
Received January 18, 2018, accepted February 13, 2018, date of publication February 21, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808407

IBAS: Index Based A-Star
YAN LI1, HONGYAN ZHANG1, HUAIZHONG ZHU2,3, JIANWEI LI2,3,
WENJIE YAN2,3, AND YOUXI WU 2,3, (Member, IEEE)
1School of Economics and Management, Hebei University of Technology, Tianjin 300401, China
2School of Computer Science and Engineering, Hebei University of Technology, Tianjin 300401, China
3Hebei Province Key Laboratory of Big Data Calculation, Tianjin 300401, China

Corresponding author: Youxi Wu (wuc@scse.hebut.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61673159 and Grant 61702157, and in
part by the Graduate Student Innovation Program of Hebei Province under Grant CXZZSS2017031.

ABSTRACT The A-star algorithm is an efficient classical algorithm for solving the shortest path problem.
The efficiency of the algorithm depends on the evaluation function, which is used to estimate the heuristic
value of the shortest path from the current vertex to the target. When the vertex coordinates are known,
the heuristic value of the shortest path is usually generated by the distance. In this paper, we present an Index
Based A-Star algorithm (IBAS), which aims to solve the shortest path problem in a weighted directed acyclic
graph with unknown vertex coordinates. This paper constructs three indexes for each vertex, i.e., the earliest
arrival index, reverse earliest arrival index, and latest arrival index. We can compute the lower bound and the
upper bound of the shortest distance from the source vertex to the target based on the three indexes and prune
the intermediate vertices which are not in shortest path according to the lower and upper bounds. The IBAS
algorithm not only makes use of the earliest arrival index to construct the evaluation function of the A-star
algorithm but also utilizes the three indexes to prune useless vertices, so as to improve the performance of
the algorithm. Compared with the A-star algorithm, the additional time complexity and space complexity of
the IBAS algorithm are O(|V | + |E|) and O(|V |), respectively. A real road network and benchmark datasets
with large-scale network are selected to verify the performance of IBAS. Experimental results verify the
effectiveness of the proposed algorithm.

INDEX TERMS Shortest path, A-star algorithm, pruning strategy, index.

I. INTRODUCTION
The shortest path problem is a classical problem [1], [2], but
is also a tough issue especially in large-scale network [3], [4].
It appears in many practical applications, such as trans-
portation networks [5]–[7], isometric feature mapping [8],
biological networks analysis [9], subgraph similarity match-
ing [10], pattern mining [11]–[13], RDF clustering [14],
and social networks [15]. Motivated by these applications,
a variety of shortest path problems have been investigated.
Wang et al. [16] focused on solving approximate constrained
shortest path queries. Yuan et al. [17] dealt with k nearest
object search on road networks by incorporating social
influence. Zhao et al. [18] dealt with the problem of an
online shortest path computation. Abraham et al. [19] investi-
gated the shortest path problem in a high-dimensional space.
Sedeno-Noda and Raith [20] considered the bi-objective
shortest path problem. Zhu et al. [21] constructed an approxi-
mate solution to the shortest path in a network. Gao et al. [22]
focused on a dynamic shortest path algorithm in a hyper-
graph environment. Nip et al. [23] exploited a number of

combination problems involving the shortest path.
Hong et al. [24] studied the shortest path problem for large-
scale dynamic graphs. However, the above studies have
all focused on setting up effective algorithms for specific
problems, but with the growth of the scale of the graphs
it is becoming increasingly important to have a fast short-
est path solving method for large-scale graphs. A feasible
method is to employ a reachable index to quickly identify
unreachable vertices in Directed Acyclic Graphs (DAG) [25],
and then prune them in order to reduce the scale of the
graph [26], [27]. In studies on the reachability query prob-
lem, Yildirim et al. [28] proposed the GRAIL algorithm,
which can reduce the error rate via adding two additional
interval labels L1 and L2 for each vertex by different depth-
first traversal. Cheng et al. [29] proposed a k-reach algo-
rithm by using the minimum vertex cover set to solve
k-step reachability queries in DAG for any two vertices.
Zhou et al. [30] proposed the BiRch algorithm, based on
the GRAIL algorithm, which further improved the query
performance. Our previous studies [31], [32] investigated

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11707

https://orcid.org/0000-0001-5314-3468


Y. Li et al.: Index Based A-Star

the number of simple paths and the number of disjoint
paths between two vertices by using a special data structure
nettree. These studies all concerned k-step reachability based
on unweighted graphs. Nevertheless, in practice it is nec-
essary to consider time or cost constraints, thus forming
weighted graphs. Existing methods fail to solve this problem.

In addition, the A-star algorithm is an efficient search
algorithm, and its evaluation function can be denoted as:

f (n) = dis(u, n)+ h(n) (1)

where f (n) is the evaluation function, dis(u, n) is the shortest
path value from the source vertex u to the current vertex n,
and h(n) is the heuristic value that estimates the value of
the shortest path from the current vertex n to the target. The
selection of h(n), which needs to be estimated in advance,
significantly influences the efficiency of the A-star algorithm.
Although there exist a variety of computing methods, such
as the Manhattan distance, diagonal distance, and Euclidean
distance, these are all established with known vertex coordi-
nates. In the case with unknown vertex coordinates, the prob-
lem of determining h(n) requires urgent attention. In addition,
in the process of computing the shortest path, if we can prune
some useless vertices in advance this will significantly boost
the solving speed of the shortest path problem. The main
contributions of this study are threefold:

1) We propose methods for constructing the earliest arrival
index, reverse earliest arrival index, and latest arrival index in
a weighted DAG.

2) We present an index-based A-star algorithm, IBAS,
which uses the earliest arrival index to construct the evalu-
ation function of the A-star algorithm, and also employs the
above three indexes to achieve effective pruning.

3) Through extensive experiments, we demonstrate that
IBAS can effectively boost the speed of traditional algo-
rithms, and the efficiency of the reachability cost index is
high.

The rest of this paper is organized as follows. Section II
introduces the related works. Section III presents the detailed
construction algorithms of the three indexes, theoretically
proves the feasibility of the pruning algorithm, introduces the
principle of IBAS through an example, and finally presents
the IBAS algorithm. Also the additional time and space
complexities are analyzed in this section. Section IV intro-
duces the experimental data and presents the analysis results.
Conclusions are discussed in Section V.

II. RELATED WORKS
The shortest path problem is a classical graph theory problem.
At present, there are many solving algorithms, among which
the most classical ones are Dijkstra algorithm [33], Floyd
algorithm [34], and A-star algorithm [35]. The Dijkstra algo-
rithm was put forward by Dijkstra in 1959 and the principle
is that it starts from the source vertex and spreads from layer
to layer until it reaches the target. Because each time it is nec-
essary for the algorithm to identify all vertices, the time com-
plexity of each identification is O(|V |). Therefore, the time

complexity of the Dijkstra algorithm is O(|V |2). The Floyd
algorithm uses dynamic programming to solve the shortest
path problem. The shortest path matrix between two vertices
is obtained by the weight matrix of a graph, and the time
complexity of the algorithm is O(|V |3). The A-star algorithm
is the most effective direct search method for static networks
shortest path problem. It adopts the heuristic search strategy
to obtain the best position by using the evaluation function,
which avoids a lot of useless search path, so as to improve
the search efficiency. As mentioned above, the accuracy of
the evaluation function has a direct impact on the efficiency
of the A-star algorithm.

In recent years, some more efficient algorithms from dif-
ferent views have been proposed, such as parallel processing
method [36], large graph processing method [37], hardware
accelerated method [38], and the pretreatment of the metric
backbone based method [39]. Obviously, these methods are
with known network topology.

With the emergence of electronic maps such as Google
Maps and Baidu Maps, a variety of studies, for example,
a quick query based on spatial mashups [40], a new path
planning based on historical path caching [41], have been
carried out in order to realize the search of the shortest
path from the source to the destination on electronic map.
Zhang et al. [2] realized the search of the shortest path by
cloud-based mapping services with path sharing and path
caching, without knowing the underlying graph structure or
network topology, although only the straight lines for path
sharing are considered. Therefore, for the non-spatial graph,
the shortest path solving methods still need to be explored.

Similar studies [28]–[32] used the interval index for reach-
ability queries in the unweighted DAG graph, which aimed to
determine whether it can be reached in k step from the source
vertex to the target. These studies accelerate the identification
of the unreachable vertices by constructing a certain number
of indexes in advance, so as to improve the query efficiency.
This paper establishes three indexes in a weighted DAG, and
prunes the intermediate vertice which are not in shortest path
by the indexes, thus effectively avoiding unnecessary search,
so as to realize the fast computation of the shortest path.

III. METHOD FOR SOLVING THE SHORTEST
PATH PROBLEM
This paper presents three indexes: the earliest arrival
index E(u), reverse earliest arrival index R(u), and latest
arrival index L(u). These three indexes are used to implement
an efficient strategy for pruning useless vertices, so as to
reduce the scale ofDAG. The earliest arrival index is also used
to estimate the evaluation function of the A-star algorithm.
Finally, a fast search of the shortest path in a large-scale DAG
is achieved, and the computational efficiency of the algorithm
is improved.

A. CONSTRUCTION OF THREE INDEXES
This paper constructs the earliest arrival index E(u), reverse
earliest arrival index R(u), and latest arrival index L(u) for
each vertex u.

11708 VOLUME 6, 2018



Y. Li et al.: Index Based A-Star

Suppose G = (V ,E,W ) is a DAG, where V is a set of
vertices, E ⊆ V ∗ V is a set of arcs, and W is a set of arc
weights. For any two vertices u and v in G, the shortest path
between them is denoted by dis(u, v).
Definition 1: For any two vertices u and v in G, if there

exists a path from vertex u to v, then u can reach v, which
is denoted by u −→ v. Otherwise, u cannot reach v. If there
exists a reachable path between u and v within the dis-
tance C, namely the total path distance between u and v is
less than or equal to C, then vertex u can reach vertex v within
cost C, which is denoted by u −→

C
v. Otherwise, u cannot

reach v within cost C.
Definition 2: The earliest arrival index E(u) refers to the

minimum cost from the 0 in-degree vertex to vertex u. E(u) is
equal to 0 if the in-degree of u is 0, otherwise E(u) equals the
minimum of the sum of all its in-degree vertices E(t) and the
weights of the corresponding arcs. The method of calculating
E(u) is as follows:

E(u) =

{
0 the in-degree of u is 0
min{E(t)+ c} otherwise

(2)

where t is the parent vertex of u, c is the arc weight.
Definition 3: The reverse earliest arrival index R(u) refers

to the reverse minimum cost from the 0 out-degree vertex to
vertex u. R(u) is equal to 0 if the out-degree of u is 0, otherwise
R(u) equals the minimum of the sum of all its out-degree
vertices R(t) and the weights of the corresponding arcs. The
method for calculating R(u) is as follows:

R(u) =

{
0 the out-degree of u is 0
min{R(t)+ c} otherwise

(3)

where t is the child vertex of u, c is the arc weight.
Definition 4: The latest arrival index L(u) refers to the

maximum cost from the 0 in-degree vertex to vertex u. L(u) is
equal to 0 if the in-degree of u is 0, otherwise L(u) equals
the maximum of the sum of all its in-degree vertices L(t)
and the weights of the corresponding arcs. The method for
calculating L(u) is as follows:

L(u) =

{
0 the in-degree of u is 0
max{L(t)+ c} otherwise

(4)

where t is the parent vertex of u, c is the arc weight.
Fig. 1 is used as an example to illustrate how the three

indexes are calculated.
Example 1: The earliest arrival index values of ver-

tices 1, 11, and 20 with 0 in-degree are E(1) = E(11) =
E(20) = 0. Therefore, the earliest arrival index value of
vertex 2 is E(2) = 0+2 = 2. Vertex 4 has two parent vertices,
vertices 3 and 12. Because their earliest arrival index values
are E(12) = 4, E(3) = 4, and E(12) + 2 = 4 + 2 =
6 < E(3) + 4 = 4 + 4 = 8, E(4) takes the minimum value
of 6. Similarly, vertices with 0 out-degree are 6, 9, and 18,
so R(6) = R(9) = R(18) = 0. Hence, the reverse earliest
arrival index value of vertex 8 is R(8) = 0+ 3 = 3. Vertex 5
has three child vertices, 6, 7, and 10. Because R(6) = 0,

FIGURE 1. Values of the three indexes.

R(7) = 5, R(10) = 8, and R(6) + 6 = 0 + 6 = 6 <

R(7) + 2 = 5 + 2 = 7 < R(10) + 3 = 8 + 3 = 11, R(5)
takes the minimum value of 6. Similarly, the latest arrival
index values of vertices 1, 11, and 20 with 0 in-degree are
L(1) = L(11) = L(20) = 0. Hence, the latest arrival index
value of vertex 2 is L(2) = 0+ 2 = 2. For vertex 4, the latest
arrival index value of its two parent vertices are L(12) = 4
and L(3) = 4, respectively. Because L(3)+ 4 = 4+ 4 = 8 >

L(12)+ 2 = 4+ 2 = 6, L(4) takes the maximum value of 8.
The above method can be used to calculate the three index
values of all vertices in Fig. 1.

The construction algorithm of the three indexes is shown
in Algorithm 1.

Algorithm 1 Construction Algorithm of the Three Indexes
Input: DAG adjacency matrix w[i][j](0 < i, j < n);
Output: E(u), R(u), L(u);
1: for u=1 to n do
2: if in-degree(u)=0 then // Compute E(u) and L(u)

according to formula 2 and formula 4, respectively;
3: E(u)=0;
4: L(u)=0;
5: else
6: E(u)=min(E(t)+ w[t][u]);
7: L(u)=max(L(t)+ w[t][u]);
8: end if
9: if out-degree(u)=0 then // Compute R(u) according

to formula 3;
10: R(u)=0;
11: else
12: R(u)=min(R(t)+ w[u][t]);
13: end if
14: end for
15: return E(u), R(u), L(u)

VOLUME 6, 2018 11709



Y. Li et al.: Index Based A-Star

In the computation process, it is necessary to ensure that
each vertex is marked only once.

B. PRUNING ALGORITHM
The working principle of the pruning algorithm is given
as follows. We can calculate the range of the shortest
distance dis(u, v) based on the following three theorems.
Theorems 1 and 2 give the lower bound of dis(u, v), and
Theorem 3 gives the upper bound of dis(u, v). Although we
propose two theorems, Theorem 1 and Theorem 2, to calcu-
late the lower bound of dis(u, v), Theorem 5 will show how
to apply the two theorems to prune the intermediate vertex t ,
which must not be on the shortest path from u to v.
Theorem 1: The lower bound of dis(u, v) can be found as

E(v)− E(u); that is, E(v)− E(u) ≤ dis(u, v).
Proof: The proof employs reduction to absurdity.

Assume that dis(u, v) < E(v) − E(u). Definition 2 implies
that the minimum cost from the 0 in-degree vertex to u
is E(u). Therefore, the minimum cost of reaching v from the 0
in-degree vertex through u is E(u) + dis(u, v) < E(u) +
E(v)−E(u) = E(v). That is, the minimum cost of reaching v
through u is less than E(v). However, this is a contradiction
of Definition 2. Thus, the proof is complete.
Theorem 2: The lower bound of dis(u, v) can be given as

R(u)− R(v); that is, R(u)− R(v) ≤ dis(u, v).
Proof: The proof employs reduction to absurdity.

Assume that dis(u, v) < R(u) − R(v). Definition 3 implies
that the minimum cost from the 0 out-degree vertex to v
is R(v). Therefore, the reverse minimum cost of reaching u
from the 0 out-degree vertex through v is R(v) + dis(u, v) <

R(v)+R(u)−R(v) = R(u). That is, the reverse minimum cost
of reaching u through v is less than R(u). However, this is a
contradiction of Definition 3. Thus, the proof is complete.
Theorem 3: The upper bound of dis(u, v) should be

L(v)− L(u); that is, dis(u, v) ≤ L(v)− L(u).
Proof: The proof employs reduction to absurdity.

Assume that dis(u, v) > L(v) − L(u). Definition 4 implies
that the maximum cost from the 0 in-degree vertex to u
is L(u). Therefore, the maximum cost of reaching v from the 0
in-degree vertex through u is L(u)+dis(u, v) > L(u)+L(v)−
L(u) = L(v). That is, the cost of reaching v through u is
greater than L(v). However, this is a contradiction of Defi-
nition 4. Thus, the proof is complete.
Theorem 4: If E(t) = 0 and t is not u, or R(t) = 0 and t is

not v, then t can be pruned.
Proof: E(t) = 0 shows that the in-degree of vertex t

is 0. Because t is not u, there is no path pointing to t in the
graph, and t can be pruned. Similarly, R(t) = 0 means that
the out-degree of vertex t is 0 and t is not v, so there is no
path t pointing to. The proof is complete.
Apparently, for any node t , according to Theorem 1 and

Theorem 2, we can calculate four values d1, d2, d3, and d4
shown in Theorem 5. Therefore, we can draw four circles with
centers u and v and with the radius of the four values. If node t
locates outside the four circles, which means the lower bound
of the distance from u to t or from t to v is greater than the

upper bound of the distance from u to v. Therefore vertex t
cannot be an intermediate vertex on the shortest path from u
to v. Hence node t can be safely removed. Theorem 5 will
show the correctness of this strategy.
Theorem 5: Let d = L(v)−L(u). For a vertex t in a graph,

let d1 = E(t)−E(u), d2 = E(v)−E(t), d3 = R(u)−R(t), and
d4 = R(t)− R(v). If d1 > d or d2 > d or d3 > d or d4 > d,
then the vertex t can be pruned.

Proof: The proof employs reduction to absurdity. If the
shortest path from vertex u to v passes t , then from Theorem 3
we know that dis(u, t) + dis(t, v) = dis(u, v) ≤ d .
However, from Theorems 1 and 2 we know that d1 ≤
dis(u, t), d2 ≤ dis(t, v), d3 ≤ dis(u, t), and d4 ≤ dis(t, v).
Therefore, dis(u, t) + dis(t, v) ≥ d1 + d2. If d1 > d
or d2 > d , then it is obvious that d1 + d2 > d ; that is,
dis(u, t) + dis(t, v) > d . However, this contradicts the
fact that dis(u, t) + dis(t, v) = dis(u, v) ≤ d . Similarly,
dis(u, t) + dis(t, v) ≥ d3 + d4 > d is also a contradiction
of the fact. Therefore, if d1 > d or d2 > d or d3 > d
or d4 > d , then the shortest path from u to v must
not pass t , and the vertex t can be pruned. The proof is
complete.
Example 2 shows the pruning strategy.
Example 2: The vertices from 20 to 15 in Fig. 1 are

used as an example to illustrate the pruning method. From
Theorems 1, 2, and 3 we know that dis(20, 15) ≤ L(15) −
L(20) = 7 − 0 = 7, dis(20, 15) ≥ E(15) − E(20) =
4− 0 = 4, and dis(20, 15) ≥ R(20)−R(15) = 17− 14 = 3.
Consequently, dis(20, 15) ranges from 4 to 7. According to
Theorem 4, because the either E value or R value of each
vertex 1, 6, 9, 11, and 18 is 0, they can be pruned. In addition,
according to Theorem 5 vertex 19 can be pruned, because
d1 = E(19) − E(20) = 9 − 0 = 9 > 7. However, vertex 14
cannot be pruned, because d1 = 3 < 7, d2 = d4 = 1 < 7,
and d3 = 5 < 7. Similarly, according to Theorem 5 we can
further prune vertices 4, 5, 7, 8, 10, 16, and 17.

Now, we show the pruning algorithm in Algorithm 2.

Algorithm 2 Pruning Algorithm
Input: Indexes E(u), R(u), L(u), vertices u and v;
Output: pruned ;
1: d = L(u)− L(v);
2: for t=1 to |V | do
3: if (E(t) = 0 and t! = u) or (R(t) = 0 and t! = v)

then
4: pruned(t)=true; //Prune t according to

Theorem 4;
5: end if
6: if E(t) − E(u) > d or E(v) − E(t) > d or R(u) −
R(t) > d or R(t)− R(v) > d then

7: pruned(t)=true; //Prune t according to
Theorem 5;

8: end if
9: end for
10: return pruned

11710 VOLUME 6, 2018



Y. Li et al.: Index Based A-Star

C. IBAS ALGORITHM
Theorem 6: Let the shortest path from u to r be dis(u, r).

For the vertex t in a graph, if (r, t) ∈ W, then let the weight of
(r, t) be w. If dis(u, r)+w+d2 > d or dis(u, r)+w+d4 > d,
then the vertex t can be pruned.

Proof: The proof employs reduction to absurdity. From
Theorem 1 we know that d2 ≤ dis(t, v). Suppose the short-
est path from vertex u to v passes t . From Theorem 3,
we know that dis(u, r) + w + d2 ≤ dis(u, r) + w +
dis(t, v) = dis(u, v) ≤ d . Therefore, if dis(u, r)+ w+ d2 >

d or dis(u, r)+w+d4 > d , then the shortest path from u to v
definitely does not pass t , and t can be pruned. The proof is
complete.

Illustrative examples are shown in Example 3 and
Example 4.
Example 3: Fig. 1 shows an example to illustrate the com-

putation process of the IBAS algorithm. In the computation
of the shortest path from vertex 15 to 6, L(u), E(u), and R(u)
are used to calculate the path distance constraint values d =
L(6)−L(15) = 18−7 = 11, E(6)−E(15) = 15−4 = 11, and
R(15)− R(6) = 11− 0 = 11. Consequently, dis(15, 6) is 11.
According to algorithm 2, twelve vertices can be pruned,
such as vertices 1, 2, 3, 9, 12, and so on. Based on the
above pruning result, the IBAS algorithm dynamically prunes
vertices 10, 19, and 7 according to Theorem 6 and obtain the
shortest path sequence 15 → 5 → 6, whose distance is 11.
In this computation process, it is only necessary to update
10 vertices. However, when computing the shortest path on
the original network, the shortest path sequence is still 15→
5 → 6, the path distance is also 11, and 18 vertices need to
be updated in the computation process. Thus, it is clear that
the IBAS algorithm can effectively reduce the computational
complexity and improve the computational efficiency.
Example 4: The vertices from 23 to 9 in Fig. 1 are

selected to illustrate the case which there is no path between
them. Vertex 18 and other vertices are pruned according to
Theorem 4. After pruning vertex 18, the out-degree of ver-
tex 23 is 0. Therefore, IBAS can know that there is no path
from 23 to 9 without further calculation.

After applying the pruning algorithm in DAG,
Algorithm 3 is used to compute the shortest path.

D. COMPLEXITY ANALYSIS
Because the three indexes E(u), R(u), and L(u) are con-
structed for each vertex in the graph, the additional space
complexity of the IBAS algorithm is O(|V |). In the process
of construction of E(u), it is necessary to compute each
edge, so the time complexity of the construction of E(u) is
O(|V | + |E|), and the time complexities of the construction
of other two indexes are the same as E(u). Algorithm 2 con-
ducts the pruning strategy for all vertices, so its time com-
plexity is O(|V |). The time complexity of the third line of
IBAS is same as that of A-star, since the time complexity of
Theorem 6 is O(1). Thus, compared with A-star, the addi-
tional time complexity of the IBAS algorithm isO(|V |+|E|).

Algorithm 3 IBAS Algorithm
Input: DAG adjacency matrix w[i][j](0 < i, j < n), vertices

u and v;
Output: the shortest path dis(u, v);
1: Call algorithm 1 to achieve E(u), R(u), L(u);
2: Call algorithm 2 to realize static pruning, so as to reduce

the scale of DAG;
3: Put u into OPEN table;
4: while (OPEN!=NULL) do
5: Get vertex r from OPEN table;
6: Get vertex t which is the neighbor of r ;
7: if pruned(t) =false then
8: if dis(u, r) + w[r][t] + E(v) − E(t) > d

or dis(u, r)+ w[r][t]+ R(t)− R(v) > d then
9: pruned(t)=true;
10: else
11: Calculate dis(u, v) according to A-star

algorithm;
12: end if
13: end if
14: end while
15: return the shortest path dis(u, v);

IV. EXPERIMENTAL DATA AND RESULTS ANALYSIS
In order to verify the effectiveness of the proposed algorithm,
a real road network data set and benchmark data sets are
selected. We also contrast the IBAS algorithm with the Dijk-
stra algorithmwithout a pruning strategy, the Floyd algorithm
without a pruning strategy, the A-star algorithm using E(u)
to represent its h function, the Dijkstra algorithm with a
pruning strategy according to Theorem 5 (i.e., index-based
Dijkstra algorithm, IBD), and the Floyd algorithm with a
pruning strategy according to Theorem 5 (i.e., index-based
Floyd algorithm, IBF). In order to further verify the effect of
dynamic pruning, we also perform the IBAS-S algorithmwith
only static pruning, which does not use the if-then structure
of line 8 of IBAS. To further verify the performance of the
three indexes, we propose a new algorithm, named IBAS-M,
which uses both the three indexes and the two index intervals,
Lu[x, y] and Ru[x, y], proposed in[28] and [30] to prune the
vertices. Since [28] and [30] focused on reachability query
in unweighted DAG, we set all arc weights as 1 to get the
corresponding unweighted DAG at first. Then we can obtain
the two intervals in the new DAG according to the pre-order
and post-order traversal strategy.

All of the above algorithms are written in VC++6.0. All
experiments are conducted on a laptop with an Intel (R)
Core i7-5500U, a 2.40-GHZ CPU, 4.00 GB of RAM, and
Windows 7 SP1 operating system.

A. EXPERIMENTAL DATA DESCRIPTION
1) REAL ROAD NETWORK DATA
In this paper, the Xi’an Yanta District road network from [42]
is used to demonstrate the performance of the proposed

VOLUME 6, 2018 11711



Y. Li et al.: Index Based A-Star

FIGURE 2. A real road network.

IBAS algorithm. The network contains 66 vertices without
coordinates, as shown in Fig. 2. Limited to the length, we omit
the distance of each path. The path distance can be down-
loaded from the Internet, and here is taken as the arc weight,
thus forming a weighted DAG. In this DAG, we ignore
the vertex coordinates, and only preserve the path distance
between each vertex.

We extract the vertex pairs (19,37), (10,42), (8,38), (31,55),
(19,42), (10,50), (13,48), (19,51), (21,45), (24,33), (24,52),
and (11,28) from Fig. 2 to verify the algorithm performance.

2) BENCHMARK DATA
To further verify the performance of the proposed algorithm,
we use the medium and large-scale data provided by http://
algs4.cs.princeton.edu/44sp/, which is shown in Table 1.

TABLE 1. Testing datasets.

We randomly generate 10,000 vertex pairs to verify the
algorithm performance.

B. EXPERIMENTAL RESULTS
1) REAL DATA EXPERIMENTAL RESULTS
Tables 2 and 3 compare the number of pruned vertices and
indexes construction time.

To facilitate analysis, in this paper, two parameters,
the number of updated vertices and the number of loops of
each algorithm, are selected. The two parameters in Dijkstra,
Floyd, IBD, and IBF refer to the number of vertices checked
in solving the problem and the number of loops in which at
least a vertex is checked, respectively. As we know, the time
complexity of A-star, IBAS-S, IBAS-M, and IBAS depends
on the number loops of line 4 which is the number of vertices
put into the OPEN table. Therefore, both two parameters in
A-star, IBAS-S, IBAS-M, and IBAS are the same. Hence,

TABLE 2. Comparison of number of pruned vertices.

TABLE 3. Comparison of indexes construction time (ms).

TABLE 4. Comparison of the average running time (ms).

FIGURE 3. Comparison of number of updated vertices.

the two parameters are comparable in the similar algorithms,
otherwise they are not comparable, since the principles of
Dijkstra, Floyd, and A-star are different. Apparently, the less
number of updated vertices is, the more effective the algo-
rithm is. Figs. 3 and 4 illustrate the number of updated vertices
and the number of loops of each algorithm, respectively.
Fig. 5 and Table 4 demonstrate the running time and the
average running time of each algorithm, respectively.

2) BENCHMARK DATA EXPERIMENTAL RESULTS
Table 5 lists the construction time and size of the indexes on
the benchmark data. The construction time is based on the
average value of 50 computations. It can be seen that the index
size grows in line with the number of vertices in the graph,

11712 VOLUME 6, 2018



Y. Li et al.: Index Based A-Star

FIGURE 4. Comparison of number of loops.

FIGURE 5. Comparison of running time (ms).

TABLE 5. Indexes construction time and size.

and the construction time increases as the scale of the data
increases.

Figs. 6, 7, and 8 respectively show the number of updated
vertices, number of loops, and running time of each algorithm
when computing the shortest path in each graph. The vertical
coordinates of Figs. 6, 7, and 8 are transformed to log-polar
coordinates, and ‘‘-’’ indicates that we do not have the results,
as the corresponding algorithm failed due to running out of
memory.

C. EXPERIMENTAL RESULTS ANALYSIS
1) Algorithms with a pruning strategy perform better than
those without one in terms of the number of updated vertices,

FIGURE 6. Comparison of number of updated vertices for
benchmark data.

FIGURE 7. Comparison of number of loops for benchmark data.

number of loops, and running time. On the one hand, from
Table 2 we can see that an average of 20 vertices are pruned
from the 66 vertices of the real road network in the process
of the shortest path computation, and the pruning effect is
beneficial. On the other hand, the algorithms IBD, IBF, and
IBAS with indexes improve the Dijkstra, Floyd, and A-star
algorithms. From the benchmark data experimental results,
it is easy to see that the performances of the Dijkstra, Floyd,
and A-star algorithms have been improved following the
index construction. In 1000EWG, the IBD algorithm reduces
the running time of Dijkstra from 423.9 ms to 407.4 ms,
because the number of loops is reduced from 65 to 55, which
leads to the number of updated vertices being reduced from
134 to 115. Exactly the same results are achieved on many
instances in Figs. 3, 4, 5, 6, 7, and 8, which validate the
effectiveness of the index method.

2) IBAS employs more effective index strategy than
IBAS-M. From Table 2, we can see that IBAS-M can prune

VOLUME 6, 2018 11713



Y. Li et al.: Index Based A-Star

FIGURE 8. Comparison of running time for benchmark data (ms).

more vertices than IBAS. For example IBAS-M can prune
34 vertices for the instance from 10 to 50 while IBAS only
prunes 22 vertices. It seems that IBAS-M is better than IBAS.
But from Figs. 3 and 4, we see that the number of updated
vertices and the number of loops are the same for the two
algorithms. Therefore the running time of two algorithms is
almost the same. For the instance from 10 to 50, IBAS-M
prunes 12 vertices more than IBAS which are 3, 4, 5, 6, 11,
12, 13, 15, 19, 24, 29, and 39. From Fig. 2, we see that all
these 12 vertices are in the branch of the path from 10 to 50.
Therefore, these 12 vertices are useless vertices for solving
the shortest path problem. Moreover, from Table 3, IBAS-M
costs more time to create the two index intervals. Hence,
IBAS which does not prune the useless vertices has better
performance than IBAS-M.

3) The IBAS-S and IBAS algorithms are not only fast, but
also suitable for solving large-scale network shortest path
problems. Compared with IBD and IBF, the IBAS-S and
IBAS algorithms can effectively shorten the running time and
improve the computational efficiency. From the data in Fig. 8,
taking 1000EWG as an example, the running time of IBAS-S
and IBAS are 10.9 ms and 10.3 ms, respectively, while the
running time of the IBD algorithm is 407.4 ms, and the IBF
algorithm requires 73283 ms to complete the computation.
Thus, from this comparison it is not difficult to see that
IBAS-S and IBAS significantly shorten the running time
and improve the computational efficiency. More importantly,
the Dijkstra and Floyd algorithms cannot solve the shortest
path problem in a large-scale network, while IBAS-S and
IBAS can.

4) The performance of the IBAS algorithm is the best.
In Fig. 6, the results for largeEWG show that IBAS-S and
A-star have the same number of updated vertices,
namely 1158, and the number of updated vertices for IBAS is
only 339, which is clearly lower. Because the path between
the vertices in the experiment is sparse and the path distance
is large, the pruning effect cannot be achieved by the static

pruning strategy, while the dynamic pruning strategy can
achieve better pruning results. Therefore, in the shortest path
computation the combination of these two pruning strate-
gies, namely the IBAS algorithm, can achieve more efficient
pruning.

V. CONCLUSION
In this paper, an Index-Based A-Star algorithm, IBAS, is pro-
posed to solve the shortest path problem for weighted DAG
with unknown vertex coordinates. The algorithm constructs
the earliest arrival index, reverse earliest index, and latest
arrival index for each vertex. The earliest arrival index is used
to construct the evaluation function of the A-star algorithm,
and all three indexes are used to prune useless vertices in
the process of computing the shortest path, so as to improve
the performance of the algorithm. The results of compara-
tive experiments for the Dijkstra, Floyd, A-star, IBD, IBF,
IBAS-S, and IBAS algorithms verify the effectiveness of
the proposed pruning strategy, and then further verify the
efficiency of the IBAS algorithm, which can be applied to
solving the shortest path problem in large-scale networks.

This paper focuses on solving the shortest path problem
in a weigthed DAG which is inspired by the indexes for
reachability queries in an unweighted DAG. More effective
algorithms in a weighted DAG and more valuable problems
in a weighted directed graph will be studied in the future.

REFERENCES
[1] C. Sommer, ‘‘Shortest-path queries in static networks,’’ ACM Comput.

Surv., vol. 46, no. 4, p. 45, 2014.
[2] D. Zhang, Y. Liu, A. Liu, X. Mao, and Q. Li, ‘‘Efficient path query

processing through cloud-based mapping services,’’ IEEE Access, vol. 5,
pp. 12963–12973, 2017.

[3] T. Akiba, Y. Iwata, and Y. Yoshida, ‘‘Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,’’ in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2013, pp. 349–360.

[4] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, ‘‘Shortest
path and distance queries on road networks: Towards bridging theory
and practice,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2013,
pp. 857–868.

[5] Y. Sun, X. Yu, R. Bie, and H. Song, ‘‘Discovering time-dependent shortest
path on traffic graph for drivers towards green driving,’’ J. Netw. Comput.
Appl., vol. 83, pp. 204–212, Apr. 2017.

[6] D. Delling and G. Nannicini, ‘‘Core routing on dynamic time-dependent
road networks,’’ INFORMS J. Comput., vol. 24, no. 2, pp. 187–201, 2012.

[7] D. Quercia, R. Schifanella, and L. M. Aiello, ‘‘The shortest path to hap-
piness: Recommending beautiful, quiet, and happy routes in the city,’’ in
Proc. 25th ACM Conf. Hypertext Soc. Media, 2014, pp. 116–125.

[8] C.-H. Chen, ‘‘A semi-supervised feature selection method using a non-
parametric technique with pairwise instance constraints,’’ J. Inf. Sci.,
vol. 39, no. 3, pp. 359–371, 2013.

[9] I. Kuperstein, L. Grieco, D. P. A. Cohen, D. Thieffry, A. Zinovyev, and
E. Barillot, ‘‘The shortest path is not the one you know: Application of
biological network resources in precision oncology research,’’ Mutagene-
sis, vol. 30, no. 2, pp. 191–204, 2015.

[10] Y. Yuan, G. Wang, J. Y. Xu, and L. Chen, ‘‘Efficient distributed subgraph
similarity matching,’’ VLDB J., vol. 24, no. 3, pp. 369–394, 2015.

[11] J. Han, Z. Li, and L. A. Tang, ‘‘Mining moving object, trajectory and traffic
data,’’ in Proc. Int. Conf. Database Syst. Adv. Appl., 2010, pp. 485–486.

[12] Y. Wu, Y. Tong, X. Zhu, and X. Wu, ‘‘NOSEP: Nonoverlapping sequence
pattern mining with gap constraints,’’ IEEE Trans. Cybern., to be pub-
lished, doi: 10.1109/TCYB.2017.2750691.

[13] Y.-X. Wu, L.-L. Wang, J.-D. Ren, W. Ding, and X.-D. Wu, ‘‘Mining
sequential patterns with periodic wildcard gaps,’’ Appl. Intell., vol. 41,
no. 1, pp. 99–116, 2014.

11714 VOLUME 6, 2018

http://dx.doi.org/10.1109/TCYB.2017.2750691


Y. Li et al.: Index Based A-Star

[14] H. Khosravi-Farsani, M. Nematbakhsh, and G. Lausen, ‘‘SRank: Shortest
paths as distance between nodes of a graph with application to RDF
clustering,’’ J. Inf. Sci., vol. 39, no. 2, pp. 198–210, 2013.

[15] R. Alireza and R. M. Mohammad, ‘‘Sampling social networks using short-
est paths,’’ Phys. A, Stat. Mech. Appl., vol. 424, pp. 254–268, Apr. 2015.

[16] S. Wang, X. Xiao, Y. Yang, and W. Lin, ‘‘Effective indexing for approx-
imate constrained shortest path queries on large road networks,’’ in Proc.
VLDB Endowment, 2016, vol. 10. no. 2, pp. 61–72.

[17] Y. Yuan, X. Lian, L. Chen, Y. Sun, and G. Wang, ‘‘RSkNN: kNN search
on road networks by incorporating social influence,’’ IEEE Trans. Knowl.
Data Eng., vol. 28, no. 6, pp. 1575–1588, Jun. 2016.

[18] L. H. U, H. J. Zhao, M. L. Yiu, Y. Li, and Z. Gong, ‘‘Towards online
shortest path computation,’’ IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp. 1012–1025, Apr. 2014.

[19] I. Abraham, D. Delling, A. Fiat, A. V. Goldberg, and R. F. Werneck,
‘‘Highway dimension and provably efficient shortest path algorithms,’’
J. ACM, vol. 63, no. 5, p. 41, 2016.

[20] A. Sedeño-Noda and A. Raith, ‘‘A Dijkstra-like method computing all
extreme supported non-dominated solutions of the biobjective shortest path
problem,’’ Comput. Oper. Res., vol. 57, pp. 83–94, May 2015.

[21] C. J. Zhu, K.-Y. Lam, and S. Han, ‘‘Approximate path searching for
supporting shortest path queries on road networks,’’ Inf. Sci., vol. 325,
pp. 409–428, Dec. 2015.

[22] J. Gao, Q. Zhao, W. Ren, A. Swami, R. Ramanathan, and A. Bar-Noy,
‘‘Dynamic shortest path algorithms for hypergraphs,’’ IEEE/ACM Trans.
Netw., vol. 23, no. 6, pp. 1805–1817, Dec. 2015.

[23] K. Nip, Z. Wang, and W. Xing, ‘‘A study on several combination problems
of classic shop scheduling and shortest path,’’ Theor. Comput. Sci., vol. 22,
pp. 175–187, Nov. 2016.

[24] J. Hong, K. Park, Y. Han, M. K. Rasel, D. Vonvou, and Y. K. Lee, ‘‘Disk-
based shortest path discovery using distance index over large dynamic
graphs,’’ Inf. Sci., vols. 382–383, pp. 382–383, 2017.

[25] A. Fariha, C. F. Ahmed, C. K.-S. Leung, S. M. Abdullah, and L. Cao,
‘‘Mining frequent patterns from human interactions in meetings using
directed acyclic graphs,’’ in Proc. Pacific–Asia Conf. Knowl. Discovery
Data Mining, 2013, pp. 38–49.

[26] R. Jin, N. Ruan, J. Y. Xu, and S. Dey, ‘‘SCARAB: Scaling reachability
computation on large graphs,’’ in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2012, pp. 169–180.

[27] L. Zou, K. Xu, J. X. Yu, L. Chen, Y. Xiao, and D. Zhao, ‘‘Efficient
processing of label-constraint reachability queries in large graphs,’’ Inf.
Syst., vol. 40, pp. 47–66, 2014.

[28] H. Yildirim, V. Chaoji, and M. J. Zaki, ‘‘Grail: Scalable reachability
index for large graphs,’’ Proc. VLDB Endowment J., vol. 3, nos. 1–2,
pp. 276–284, 2010.

[29] J. Cheng, Z. Shang, H.Wang, J. X. Yu, andH. Cheng, ‘‘Efficient processing
of k-hop reachability queries,’’ Very Large Data Bases J., vol. 23, no. 2,
pp. 227–252, 2014.

[30] J. F. Zhou, W. Chen, Z.-Y. Chen, and C. P. Fei, ‘‘BiRch: A bidirectional
search algorithm for k-step reachability queries,’’ J. Commun., vol. 36,
no. 8, pp. 50–60, 2015.

[31] Y. Li, L. Sun, H. Z. Zhu, and Y. X. Wu, ‘‘A nettree for simple paths with
length constraint and the longest path in directed acyclic graphs,’’ Chin.
J. Comput., vol. 35, no. 10, pp. 2194–2203, 2012.

[32] Y. Li, Y. Wu, C. Huang, Z. Zhang, and Z. Zeng, ‘‘Nettree for maximum
disjoint paths with length constraint in DAG,’’ J. Commun., vol. 36, no. 8,
pp. 38–49, 2015.

[33] E. W. Dijkstra, ‘‘A note on two problems in connexion with graphs,’’
Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.

[34] R. Bellman, ‘‘On a routing problem,’’ Quart. Appl. Math., vol. 16, no. 1,
pp. 87–90, 1958.

[35] P. E. Hart, N. J. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic
determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100–107, Jul. 1968.

[36] U. Meyer, P. Sanders, and B. Raphael, ‘‘1-stepping: A parallelizable
shortest path algorithm,’’ J. Algorithms, vol. 49, no. 1, pp. 114–152, 2003.

[37] G. Malewicz et al., ‘‘Pregel: A system for large-scale graph processing,’’
in Proc. SIGMOD, 2010, pp. 135–146.

[38] D. Delling, A. V. Goldberg, A. Nowatzyk, and R. F. Werneck, ‘‘PHAST:
Hardware-accelerated shortest path trees,’’ J. Parallel Distrib. Comput.,
vol. 73, no. 7, pp. 940–952, 2013.

[39] V. Kalavri, T. Simas, and D. Logothetis, ‘‘The shortest path is not always a
straight line: Leveraging semi-metricity in graph analysis,’’ VLDB Endow-
ment, vol. 9, no. 9, pp. 672–683, 2016.

[40] D. Zhang, C.-Y. Chow, A. Liu, X. Zhang, Q. Ding, and Q. Li, ‘‘Efficient
evaluation of shortest travel-time path queries through spatial mashups,’’
GeoInformatica, vol. 22, no. 1, pp. 3–26, 2017.

[41] Y. Zhang, Y.-L. Hsueh, W.-C. Lee, and Y.-H. Jhang, ‘‘Efficient cache-
supported path planning on roads,’’ IEEE Trans. Knowl. Data Eng., vol. 28,
no. 4, pp. 951–964, Apr. 2016.

[42] Z. T. Duan et al., ‘‘A K-th shortest path set algorithm for urban traffic
network,’’ J. Transp. Syst. Eng. Inf. Technol., vol. 14, no. 3, pp. 194–200,
2014.

YAN LI received the Ph.D. degree in management
science and engineering from Tianjin University,
Tianjin, China. She is currently an Associate Pro-
fessor with the Hebei University of Technology,
Tianjin. Her current research interests include sup-
ply chain management and data mining.

HONGYAN ZHANG is currently pursuing the
master’s degree with the School of Economics and
Management, Hebei University and Technology,
Tianjin, China. Her research interests include sup-
ply chain management and data mining.

HUAIZHONG ZHU received the master’s degree
in computer science and engineering from the
Hebei University of Technology, Tianjin, China.
He is currently an Assistant Professor with the
Hebei University of Technology. His current
research interests include datamining andmachine
learning.

JIANWEI LI received the Ph.D. degree in the-
ory and new technology of electrical engineering
from the Hebei University of Technology, Tianjin,
China. He is currently a Professor with the Hebei
University of Technology. His current research
interests include bioinformatics and data mining.

WENJIE YAN received the Ph.D. degree from
the School of Computer Science and Engineering,
Harbin Institute of Technology, Harbin, China.
He is currently an Assistant Professor with the
Hebei University of Technology, Tianjin. His cur-
rent research interests include data mining and
intelligent recommendation.

YOUXI WU (M’17) received the Ph.D. degree
in theory and new technology of electrical engi-
neering from the Hebei University of Technology,
Tianjin, China. He is currently a Ph.D. Supervisor
and a Professor with the Hebei University of
Technology. His current research interests include
data mining and machine learning. He is a Senior
Member of CCF.

VOLUME 6, 2018 11715


	INTRODUCTION
	RELATED WORKS
	METHOD FOR SOLVING THE SHORTEST PATH PROBLEM
	CONSTRUCTION OF THREE INDEXES
	PRUNING ALGORITHM
	IBAS ALGORITHM
	COMPLEXITY ANALYSIS

	EXPERIMENTAL DATA AND RESULTS ANALYSIS
	EXPERIMENTAL DATA DESCRIPTION
	REAL ROAD NETWORK DATA
	BENCHMARK DATA

	EXPERIMENTAL RESULTS
	REAL DATA EXPERIMENTAL RESULTS
	BENCHMARK DATA EXPERIMENTAL RESULTS

	EXPERIMENTAL RESULTS ANALYSIS

	CONCLUSION
	REFERENCES
	Biographies
	YAN LI
	HONGYAN ZHANG
	HUAIZHONG ZHU
	JIANWEI LI
	WENJIE YAN
	YOUXI WU


