios, especially in a
system where a high-priority task is present. A protothread
simplifies the event-driven programming model by providing
a conditional locking wait statement that enables a program
to execute a blocking wait without introducing an additional
stack for each protothread. Between the beginning and end
of each protothread, there is a conditional wait statement.
This conditional wait statement blocks the program if there
is an interruption. In other words, the thread is blocked only
if an explicit blocking wait statement is used. In this way,
the number of explicit state machines in the event-driven
approach is reduced, with memory overhead of only two bytes
per protothread. The protothread is a better alternative for
memory efficiency. However, providing process synchroniza-
tion between protothreads is not possible.

Sometimes blocking certain components may interrupt
the whole sensing application. TinyOS Thread (TOSThread)
is a complete implementation of a preemptive application-
level thread library to achieve maximum concurrency without
increasing resource usage [66]. TOSThreads categorize all
event-based code into kernel-level threads and application-
level threads. Kernel-level threads are given the highest pri-
ority, and cannot be interrupted by application-level threads.
An application-level thread makes a system call applica-
tion programming interface (API) that does not interrupt the
TinyOS code itself; rather, it sends a message to the kernel
thread. Application-level threads execute only if kernel-level
threads are not active. The basic architecture of a TOSThread
is shown in Figure 2. The overall structure consists of five ele-
ments: a single kernel-level thread, a number of application-
level threads, a task scheduler, a thread scheduler, and
system-call APIs. A number of application threads run

8464

System Calls

Application Threads

C
C

Task Scheduler

TinyOS Threads

Thread Scheduler

FIGURE 2. TOSThreads architecture (adapted from [66]).

concurrently and make a call to the kernel-level threads
through API slots. The thread scheduler provides con-
currency between application-level threads and system-call
APIs. TOSThread provides a preemptive behavior to TinyOS
but increases the computational complexity. To provide pre-
emptive execution in a simple manner, the TinyOS pre-
emptive original (TOS-PRO) approach was introduced [67].
This approach provides increased flexibility for scheduling
without introducing extra complexity into TinyOS.

FreeRTOS is based on a microkernel architecture and
utilizes a multithreading approach [68]. Each process can
be interrupted, and the scheduler can switch between
threads [69]. It provides a real-time, preemptive multitasking
environment for low-end devices. It ensures execution of a
higher priority task in any given time period. If two tasks
are given equal priority, the scheduler divides execution time
between them. This execution follows a priority-based round-
robin implementation. The FreeRTOS kernel is structured
using four C files (task.c, list.c queue.c and croutine.c),
where fask.c provides scheduling functionalities by using
structures and functions in the list.c file. The queue.c file
provides a thread-safe queue to implement inter-task commu-
nication and synchronization, and croutine.c implements sim-
ple lightweight tasks [70]. The IoT OS process management
overview is given in Table 3.

B. MEMORY MANAGEMENT

Memory management provides techniques for allocating
and deallocating memory for various processes and threads.
OS offers two common methods for memory allocation,
i.e., static allocation and dynamic allocation. In static mem-
ory management, OS allocates memory to the system that
cannot be altered during run-time. But a dynamic manage-
ment technique provides flexibility in memory acquisition at
run-time. Static allocation cannot predict how much memory
will be needed, especially in real-time scenarios. Similarly,
memory over-provisioning may result in memory overhead.
With dynamic allocation, if the allocated memory is not freed,
it may result in a memory leak.

VOLUME 6, 2018

A. Musaddiq et al.: Survey on Resource Management in loT OSs

IEEE Access

TABLE 3. An overview of process management.

Relevant (O] Architecture | Category | Scheduling | Programming | Key Concept | Advantages | Limitations
References Language
[65], [67], Contiki Monolithic Event- Cooperative | C Protothread: Module Need proper process
Driven Provides interaction synchronization.
conditional cost is low.
locking wait
statement and
utilizes
multithreaded
model
without
increasing
multiple stack
overhead.
[66], [68], | TinyOS Monolithic Event- Cooperative | NesC TOSThreads: Provides Cannot provide
[69] Driven Categorizes maximum proper execution of
all event- | concurrency | abnormal tasks.
based code | without
into increasing
synchronous resources
(tasks) and | usage.
asynchronous
(interrupts)
execution
context.
[70], [71], | FreeRTOS | Microkernel Real-time | Preemptive | C Uses Time Cannot handle large
[72] microkernel tracking IoT system tasks.
to provide OS | mechanism
reliability. to disable a
periodic tick
is beneficial.

The memory size for sensor devices is constrained due to
the device’s physical size and the cost. Static memory con-
tains the program code, and dynamic memory contains run-
time variables, the buffer, and the stack. IoT low-end devices
as classified by IETF require about 10 kB of RAM and about
100 kB of flash memory. The Contiki C library provides a set
of functions for allocation and de-allocation of memory for
the heap. For example, the memb macro(), and memb_alloc(),
and memb_free() functions are used for memory declaration,
allocation, and de-allocation, respectively [71]. The memory
allocation function needs to handle memory fragmentation.
If memory is fragmented, allocation may fail to allocate all
the unused memory. The managed memory allocator function
mmem() in the Contiki frees the allocated memory from
fragmentation by compacting it when blocks are unused.
However, dynamic allocation may lead to stack overflow,
and requires more space. TinyOS is based on the NesC pro-
gramming language [72]. To cope with sensor node hardware
constraints, the language does not support dynamic memory
allocation, the program states and memory are declared at
compile time. In this way, memory fragmentation and run-
time allocation failure are prevented. Similarly, maintaining
an additional data stack to manage the dynamic heap is not
required [73]. In the earlier version of TinyOS, the basic
building block (i.e., memory safety) was not available [74].
However, new updates and revisions provided memory
safety and memory safety—check features. Safe TinyOS was

VOLUME 6, 2018

developed mainly to provide memory safety to sensor
nodes [75]. Similarly, Untrusted Extension for TinyOS
(UTOS) utilizes a sandboxing concept to provide enhanced
memory safety features, compared to Safe TinyOS [76].
To provide memory safety features to memory-constrained
devices, CCured is leveraged [77]. CCured provides ared line
that draws a boundary between trusted and untrusted exten-
sions. The untrusted extensions cannot access the hardware
and network resources directly. An extension communicates
with the rest of the system through a proper UTOS system call
interface. The extension is terminated if it violates the safety
model of the system. The CCured compiler inserts dynamic
safety checks before every operation.

Restarting an extension is still faster than rebooting a
TinyOS application. To make the memory more efficient,
unstacked C is used, which is a source-to-source transforma-
tion to translate a TinyOS multithread program into stackless
threads. Since these programs do not have a separate stack,
their memory overhead is reduced significantly. Dynamic
memory-like capabilities can be offered in TinyOS by using
a component named TinyAlloc through an interface called
MemAlloc. Additional memory management and capacity
are provided through a TinyPaging mechanism, which makes
use of flash storage [75]. TinyAlloc allows double referenc-
ing, which means that the memory region is referenced indi-
rectly through another array that contains it current address.
Hence, TinyAlloc can alter the memory address in the

8465

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

TABLE 4. An overview of memory management.

Relevant (O] Type Key Concept Advantages Limitations
References
[39], [51], | Contiki Dynamic MEMB() macro, memb alloc(), | Offers memory size, | Does not provide Memory
[73] memb_free() functions are used to | dynamically adjusting | Protection Unit (MPU).
declare, allocate and deallocate | capabilities for changing
memory. requirements during run-
mmem() function frees the memory | time.
from defragmentation.
[74], [75], | TinyOS Static/Dynamic | Program transformation system | Static allocation prevents | Does not provide memory
[761, [771, (CCured) is used to provide memory | memory fragmentation and | usage prediction. Memory
[78], [79] safety. run-time allocation failures. may get wasted if program
Unstacked C translates multithread is unused.
into stackless threads.
TinyAlloc component is used to
provide dynamic allocation
capability.
TinyPaging mechanism is used to
provide additional space.
[80], [81] FreeRTOS Dynamic pvPortMalloc() and vPortFree() | Offers several heap | Memory is not safe thread
funtions are used to provide three | management schemes, | nor deterministic.
heap implementations to allocate and | depending on the application
de-allocate. requirements.
Heap 1: Does not de-allocate the
allocated memory.
Heap_2: Frees the allocated memory.
Heap 3: Allocates and de-allocates
the memory similar to Contiki
mechanism.

intermediate array, and move the memory region freely with
in the heap. The MemAlloc interface in TinyAlloc returns
a pointer handle to the newly assigned memory region, and
also frees the memory region and returns the handle pointer
to allocated memory. Tinypaging uses virtual addresses. The
memory region is allocated a virtual address. Before using it,
a dereferencing function takes the virtual address and returns
the physical address for that memory. It also reduces the need
to use an additional intermediate array. Hence, Tinypaging
combines these concepts and works with virtual addresses to
exchange parts of memory into flash.

The additional threads in TinyOS that provide more exe-
cution and concurrency support may require more mem-
ory usage. Therefore, memory usage prediction is required
for TinyOS applications. With a real-time operating sys-
tem (FreeRTOS), the kernel allocates memory dynamically
for every event. The malloc() and free() functions are not
desirable in a real-time operating system due to the fact
that dynamic memory allocation has typically deterministic
run-times, needs extra code space, and suffers from mem-
ory fragmentation. To eliminate these problems, FreeRTOS
introduced two new functions: pvPortMalloc() and vPort-
Free() [78]. These functions provide three heap implemen-
tations for memory allocation, depending on the system
design [79]. Heap_1 does not allow de-allocation of memory
once it is allocated. It is suitable for a system where allocated
memory size always remains the same (for example, with
application tasks that do not vary with time and that are
created before the kernel is started). Heap_2, in contrast to
heap_1, allows previously allocated memory to be freed.

8466

It does not combine adjacent free blocks into a larger memory
block. This scheme is suitable for systems where tasks are
created dynamically. Heap_3 is similar to the malloc() and
free() function allocations, and make a safe thread. This
scheme is not memory-efficient, and may increase the kernel
code size. The memory management aspect of IoT OS is
summarized in Table 4.

C. ENERGY MANAGEMENT
IoT devices consume energy during sensing, data processing,
and data transfer. The management of limited energy has been
a key issue for these devices due to the fact that these sensors
are deployed mostly in remote environments and function
without human intervention. Therefore, OS should provide
an energy-efficient mechanism to prolong the life of an IoT
network [80]. The management of a limited energy budget is
rudimentary, and can be accomplished through both hardware
and software techniques [81]. Hardware-based approaches
require additional hardware, which increases system cost.
Software-based techniques are more practical, but may intro-
duce additional overhead. Energy efficiency can be achieved
through network protocol design and OS scheduling aspects,
e.g., sleep/wake and duty-cycle modes are employed in most
OSs to conserve energy [62]. Reducing energy consumption
through a software mechanism requires a comprehensive
view of the application at a different layer of the system, and
is an essential condition for OS.

The Contiki kernel offers no explicit power-saving mech-
anism. The applications provide a power-saving mode by

VOLUME 6, 2018

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

Mote Application

Transmit integrated with Processing

Mote Application with STI

Time —p

. Sensing

FIGURE 3. TinyOS software thread integration (TOSSTI) (adapted from [46]).

Processing Transmit Idle Integrated Code

TABLE 5. Predicted energy consumption (in mJ) and node lifetime for TinyOS 1.1.7 component (adapted from [82]).

Test Application CPU LEDs Sensor Board Total Energy Lifetime
Active Idle Rx Tx

Blink 0.37 601.6 0 0 196.2 - 798.2 25.8
CntToLeds 0.77 601.5 0 0 590.6 - 1193 17.4
CntToLedsAndRfm 93 560.7 1651 130 589.6 - 3025 6.9
CntToRfm 92.7 560.8 1651 130 0 - 2435 8.5
RfmToLeds 82.9 565.2 1727 0.6 589.0 - 2965 7.0
SenseToLeds 1.85 601 0 0 0' 126 728.8 28.5
SenseToRfm 4.39 560.3 1651 130 0 126 1937 10.7

utilizing an event queue size. The application can put the
CPU into sleep mode when the event queue is empty [63].
The Contiki network-level energy-saving mechanisms are
discussed in more detail in Section D.

TinyOS utilizes software thread integration (STI) for
energy conservation [46]. The node faces idle-busy time
during sensing, processing, and transmission. The idle time is
too short to perform traditional context switching. With STI,
the processor can reclaim this time to perform other useful
tasks, as depicted in Figure 3. Similarly, the processor can
boost battery life by switching to low-power mode sooner.
The TinyOS overall system response time also improves,
which supports higher priority task processing. In this way,
the scheduler can provide the effects of pre-emption at the
task level. Hence, it enhances the concurrency model of the
scheduler.

Allocating the energy dynamically by predicting the power
consumption of nodes can be helpful to conserve energy.
For example, accurate prediction of power consumption
(AEON) is an energy prediction tool for sensor nodes [82].
TinyOS application energy prediction based on AEON is
shown in Table 5. Table 5 shows the amount of energy
consumed by each component. For example, the radio con-
sumes most of the energy, thus, the CPU idle—active mode

VOLUME 6, 2018

duration can be altered to extend node lifetime. Similarly,
the TinyOS programming mode supports an energy-tracking
mechanism to track energy consumption of various compo-
nents. An energy-aware target tracking (EATT) algorithm is
implemented in TinyOS using a clustering and data aggre-
gation technique [83]. The tracking algorithm is executed by
the cluster head (CH) that performs data collection, aggre-
gation tracking, and result propagation to send the results to
the desired location. Through energy tracking optimization,
the number of CPU cycles can be minimized. However, this
mechanism is not suitable for mobile devices, and may intro-
duce additional memory usage. A distributed energy-aware
wake-up counter was tested in TinyOS to provide updated
link status in real time [84].

In an event-driven system, the threads of execu-
tions or tasks spend a portion of their time waiting for an
interrupt, or for a time period to expire. In FreeRTOS, these
tasks are referred to as being in a blocked state [85]. If all
the tasks are in a blocked state, FreeRTOS creates and runs
a task called idle task. Therefore, when the processor is idle,
it can go into power-saving mode. This is implemented in
FreeRTOS using an idle task hook function [86]. The idle task
is given the lowest priority, and the idle hook function gets
called only if there is no higher priority task available [87].

8467

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

TABLE 6. An overview of energy management.

Relevant References | OS Key Concept

Advantages Limitations

[65] Contiki Application-specific

conservation implementation.

energy

The applications provide a
sleep mode by observing
event-queue size.

No specific kernel-level power-
saving mechanism is provided.

[48], [84], [85], [86] TinyOS Software Thread Integration (STI). With STI, the processor can | This mechanism is not suitable for
Energy-Aware Target Tracking | boost battery life. mobile devices and may introduce
(EATT). The number of CPU cycles | additional memory usage.
can be minimized.
[88], [89], [90] FreeRTOS Tickless Idle. It disables a periodic tick | Introduces run-time overhead.

source for a period of time to
put the processor into deep
sleep mode for more energy
savings.

Hence, this function provides an automatic power-saving
mechanism to the FreeRTOS processor. This mechanism
may be beneficial in some scenarios, but if the frequency
of the ticks is too high, the processor will waste energy and
time in entering and exiting idle mode. Hence, the power
savings through this mechanism are not beneficial. Therefore,
to provide an appropriate power-saving mechanism, a tickless
idle technique was introduced [88]. Tickless idle is a power
management technique for FreeRTOS that provides more
power saving during processor idle states. It uses a time-
tracking mechanism to disable a periodic tick source for a
period of time to put the processor into deep sleep mode until
a higher priority external or kernel interrupt occurs. However,
it introduces run-time overhead. The energy management
aspects of IoT OSs is presented in Table 6.

D. COMMUNICATION MANAGEMENT

Providing seamless continuous and ubiquitous communica-
tion between IoT devices is the ultimate goal of an IoT
OS. IoT networking is complicated by the devices’ wireless
nature, heterogeneity, density, and diverse transmission pat-
terns [89]. Therefore, communications support at the MAC
layer, the transport layer, and the network layer impacts
overall IoT network performance. There is a plethora of
IoT communication protocols available in the literature [90].
Some of these protocols are widely accepted and standard-
ized. The IoT communications protocols should focus on
energy efficiency rather than providing higher throughput.
The networking stack for an IoT OS must support higher-level
services, including data dissemination and accumulation.
It also requires managing low-level services, including radio
management, queue management, and MAC support [91].
Apart from these requirements, there is a need to consider
the devices’ unique traffic characteristics, and consequently,
a need to manage the quality of service (QoS). For example,
in the smart metering scenario, devices periodically transmit
a small burst of data. A detailed tabular overview of commu-
nication management section is provided in Table 7.

1) CONTIKI SUPPORT FOR COMMUNICATION PROTOCOLS
The Contiki provides two networking stacks, i.e., a ulPv6 net-
stack and a Rime communications stack [92]. ulPv6 is the

8468

implementation of the TCP/IP protocol stack for eight-bit
microcontrollers, and can be configured with 6LowPAN,
RPL routing for low-power and lossy networks, User Data-
gram Protocol (UDP) and Constrained Application Pro-
tocol (CoAP) [93]. Similarly, the Rime communications
stack is designed for low-power radio. It supports single-
hop unicast, single-hop broadcast, and multi-hop commu-
nications. In multi-hop scenarios, Rime allows applications
to implement routing protocols other than the Rime stack—
implemented protocols. The Contiki network stack layer
model is shown in Figure 4. The Contiki network stack layer
is a little bit different than the traditional OSI layer. It covers
all the OSI layers; however, there is a radio layer, a radio duty
cycle layer, and a MAC layer present in between the network
layer and the physical layer [94].

a: CONTIKI SUPPORT FOR MAC LAYER PROTOCOLS
IoT resource management under a MAC protocol is usually
achieved in terms of energy efficiency [42]. The MAC proto-
col approach developed for a duty-cycle IoT aims to reduce
radio idle listening duration to minimize energy consumption.
Idle listening is the time the node spends listening to the
medium, even if no packet is present. The X-MAC protocol
is implemented in the Contiki, and it provides a low-power
listening mechanism [95]. If a node sends data, it transmits
a preamble. The receiver wakes up, detects the preamble,
and stays in the idle state to receive the data. In this basic
approach, the receiver stays in the wake-up state until the
preamble is finished, and it then starts the data- and acknowl-
edge (ACK)-packet exchanges (Figure 5). The receiver may
have woken up at the start of the preamble. This results
in wasted energy. X-MAC replaces the low preamble with
short strobe frames [96]. The receiver receives one strobe and
transmits a strobe-ACK. The sender then proceeds with data
transmission. Hence, a short preamble further decreases the
time and energy consumption. However, X-MAC wakes up
each node for a short active period in this procedure. The node
goes to sleep mode again after an active period, which is 5%
to 10% of the wake-up interval.

Contiki 2.4 introduced a carrier sense multiple access
(CSMA) MAC protocol that simply detects a collision and

VOLUME 6, 2018

A. Musaddiq et al.: Survey on Resource Management in loT OSs

IEEE Access

TABLE 7. An overview of communication management.

Relev | OS Commu Key Advantages Limitations

ant nication Concept

Refer Layer

ences

[97], Contiki MAC ContikiMA | Provides an excellent sleep/wake-up | Can face false and unnecessary wake-ups.

[98], Layer C mechanism. Phase-lock needs to be improved.

[100], X-MAC Provides better retransmissions and archives | No proper collision avoidance mechanism is

[102], higher PDR as compared to ContikiMAC. provided, i.e., it requires a CCA mechanism.

[105], As a result, the ETX is very high.

[106], CSMA- Provides a collision avoidance mechanism. If collision is detected; it does not pass this

[107], MAC information the upper layer, which may affect

[108], the overall routing operation.

[109], Network ContikiRPL | IPv6 forwarding table mechanism. ContikiRPL uses MRHOF as an OF, which is

[110], Layer not suitable in all application scenarios. The

[111], RPL protocol requires a proper routing metric

[112], and OF for parent selection. Interoperability is

[113] also required. Similarly, mobility is not
supported.

RERgp; For DODAG construction, it takes both the | Have not provided the overhead cost, load
residual energy ratio (RER) of the nodes and | balancing, and memory footprint information.
their battery discharge index (BDI).

BRPL Supports node mobility and varying traffic. Trickletimer adjustment is an issue, especially

in mobile node scenarios.
Transport | ulP Suitable for simple TCP and UDP scenarios. | Does not support multi-streaming and multi-
Layer homing features.
[60], TinyOS MAC TinyLPL Allows sleep/wake-up implementation with | May suffer from false alarms, including false
[114], Layer user-defined intervals. positives and false negatives in the presence of
[115], Uses short preambles for better energy | external interference and the hidden terminal
[116], efficiency. problem.
[117], MultiMAC | Introduces the concept of a virtual gateway, | Energy efficiency is more important than
[118], which allows sensor network interoperability | interoperability. LPL performs better in terms
[119], using heterogeneous MAC protocols. of energy utilization.
[120] Network | TinyRPL Implements an IPv6 stack based on | Similar to ContikiRPL, TinyRPL uses OF0 and
[121], Layer 6LoWPAN specifications. MRHOF for parent selection and routing
[122], construction, it is not a desired solution,
[123], considering diverse IoT applications and
[124], network scenarios.
[125], QU-RPL Achieves load-balancing in LLN networks. | The DIO overhead cost may result in overall
[127], Provides a congestion detection mechanism | delay in the large IoT network. Similarly, the
[128], for parent selection and better PRR. mentioned parent selection procedure does not
[129], take node energy into consideration in
[130], switching from one parent to another. In the
[131], same way, the Tickletimer resetting strategy
[132] depends on network size. Needs a more
efficient Tickletimer for better output. The last
problem is that it might not be suitable for
multimedia applications.
Transport | HDRTP, Unlike Contiki, TinyOS supports a variety of | Needs to provide a proper congestion control
Layer STCP, transport layer protocols, including HDRTP, | mechanism. Must implement TFRC and
ERTP, STCP, ERTP and RCRT. DCCP.
RCRT
[133], | FreeRTOS MAC FreeRTOS Offers three MAC implementations. CSMA MAC: May affect the routing
[134], Layer MAC CSMA-MAC: Provides a collision | operation.
[135], avoidance mechanism. TDMA-MAC: Useful | TDMA MAC: Requires tight time
[137] to handle a large number of nodes. synchronization and is very sensitive to
X-MAC: Provides low-power duty cycling. underlying mobility and topology changes.
X-MAC: No proper collision avoidance is
provided.
Network | 6LoWPAN | Provides an ICMP implementation along | Does not provide an RPL implementation.
Layer Nanostack with NanoMesh, which covers multiple
hops.
Transport | FreeRTOS FreeRTOS TCP/IP stack is based on ulP | FreeRTOS TCP/IP is still under development,
Layer TCP/IP and | which simplifies the TCP and UDP | features like multi-streaming and multi-homing
IwIP stack operation for low-end IoT devices. are not present yet.
IwlP is based on IPv6 and 6LoWPAN to
provide better energy management.

VOLUME 6, 2018

8469

IEEE Access

A. Musaddiq et al.: Survey on Resource Management in loT OSs

Application

Websocket.c, http-socket.c, coap.c

Transport
Network Layer

Udp-socket.c, tep-socket.c

Network, Routing

Uip6.c, rpl.c

Adaptation Sicslowpan.c
MAC Layer ¢——— MAC Csma.c
RDC Layer —— Duty Cycling Nullrd.c, contikimac.c
Radio Layer€—— Radio Cc2420.c

FIGURE 4. Contiki network stack (adapted from [94]).

I
I
Packet Arrival | |
Sender P P P A D
| 1 L
| Receiver wakes up Listen for additional data |
I
l TSave
Receiver | A D < _>|

Time

ACK Packet

Short
E Preamble A

Receive Data
Packet

D Send Data D

Packet

FIGURE 5. X-MAC medium access (adapted from [96]).

o ___[oTo]o ol ofolal
N ‘ak

Reception Send Data
Window Packet

Send ACK
Packet

A 4

Receive ACK
Packet

Receive Data
Packet

FIGURE 6. ContikiMAC mechanism of sending data packet (adapted from [97]).

retransmits the packets. However, this retransmission infor-
mation is not passed to the upper layers in order to save
computational costs. Hiding this information may affect the
overall routing operation. Therefore, a new power-saving
mechanism called the ContikiMAC radio duty cycling pro-
tocol was introduced in Contiki 2.5 [97]. The ContikiMAC
radio duty cycle mechanism was inspired by the X-MAC duty
cycling procedure [98].

ContikiMAC periodically wakes up the radio to listen for
a packet transmission. The sending node continuously sends
the data frame to the receiver until it gets an acknowledgment.
The packet’s destination field reduces overhearing, i.e., the
node can go into sleep mode if it is not the packet destination.
The receiver wakes its radio to listen for packet transmis-
sion. After detecting the packets, the receiver stays awake

8470

to receive the full transmission. Once reception of packets is
done, it sends a link layer acknowledgment. This mechanism
is illustrated in Figure 6.

The wake-up duration timing needs to be precise. To pro-
vide power-efficient wake-up timing, Contiki uses a mecha-
nism called clear channel assignment (CCA), which utilizes
the received signal strength indicator (RSSI) value to predict
channel availability. An RSSI value lower than a given thresh-
old returns “CCA positive,” indicating the channel is free.
Similarly, an RSSI value greater than the threshold amount
returns ‘“CCA negative,” indicating the channel is busy. Con-
tikiMAC follows precise timing constraints. ContikiMAC
timing is illustrated in Figure 7; #; is the time duration between
two data packet transmissions, which must be greater than the
time required to transmit and receive the ACK, i.e., t, + #4.

VOLUME 6, 2018

A. Musaddiq et al.: Survey on Resource Management in loT OSs

IEEE Access

Data Packet <

Sender

Receiver

CCA

> Data Packet |<—>|

ACK

CCA

FIGURE 7. The ContikiMAC transmission and CCA timing (adapted from [97]).

The interval 7. between two CCAs (t,) must be greater than
t; to ensure two CCAs detect a frame. ContikiMAC uses a
phaselock mechanism introduced by WiseMAC [99]. In this
mechanism, the transmitter can estimate the wake-up sched-
ule of the receiver with the ACK packet and can transmit
data frames repeatedly just before the receiver is expected
to be in the wake-up state. This phaselock mechanism in
ContikiMAC reduces both energy and channel utilization, but
at the risk of collision.

Some other MAC layer protocols were designed and tested
with the Contiki OS. RAWMAC, a cross-layer approach
is implemented in Contiki [100]. It exploits the Contiki
RPL [101] protocol at the routing layer, and ContikiMAC at
the MAC layer. It uses RPL’s directed acyclic graph (DAG)
and aligns node wake-up internally estimated by the Contiki-
MAC phase lock mechanism with its parent node to minimize
data collection delay. Another MAC protocol implemented in
Contiki is called GinLITE [102].

b: CONTIKI SUPPORT FOR NETWORK LAYER PROTOCOLS

IETF provides IPv6 routing in low-power and lossy net-
works. RPL specifies how to construct a destination-oriented
directed acyclic graph (DODAG). Each node is given a rank
based on an objective function (OF). The rank provides the
position of the node in the network. The OF calculates the
rank of the node using a path calculation in a low-power and
lossy network (RFC 6551) [103]. The node joining the RPL
network first listens to a DODAG information object (DIO)
message. If a node is unable to receive the DIO message,
it will broadcast a DODAG information solicitation (DIS)
message, which compels the neighborin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>