
Received January 15, 2018, accepted February 13, 2018, date of publication February 21, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2808369

A Review of Service Robots Coping With
Uncertain Information in Natural
Language Instructions
M. A. VIRAJ J. MUTHUGALA , (Student Member, IEEE),
AND A. G. BUDDHIKA P. JAYASEKARA , (Senior Member, IEEE)
Intelligent Service Robotics Group, Department of Electrical Engineering, University of Moratuwa, Moratuwa 10400, Sri Lanka

Corresponding author: M. A. Viraj J. Muthugala (viraj@elect.mrt.ac.lk)

This work was supported by the University of Moratuwa under Senate Research Grant SRC/CAP/2017/03.

ABSTRACT Intelligent service robots are currently being developed to cater to demands in emerging areas
of robotic applications, ranging from entertainment to health care. These service robots are intended to be
operated by nonexpert users, and their service tasks involve direct interaction between these robots and
their human users. Thus, human-friendly interactive features are generally preferred for such service robots.
Humans prefer to use voice instructions, responses, and suggestions to convey ideas to their peers. However,
information conveyed through natural language communication is imprecise because it tends to contain
uncertain/qualitative information instead of precise quantitative information. Therefore, the ability to cope
with uncertain information in natural language instructions is mandatory for human-friendly service robots.
This paper presents a review of service robots and systems that can cope with uncertain information in natural
language instructions. The available literature has been investigated and analyzed to identify the limitations
of the existing methods and possible improvements. The identified limitations and possible improvements
are presented as the outcomes of the review.

INDEX TERMS Uncertain information understanding, human–robot interaction, human-friendly robotics,
service robotics.

I. INTRODUCTION
An intelligent service robot is a machine that is able to
gather information from its environment and use its knowl-
edge to operate safely in a meaningful and purposive man-
ner [1]. Recent developments in intelligent service robotics
have opened up new areas of robotic applications, such
as health care [2], [3], rehabilitation [4], [5], caretak-
ing [6], [7], assistance [8], [9], education [10], [11] and
entertainment [12], [13]. In particular, intelligent service
robots are being developed to serve as assistive aids for
elderly or disabled people [14]–[17] to address the widening
gap between the supply of and demand for human caregivers,
which has profound socioeconomic implications [18], [19].

The intelligent service robots used in these emerging areas
of robotic applications are anticipated to interact directly
with human users in domestic environments, with most
users belonging to the non-expert category. Hence, human-
friendly interactions between these service robots and their
human users are preferred in order to provide sophisticated

service [20]–[23]. Human-friendly robots should possess
human-like interaction capabilities, and the ability to real-
ize the dream of a perfect service robot obviously depends
on such capabilities. The feasibility of human-human-like
communication in human-robot interactions will enhance the
overall interaction between a human user and his or her
robot partner, which will ultimately increase user satisfac-
tion [20], [24]. However, the development of human-friendly
interactive features for service robots is complicated because
it requires the incorporation of the social-cognitive features
of human beings into robots [20].

Voice communication is one of the main communica-
tion modalities used by humans to convey instructions to
their peers [25]. Therefore, endowing robots with human-like
voice communication capabilities will enhance the overall
interaction between the robots and their users. This will ulti-
mately increase the rapport between users and their robotic
assistants, allowing users to receive more sophisticated ser-
vice from their robot companions [21], [26]. However, precise
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FIGURE 1. Example scenarios in which uncertain information is used for a purposive task and how the meanings change in different situations. (a) shows
a situation in which a robot is commanded to move a little bit forward by a human user. (b) shows a situation in which a robot is asked to place a cup a
little bit away from a box on a table. (c) shows a scenario in which a baseball is surrounded by two golf balls. (d) shows a situation in which the same
baseball is surrounded by a football, a soccer ball and a basketball.

quantitative information is not typically conveyed through
voice communication, and naturally spoken instructions and
responses often contain uncertain information, lexical sym-
bols and notions that need to be interpreted to achieve clear
comprehension. For example, a human user will generally
prefer to issue the command ‘‘move a little bit forward’’
rather than the command ‘‘move 40 centimeters forward’’
in a situation similar to the scenario shown in Fig. 1(a).
The quantitative meaning of the term ‘‘little’’ is not clearly
defined and depends on various factors. In this case, the quan-
titative distance meant by the user may be on the order
of 40–80 cm. By contrast, in the situation shown in Fig. 1(b),
the robot is commanded to ‘‘place it a little bit away from
the box’’ when placing a cup on a table. The quantitative
meaning of the term ‘‘little’’ in this situation is approxi-
mately on the order of 5–15 cm, clearly different from that
in the earlier situation. Furthermore, the scenarios depicted
in Fig. 1(c) and Fig. 1(d) show that the same quantitative
size could be referenced using completely opposite natural
language descriptors in two different situations. Fig. 1(c)
shows a situation in which a baseball is surrounded by two
golf balls; in this situation, the baseball will most probably
be referred to as being ‘‘large’’ in size in a natural language
instruction issued by a person. By contrast, in the scenario
shown in Fig. 1(d), the same baseball is surrounded by a
soccer ball, a football and a basketball. Even though the
quantitative size of the baseball is the same in both situ-
ations, a person will likely refer to the baseball as being
‘‘very small’’ in the second scenario. Humans have the ability
to interpret reasonable quantitative values for such uncer-
tain terms. These uncertain terms are also referred to as
fuzzy linguistic information or qualitative terms. Although
the quantitative meanings of uncertain terms such as ‘‘lit-
tle,’’ ‘‘far,’’ ‘‘high’’ and ‘‘large’’ depend on various factors,
humans unthinkingly use such terms in voice instructions,
suggestions and responses because of our remarkable cog-
nitive capacity to understand the quantitative meanings of
such terms based on the factors that affect those meanings.

Therefore, it is mandatory to endow a service robot with
a similar cognitive ability to understand and appropriately
respond to uncertain information in voice commands and
responses in order to provide human-friendly assistance to
users.

To this end, this paper presents a review of existing service
robots and systems that can cope with the uncertain informa-
tion contained in natural language instructions and responses
in the form of terms such as ‘‘little,’’ ‘‘far,’’ ‘‘high,’’ ‘‘near’’
and ‘‘far.’’

A. REVIEW PROTOCOL
The definitions of terms commonly used in this paper are
given below to provide a concise and clear background for
the reader.
• Uncertain information: Lexical symbols in natural lan-
guage instructions that do not have definite quantita-
tivemeanings. Examples include ‘‘little,’’ ‘‘far,’’ ‘‘high,’’
‘‘large’’ and ‘‘near.’’ Uncertain information may also be
referred to as fuzzy predicates, fuzzy linguistic informa-
tion, qualitative terms or uncertain terms. Such uncertain
terms are often used in relation to spatial informa-
tion, the size/length of an item, the properties of an
object, etc.

• Environment (related to adaptation entities): The
spatial properties of the surroundings of a robot that can
be quantitatively evaluated, such as distances between
objects, the free space in the room, and the sizes of the
room and the objects in it. However, properties of objects
that cannot be measured numerically (e.g., the danger of
placing gasoline near an open flame, the fact that a water
glass is typically placed near a lunch dish) are excluded.

• Experience (related to adaptation entities): Knowl-
edge of any previous action or state and any information
acquired through interaction with the environment and
users except contextual knowledge (e.g., previously
moved distances, knowledge acquired through user
feedback).
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• Context (related to adaptation entities): Specific
knowledge about the properties of objects, tasks or sit-
uations that may not be numerically measured
(e.g., the danger of placing a can of gasoline near an
open flame, the easily breakable nature of glass).

The literature to be reviewed in this survey was selected
by exploring major indexing databases such as IEEE Xplore,
SCOPUS, ScienceDirect and Google Scholar. Manuscripts
published in peer-reviewed journals or conference pro-
ceedings were considered for this review, whereas unpub-
lished or non-peer-reviewed manuscripts such as technical
reports, theses and dissertations, news items and web articles
were excluded, with the exception of books and chapters that
could be used to provide supporting statements or additional
information such as definitions. If the same core concept was
reported in two or more documents, such as a conference
paper and an extended journal article, the major focus was
placed on the journal article. However, if a journal article
was from a publisher other than IEEE, images were obtained
from corresponding conference articles published by IEEE,
if available. Furthermore, only manuscripts published in
English were considered. The scope of this review is limited
to the literature that addresses the understanding of uncertain
information in natural language voice instructions by service
robots and systems. The literature related to the understand-
ing of natural language representations in general and the
uncertainties related to difficulties in voice recognition was
excluded from this survey. However, a brief discussion of
voice and natural language communication in human-robot
interaction (HRI) is given in section II to provide the reader
with insight into the understanding of uncertain information
in natural language voice instructions. The current status of
robots and systems that can cope with uncertain information
in voice instructions is presented in section III. The limita-
tions of the existing systems and possible improvements are
discussed taxonomically in section IV. Finally, the investiga-
tion is concluded in section V.

II. VOICE AND NATURAL LANGUAGE COMMUNICATION
IN HUMAN–ROBOT INTERACTION
With the development of voice recognition and voice syn-
thesis engines, studies are being conducted in pursuit of
enhanced voice communication interfaces for robotic sys-
tems [27]–[29]. However, many of the early studies in this
area primarily focused on the implementation of interfaces
for voice communication between robots and humans, and
these studies were limited to the basic control of a robotic
system through a limited number of user instructions, such
as the control of automated wheelchairs [30]–[32]. Such sys-
tems are only capable of understanding simple, single-word
commands such as ‘‘go’’ and ‘‘stop’’ that are prerecorded in
the memory of the system.

For a general-purpose service robot, the ability to handle
only a limited number of simple instructions is not sufficient
since the number of functionalities of such a robotic system
is much higher [24], [33], [34]. For instance, a service robot

that works in the role of a nurse must be capable of conveying
empathy to a patient when communicating sensitive informa-
tion related to his or her condition, whereas a domestic service
robot that serves as a customer-handling agent at a service
desk should be capable of adjusting its speech based on
customer characteristics. In addition, such a limited system
would not facilitate human-like service. Therefore, human-
like voice communication abilities are desirable for service
robots, especially for achieving human-like human-robot
communication. To this end, service robots with human-
like voice communication capabilities have been developed,
and such robots are capable of obeying natural language
user instructions and responding with natural language dialog
phrases [25], [35]–[37].

Natural language voice instructions, responses and sug-
gestions often include lexical symbols and notions, uncer-
tain terms, redundant words and prepositions. Therefore,
robotic systems with human-like voice communication abil-
ities should possess the ability to understand such terms
appropriately. Methodologies have been developed for com-
puting the spatial relations conveyed by prepositions such as
‘‘behind,’’ ‘‘at’’ and ‘‘near’’ [38]–[41]. Themethods proposed
in [38] and [39] are capable of distinguishing between the
meanings of ‘‘at’’ and ‘‘near,’’ the methods proposed in [40]
and [41] are capable of grounding spatial relationships in
human-robot interactions, and the method proposed in [42]
can create an abstract map of the working environment based
on a semantic description containing prepositions. Natural
language voice instructions are often inaccurate or ambigu-
ous, and the exact meanings of such commands depend on
the context of interest. For example, consider the expression
‘‘the red ball on the table near the vase.’’ There are two
alternative interpretations of the expression: the red ball may
be near the vase, or the table may be near the vase. The
correct interpretation among the alternatives depends on the
actual arrangement of the environment. Themethod proposed
in [43] is capable of correctly understanding such ambigu-
ous or inaccurate commands by considering the arrange-
ment of the environment. Methods have been developed
to enhance the voice communication between robots and
humans by integrating multimodal interaction capabilities;
the method proposed in [44] is capable of identifying an
object referred to in a user instruction with the aid of pointing
gestures performed by the user, whereas the method proposed
in [45] is capable of generating gestures to be performed
by a robot for object-referencing communications, and the
method proposed in [46] is capable of fusing information
from these multiple modalities. Knowledge acquisition and
symbol grounding through multimodal human-robot interac-
tions have also been studied [47].

The methods described above enable interaction through
natural language voice instructions and responses to some
extent. However, these systems still lack the ability to under-
stand the uncertain information contained in natural lan-
guage instructions, and methodologies for coping with that
uncertain information have not been covered in the scope of
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those works. Uncertain information is often unthinkingly
included in voice instructions, responses and suggestions
during natural interactions, as explained in section I. The
core contribution of this study is to investigate the method-
ologies used in robotic systems to understand the uncertain
terms contained in natural language voice communication.
To this end, a comprehensive exploration of such systems is
presented in section III.

III. CURRENT STATUS: ROBOTS COPING WITH
UNCERTAIN INFORMATION IN NATURAL
LANGUAGE INSTRUCTIONS
A. EARLY DEVELOPMENTS AND APPROACHES
There have been many psychophysical studies on the per-
ception of distance and related cognitive issues [48]–[50].
These studies have revealed the characteristics of distance-
related human cognition, such as knowledge of relative loca-
tions, the asymmetry of cognitive distances and sources of
distance knowledge. However, these concepts are limited to
cognitive science, and the results of these studies have mainly
been applied for understanding concepts such as cognitive
distances in urban environments.

Dutta [51] proposed a concept for the representation of the
spatial constraints among a set of objects given imprecise,
incomplete and possibly conflicting information regarding
them. Furthermore, Clementini et al. [52] developed a qual-
itative model for representing the positions of objects and
performing spatial reasoning as a qualitative replacement for
quantitative vector algebra. However, these concepts do not
directly address the interpretation of uncertain information;
instead, they are mostly limited to understanding simple
qualitative representations, such as if object A is behind B,
then B is in front of A. In addition, these concepts have not
been implemented in real systems and have instead remained
limited to mathematical modeling.

B. SYSTEMS WITH PREDETERMINED
OR FIXED INTERPRETATIONS
A method of communication between robots and humans
using spatial language has been developed [53]. This system
is capable of generating linguistic spatial descriptions of the
surrounding environment. For example, it can generate the
following dialog: ‘‘The box is behind me. The object is
far.’’ Such dialogs include distance-related uncertain terms
such as ‘‘close’’ and ‘‘far’’ and direction-related uncertain
terms. The system can perceive the environment through
range sensors and generate spatial descriptions related to
distance and direction by using the method proposed in [54].
The direction descriptors are generated by categorizing the
space around the robot into 16 subdirections. The distance
descriptors are generated based on the distance of the object
from the robot, with the distance categorization illustrated
in Fig. 2. Therefore, the direction and distance categories
are fixed with hard boundaries, and the system does not
possess the ability to consider fuzziness typically inherited by

FIGURE 2. The distance categorization performed in the system proposed
in [53] and [54] to generate linguistic spatial descriptors of surrounding
objects.

linguistic descriptors. Therefore, this assumption will eventu-
ally degrade the performance of the system.

FIGURE 3. The linear modification factors used to obtain the desired
velocity when interpreting uncertain velocity instructions in the work
proposed in [55]. Reprinted with permission 
IEEE 2004.

Methodologies for controlling a robot using information-
rich natural spoken user utterances have been studied with the
intention of handling natural language voice instructions with
fuzzy implications related to the velocity of the robot while
ignoring the redundant words in natural language expres-
sions [55], [56]. For instance, consider the command ‘‘Robot,
please go very fast.’’ In this example command, the words
‘‘Robot’’ and ‘‘please’’ have no meaning within the opera-
tional domain of the robot; only the words ‘‘go’’ and ‘‘very
fast’’ are associated with the robot’s functions. The proposed
methodologies are capable of ignoring redundant words and
interpreting the fuzzy implications of natural language voice
commands to enable appropriate responses. However, they
are not capable of identifying the contextual grammar, and
hence, these systems cannot differentiate between the com-
mands ‘‘Robot, go very fast’’ and ‘‘Robot, do not go very
fast.’’ Crisp output values for fuzzy implications such as
‘‘very fast’’ are generated by a fuzzy neural network. The
output generated based on fuzzy linguistic information is
defined by a linear modification factor based on the current
state of the robot (i.e., the current velocity of the robot),
as shown in Fig. 3. The desired velocity is calculated as
Desired_Velocity = Velocity_Factor × Current_Velocity
using the corresponding velocity factor at the current speed
as obtained from the graph presented in Fig. 3. The linear
modification factors are defined based on the argument that
phrases such as ‘‘very fast’’ have low significance when
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the machine is close to the maximum velocity, whereas the
opposite is true for phrases such as ‘‘very slow.’’ Furthermore,
these linear modification factors are fixed. Hence, the output
of the system for a particular state is predetermined.

FIGURE 4. Flow chart of the fuzzy command interpreter proposed in [57].
This figure is based on [57].

A robotic aid system with a fuzzy command interpreter has
been developed for feeding the physically handicapped [57].
This system is capable of assigning crisp values to fuzzy
linguistic terms in user commands in accordance with the
current context. A fuzzy inference system is utilized, which
generates a crisp output by evaluating the difference between
the robot’s position and the user’s position as explained
in Fig. 4. The difference between the positions of the user
and the robot is calculated from their coordinates with respect
to a reference frame. The calculated position difference and
the uncertain descriptor to be interpreted are fed into the
fuzzy inference system to generate the crisp coordinates of
the destination position. The system is designed based on the
insight that when the distance between the robot and the user
is large, the command ‘‘move closer’’ should cause the robot
to move a large distance toward the user to reach a closer
position, whereas if the distance difference is small, then the
movement should cover only a small distance because the
robot is already close to the user. This system provides users
with a much friendlier interface through which to instruct
the robot. Although the system evaluates the current context,
the output is predetermined because the membership func-
tions of the fuzzy inference system are defined as fixed enti-
ties. Furthermore, the details of the fuzzy inference system
used in the proposed interpreter are not revealed.

C. ROBOTIC SYSTEMS THAT ADAPT THEIR PERCEPTIONS
IN ACCORDANCE WITH THE ENVIRONMENT
Uncertain information related to spatial information such as
the sizes of objects and distances is often used in typical assis-
tive tasks in domestic environments. The meanings of such
uncertain terms obviously depend on various environmental
factors. Therefore, concepts have been introduced for adapt-
ing the perceptions of robots regarding uncertain information
based on spatial information from the environment of interest.

A method has been introduced for effectively evaluat-
ing fuzzy linguistic information in manipulation-related user

FIGURE 5. Illustration of the parameter evaluation performed in the
visual attention system proposed in [57]. The neighborhood region in
each principal direction is indicated by the shaded area. Only the objects
in these neighborhood regions are considered for evaluating the average
distance; other surrounding objects are omitted. This figure is based
on [58].

instructions such as ‘‘move the red box a little to the left’’
based on visual attention [58]. The system is capable of
assigning a quantitative distance value to the distance-related
fuzzy implication in a particular user command. The target
object of a user instruction is identified by directly mapping
the lexical symbol to the object memory, which is done by
treating the Hu’s moments [59] and RGB values as the feature
set, in a manner similar to the method explained in [60].
However, the system does not handle the uncertainties related
to the properties of objects or uncertain information related
to the movement direction. Furthermore, the possible user
instructions are limited by a strict grammar model that does
not permit the system to learn new patterns for user instruc-
tions. Through visual attention, the system can perceive its
working environment in order to assess the spatial arrange-
ment of the objects therein. A fuzzy inference system is used
to generate a crisp distance value for a fuzzy implication
by considering the average distance to the objects in the
attended visual field. To calculate the average distance (davg),
the attended visual field is divided into regions based on
four principle directions, as shown in Fig. 5. Subsequently,
the average distances to the surrounding objects in each
neighborhood are calculated. Thereafter, davg is calculated by
assigning a higher priority to the region in the target moving
direction than to the regions in the other directions. Then,
the parameters obtained from the visual attention system
are fed into the fuzzy inference system as shown in Fig. 6.
To evaluate the performance of this system, experiments
were conducted to investigate how the evaluated distances for
different fuzzy implications vary with the arrangement of the
objects in the visual field. The results of these experiments
clearly indicate the ability of the system to adapt its per-
ceptions in accordance with the spatial object arrangement.
However, these results were not validated with respect to
user compliance. Furthermore, the system is capable only
of interpreting fuzzy implications related to motional infor-
mation; it cannot evaluate uncertain information related to
positional information. For example, it cannot evaluate the
command ‘‘move blue box near to the red box’’ since it cannot
evaluate the positional information related to the uncertain
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FIGURE 6. The membership functions of the fuzzy inference system used
in the system proposed in [58]. (a) shows the input membership function
for the average distance to the surrounding objects; the fuzzy sets are
adjusted with respect to D, which is the distance to the farthest object.
(b) shows the output membership function of the system; the fuzzy sets
in the output membership function are adjusted with respect to X , which
is the distance to the nearest object in the target moving direction. The
fuzzy predicates that can be identified by this system (i.e., ‘‘very little,’’
‘‘little,’’ ‘‘medium’’ and ‘‘far,’’ according to the grammar model) are fed
into the system through an input membership function with singleton
fuzzy sets. This figure is reproduced from [61]. Reprinted with permission

2009 IEEE.

term ‘‘near.’’ This is one of the major limitations of this
system. In addition to that, the system uses an overhead
camera to perceive its environment; hence, its attended visual
field is not human-like.

FIGURE 7. Illustration of the concept of frames used in [62] and [63].
Each room or object is associated with its own reference frame.

Schiffer et al. [62], [63] proposed amethod that can be used
by a service robot for qualitative spatial reasoning regarding
the positional information contained in user instructions. The
proposed concept has been combined with a logic program-
ming language known as GOLOG [64] and a framework
for reasoning about actions and changes known as situation
calculus [63]. This enables reasoning on fuzzy fluents related
to positional information by a robot operating in a domes-
tic environment. The basis of the reasoning method is that
the fuzzy information associated with positional informa-
tion in a domestic environment depends on the associated
frame or point of view. The assignment of frames in an
example situation is illustrated in Fig. 7. As an example,
‘‘far’’ with respect to a large room such as a living room has
a higher quantitative meaning than ‘‘far’’ with respect to a
small room such as a bedroom, whereas ‘‘far’’ with respect
to a table in the living room has a much smaller quantitative

meaning than in either of the previous two cases. Therefore,
the meanings of fuzzy terms are scaled in accordance with the
frame size, which is the size of the corresponding room or the
corresponding object, such as a table. Therefore, this method
enables the adaptation of perceptions based on the environ-
ment. However, experimental results on the variations in the
quantitative values interpreted from qualitative information
have not been gathered and analyzed. The adaptation process
entirely depends on the size of the frame, and other environ-
mental factors that may influence interpretation, such as free
space and object arrangement, are not considered. These are
the main shortcomings of this work.

FIGURE 8. Illustration of the main motivation for the work proposed
in [65]. In both situations, the person is instructed to move a little
forward. The person is standing 50 cm and 150 cm away from the wall in
scenarios (a) and (b), respectively.

According to the method proposed in [65], knowledge
of the size of the room alone is not sufficient for effective
interpretation of the uncertain information in navigational
commands such as ‘‘move a little forward’’ since inside the
same room, there may be different object arrangements that
can affect the meaning of uncertain information, such as
information related to the available free space. The authors’
main argument is that the movement constraints imposed
by the arrangement of the environment play a major role in
modifying the meaning of distance-related uncertain infor-
mation in navigational commands. This can be explainedwith
the aid of the scenarios illustrated in Fig. 8. In both scenar-
ios, the person is instructed to move a little forward inside
the same room but starting from different initial positions.
In the scenario shown in Fig. 8(a), the person is standing
in front of a wall with a 50 cm gap between him and the
wall. Therefore, the distance meant by the term ‘‘little’’ may
be approximately 15-20 cm. By contrast, in the situation
shown in Fig. 8(b), the person is standing 150 cm away from
the wall; accordingly, the distance meant by ‘‘little’’ may
be 50-60 cm. Furthermore, the availability of free space also
influences mobility. Therefore, the proposed system utilizes
environmental factors such as the room size, the available free
space and the movement restrictions imposed by obstacles
to adapt a robot’s perception of uncertain information based
on the spatial arrangement of the environment. The robot
is equipped with sonar sensors with which to perceive its
environment, and it calculates the required environmental
factors from stored navigation maps. A Mamdani-type fuzzy
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FIGURE 9. The fuzzy membership functions of the system proposed
in [65]. (a) shows the input membership function for the uncertain term
in a particular command. (b) shows the input membership function for
the available free space. (c) shows the output membership function,
which is adjusted according to the perceptive distance D. This figure is
based on [65].

inference system [66] is used to generate quantitative outputs
based on uncertain terms in user instructions by analyzing the
environmental parameters mentioned above. The input and
output membership functions of the fuzzy inference system
are shown in Fig. 9. The input membership function for
the free space is adjusted according to the room size (S).
The output membership function is adjusted according to D,
where D = Dr (Dr is the distance to the nearest movement
obstruction in the target direction, as illustrated on Fig. 8.).
Experimental results have been compared against user expec-
tations to evaluate the performance of the proposed system.
However, this system lacks the ability to handle uncertain-
ties related to positional information, and the possible user
instructions are limited by a strict grammar model that is not
updated during operation. These are the main limitations of
the proposed system.

The spatial information analysis ability of the system
introduced above has been further improved by deploying
a module called an occupied density analyzer [67], which
analyzes the occupancy of surrounding objects rather than
simply the distance to the nearest movement obstruction in
the target direction. The perceptive distance (D) that mod-
ifies the output membership function (i.e., the membership
function shown in Fig. 9(c)) is adapted from a mathemati-
cal function defined by analyzing the natural tendencies of
human beings. Thus, the perceptive distance (D) is calculated
as D = f (Dr , occupied_density_variation) instead of as
D = Dr as in [65]. The natural human tendencies considered
when formulating the mathematical model are summarized
below. The definition of the occupied density as given in the
paper is the area occupied by objects per unit area within a
considered region, and it is calculated as shown in (1).
• Mobility decreases when moving toward an area in
which the occupied density is high, and vice versa.

• The influence of objects in close proximity is higher than
that of objects farther from the intended movement path.

• Surrounding objects in different distance fields exert dif-
ferent degrees of effect based on the anticipated move-
ment distance.

• Mobility increases when moving away from an initial
position in an area with a high occupied density.

occupied_density =
area_occupied_by_objects
total_area_of _the_region

(1)

FIGURE 10. The regions into which the surroundings of the robot are
divided for analyzing the occupied density distribution in the work
presented in [67]. The arrow indicates the intended direction of
movement. Dr is obtained as illustrated in Fig. 8. This figure has been
adapted from [67].

To analyze the occupied density distribution, the area sur-
rounding the robot is divided into regions as shown in Fig. 10.
The occupied density of each area is calculated (i.e., OD{A}
for region A, OD{B} for region B, OD{C} for region C,
OD{D} for region D and OD{E} for region E). Then, the com-
bined occupied densities of regions A and D (OD{A,D}) and
regions B and C (OD{B,C}) are calculated using (2) and (3),
respectively, in which the priority constants are assigned
in accordance with the natural human tendencies described
above. Then, the combined occupied density of regions A, B,
C and D (OD{A,B,C,D}) can be obtained using (4), where δAD
and δBC are priority constants that depend on the uncertain
term. Finally, the perceptive distance (D) can be obtained
from (5), where δABCD and δE are experimentally defined
scalar constants.

The effectiveness of the proposed method has been eval-
uated in a user study and proven to be higher than that of
the system proposed in [65] because the proposed method
can replicate more natural human tendencies that were not
considered when designing the method proposed in [65].
However, the main criticism of this work seems to be the
brittleness of the mathematical formula defined for adapting
the perceptive distance (D) since the priority constants are
manually coded and the regions defined for calculating the
occupied density have hard boundaries, thereby disregarding
the natural fuzziness inherent in spatial categorization.

OD{A,D} = 0.66× OD{D} + 0.33× OD{A} (2)
OD{B,C} = 0.66× OD{C} + 0.33× OD{B} (3)

OD{A,B,C,D} = δADOD{A,D} + δBCOD{B,C} (4)
D = Dr[1− δABCDOD{A,B,C,D} + δEOD{E}] (5)
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The ability of service robots to generate uncertain terms
in their own voice responses is also an important feature for
the development of human-like communication abilities in
robots. The method proposed in [68] is capable of synthesiz-
ing uncertain terms related to the sizes of objects for use in
voice responses. The proposed concept uses visual attention
to adapt the perception of uncertain information. The system
has been implemented with a fuzzy inference system that
can generate an uncertain term by analyzing the following
environmental parameters in a particular scenario: the aver-
age size of the surrounding objects, the size of the object of
interest and the size of the region of interest. Experimental
results from a user study validate the applicability of the
proposed system for synthesizing uncertain terms to be used
in robot voice responses. However, the system is only capable
of generating a predefined set of uncertain terms related to the
sizes of objects.

D. ROBOTIC SYSTEMS THAT ADAPT THEIR PERCEPTIONS
IN ACCORDANCE WITH EXPERIENCE
Humans build up a knowledge base by acquiring knowledge
through experience. This knowledge base can be used to form
an understanding of the working environment, user expecta-
tions and context. Furthermore, such knowledge acquisition
enhances the ability to interpret fuzzy linguistic information
in accordance with the current environmental context and
the expectations of the user. Therefore, experience is also an
important factor in adapting the perception of a robot regard-
ing uncertain information, and systems have been developed
for perception adaptation based on a robot’s experience.

The meaning of an uncertain term depends on the imme-
diately previous state. For example, consider two persons
driving a car. A person who has already driven 100 km may
think that driving another 10 km would be a short distance,
whereas a person who has driven only 15 km may think that
driving another 10 kmwould be a long distance. Based on this
phenomenon, the method proposed in [69] and [70] assumes
that the quantitative meaning of an uncertain term depends
on the immediately preceding movement of the robot. The
proposed system is known as the fuzzy coach-player system
and can be used to teach a robot certain behaviors using
natural language instructions. The quantitative values asso-
ciated with uncertain terms are interpreted by a fuzzy infer-
ence system that uses the immediately preceding moment
of the robot as an input. The end effector movements and
single joint movements of a manipulator were considered
in [69] and [70], respectively, for implementation. The input
and output membership functions of the fuzzy inference sys-
tem used in [70] are shown in Fig. 11. The fuzzy sets in
the membership functions are fixed and defined based on
expert knowledge. Therefore, the adaptivity of the system
to different conditions is limited, which is one of the major
shortcomings of this method.

However, there are situations in which the immediately
previous state alone will misrepresent the overall experience.
For example, consider a situation in which a person has

FIGURE 11. The membership functions of the fuzzy inference system
used in [70]. (a) shows the input membership function for the action
modifier (i.e., the uncertain term in a particular user instruction).
(b) shows the input membership function for the robot’s previous
movement. (c) shows the output membership function. This figure is
based on [71].

FIGURE 12. Flow chart of the core functionality of the internal rehearsal
system proposed in [72]. This figure is based on [72].

driven a car 80 km, 100 km, 70 km, 90 km and 2 km in 5
consecutive trips. If only the immediately previous state is
considered (i.e., only the 2 km trip), the person’s experience
is not represented correctly. Therefore, a set of previous states
should be considered to achieve an enhanced assessment of
the situation. Based on this idea, the method proposed in [72]
interprets uncertain information by considering a set of move-
ments of the robot. This method uses the concept of internal
rehearsal [73], namely, an internal simulation that replicates
the ability of humans to internally perceive and manipulate
their environment and to forecast the future [74]. A functional
overview of the system is depicted in Fig. 12. The system
consists of two main components: the fuzzy inference system
and the internal rehearsal system. The functionality of the
fuzzy inference system is similar to that of the fuzzy infer-
ence system used in [70] (i.e., the fuzzy inference system
depicted in Fig. 11), although it is implemented as a fuzzy
neural network. The fuzzy inference system is responsible
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for evaluating the quantitative meaning of an uncertain term
in a particular instruction by considering the previous move-
ments in a manner similar to [70]. However, the internal
rehearsal system suggests the corresponding previous move-
ments. The internal rehearsal system consists of a Rehearsal
Memory (RM), a Previous Movement memory (PM) and a
Rehearsal Counter. The RM stores the internally simulated
output values provided by the fuzzy inference system (i.e., sr )
for the suggested previous movements (PMr ). The process is
iterated from r = 1 to r = Nrh, where r is the count of inter-
nal rehearsals and Nrh is the defined threshold limit (which
indicates howmany previous movements are to be considered
as representative of the robot’s experience), without perform-
ing any real movement. Thereafter, the simulated outputs (sr )
in the RM are integrated as expressed in (6) to determine the
required quantitative output (Y ) for the movement, where pr
is a constant that represents the probability of relevancy of the
r th internal rehearsal for the final outcome. Therefore, pr is
defined such that the probability of relevance decays over
time (i.e., the value of pr exponentially decays from r = 2
to r = Nrh), similar to human memory. Thus, more recent
previous states have a higher influence on the final output
than states further in the past. The variation in the quantitative
values interpreted for fuzzy linguist information with the
number of internal rehearsals has been analyzed to assess the
performance of the proposed concept. The proposed concept
has been implemented for the end effector and posture control
of a fixedmanipulator. However, the system is only capable of
handling a predefined set of uncertain terms, and the possible
user commands are limited by a strict grammar model.

Y =

∑Nrh
r=1 srpr∑Nrh
r=1 pr

(6)

An adaptive fuzzy command acquisition network that
processes fuzzy linguistic information in spoken language
commands has been proposed [75]. The proposed system
is capable of acquiring knowledge about fuzzy linguistic
information based on user feedback. The concept has been
implemented with a neural network to produce a system
capable of learning new user commands and online learn-
ing. Hence, the possible user instructions are not restricted,
and the system can acquire new knowledge while operating.
However, as implemented, the size (number of nodes) of the
network increases exponentially with the vocabulary size.
The ability of the system to acquire knowledge of fuzzy
commands has been experimentally verified. However, its
ability to interpret quantitative values from fuzzy linguistic
information has not been experimentally assessed. The initial
training of the network requires a large data set, and users
cannot provide natural language feedback to the system.
These are the main shortcomings of the proposed concept.
Furthermore, the proposed system has not been implemented
in a real robotic system, although it is expected to be applica-
ble for voice-controlled robots, online information retrieval
systems, etc.

FIGURE 13. The structure of the fuzzy neural network used in [76] for
interpreting uncertain information. Note that only the important
components for the interpretation process are included here, and hence,
the numbering of the layers is different from that in the original
publication. This figure has been adapted from [78].

Jayasekara et al. [76] proposed a method for adapting
the perception of fuzzy linguistic information based on user
feedback. The proposed concept was implemented with a
fuzzy neural network. The important components and layers
of the fuzzy neural network are shown in Fig. 13. The first
layer contains two types of nodes for acquiring two types of
inputs: the uncertain term to be interpreted and the previous
movement of the robot. The second layer act as the fuzzifi-
cation layer, and the same input membership functions used
in [70] and [72] are also used here, with slightly modified
fuzzy sets. The third layer represents the rules by taking
algebraic products between the outputs of the second layer
in T-norm form, and the output of the ith node in this layer
represent the firing strength of the ith rule (µi). The fourth
layer links each fuzzy antecedent to its consequent, with
each node i representing a triangular fuzzy set with center
ai and width bi. The parameters in this layer (i.e., ai and bi)
are initialized with values somewhat similar to the output
membership function of the fuzzy inference system presented
in [70] and [72] (however, a uniform distribution of fuzzy
sets over the universe of discourse is considered here). The
fifth layer is the defuzzification layer, and the defuzzified
output (A) is obtained via (7) using sum-product composition
for Mamdani fuzzy systems [77], where NR is the number of
rules.

A =

∑i=NR
i=1 aibiµi∑i=NR
i=1 biµi

(7)

The connection weights of the fifth layer of the net-
work (i.e., ai and bi) are adjusted based on user feedback.
This enables more natural communication and ultimately
enhances the interaction between the user and the robot.
To assign quantitative values to the feedback terms, a mod-
ule called a vocal cue evaluation system is deployed. This
module was developed based on a fuzzy inference sys-
tem that assumes that the quantitative meanings of feed-
back terms depend on the immediately previous state of
the robot. The connection weights are modified though
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backpropagation based on the quantitative error identified via
user feedback.

The performance of the system has been further improved
by considering the willingness of the user [78], which can
be used as a parameter to identify the user’s motivation to
change the perception of the robot regarding a particular
uncertain term. This parameter is evaluated by consider-
ing a series of user feedback instances. The performance
improvement of the system due to the consideration of the
user’s willingness for adaptation has been experimentally
investigated by defining a performance index called the
user satisfactory level. The satisfactory level is the ratio
between the number of feedback instances of the ‘‘good’’
type received and the total number of feedback instances.
The proposed system is capable of adapting the robot’s per-
ception of uncertain information toward that of the user. The
system has been implemented to control the end effector of
a fixed robotic manipulator. The possible user commands
and feedback terms are bounded by a strict rule set. Further-
more, the system cannot evaluate subconscious body move-
ments of the user that could be used as feedback, such as
facial expressions; instead, explicit feedback must be given
to adapt the robot’s perception, which places a burden on
the user.

None of the systems mentioned in this section can per-
ceive the environment through sensors; hence, these systems
cannot adapt their perceptions in response to changes in the
environment. Therefore, they are not suitable for use in a
dynamic environment or for mobile tasks since their expe-
rience is only applicable for a particular environment. This
is the major limitation of systems that adapt based solely on
experience.

E. ROBOTIC SYSTEMS THAT ADAPT THEIR PERCEPTION
IN ACCORDANCE WITH BOTH THE ENVIRONMENT
AND THEIR EXPERIENCE
The meaning of uncertain terms depends on both the envi-
ronment and previous experience. Therefore, consideration
of only one aspect is not sufficient for effective perception
adaptation. Consequently, methods have been developed for
adapting a robot’s perception of uncertain information based
on both environmental factors and experience.

Muthugala and Jayasekara [79] introduced the concept of
the Robot Experience Model (REM) to enhance the effec-
tiveness of understanding uncertain information. The REM
is a hierarchical structure (as shown in Fig, 14(a)) that orga-
nizes a robot’s knowledge of its environment, actions and
context. The knowledge of the REM is used to identify the
required set of robot actions to satisfy a given user command
based on the environment. The proposed system includes two
submodules for the interpretation of uncertain information
related to motional and positional information. The submod-
ule required for interpretation is selected based on the type
of robot action to be performed. Uncertainties in motional
commands are interpreted by a fuzzy inference system similar
to the one proposed in [65] (i.e., the system shown in Fig. 9).

FIGURE 14. (a) shows the structure of the Robot Experience
Model (REM) [79]. (b) illustrates the environmental parameters used by
the fuzzy inference system for interpreting positional information in [79].
These figures have been adapted from [79].

FIGURE 15. The membership functions of the fuzzy inference system
used in [79] for interpreting uncertain information related to positional
information. (a) shows the input membership function for the available
free space, which is adjusted according to the room size (S). (b) shows
the input membership function for the object size, which is also adjusted
according to the room size (S). (c) shows the output membership function,
which is adjusted according to the perceptive distance (D). d0 is used to
maintain a safe clearance. These figures have been adapted from [79].

Uncertain information related to positional information is
interpreted by another fuzzy inference system that evalu-
ates the available free space, the room size, the size of
the reference object and the distance between two objects
(illustrated in Fig. 14(b) as Dobj) or the distance between
the robot and the reference object (illustrated in Fig. 14(b)
as Dr) as the basis for the interpretation. The input and
output membership functions of the fuzzy inference system
are depicted in Fig. 15. Here, it is assumed that the meanings
of lexical symbols representing positional information such
as ‘‘close’’ and ‘‘near’’ are the same. Hence, the quantita-
tive distance does not change with such uncertain positional
information. The output membership function is adjusted
according to the perceptive distance (D), which is defined
as D = min(Dr,Dobj). The possible user commands are
not restricted by a grammar model, and hence, flexible user
commands can be used. The system is also capable of learning
new lexical symbols and identifying changes in the environ-
ment by acquiring knowledge through interactive discussion,
as explained in [80]. The proposed system is capable of
navigating a mobile robot inside a domestic environment
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FIGURE 16. The linear functions used in [61] and [82] to modify the
attention level. Reprinted with permission 
2009 IEEE.

based on user instructions that contain uncertain information.
To validate the performance of the system, the movements
of a robot were compared against user expectations. The
context layer of the REM is inactive, and hence, the robot’s
perception cannot be adapted in accordance with its context.
Furthermore, the system is not capable of adapting the robot’s
perception towards the expectations of the user. These are the
main limitations of the proposed system.

F. ROBOTIC SYSTEMS THAT ADAPT IN RESPONSE
TO INFLUENTIAL USER INSTRUCTIONS
A robot’s attention can be modified based on an external
stimulus such as a voice command [81], and hence, attentive
instructions such as ‘‘move carefully’’ influence the quan-
titative meanings of fuzzy implications in user commands.
Therefore, Jayasekara et al. [61] and Izumi et al. [82] pro-
posed the use of an attentive modification factor to mod-
ify the perception of fuzzy linguistic information when an
attentive instruction is given. The proposed concept has been
utilized in combination with the uncertain information eval-
uation method proposed in [58] and [76]. The user can
use a set of predefined attentive instructions to influence
the robot’s perception by adjusting the attentive modifi-
cation factor. The attentive modification factor is a linear
function (as shown in Fig. 16) that depends on different
attentive instructions such as ‘‘move more carefully’’ and
‘‘move carefully,’’ and this function is defined such that
it can replicate natural human behaviors, such as the fad-
ing of the effect of an attentive instruction with successive
operations.

IV. LIMITATIONS OF THE EXISTING SYSTEMS
AND POSSIBLE IMPROVEMENTS
The existing systems have limitations, and their performance
in understanding uncertain information is far below the capa-
bilities of humans. Hence, the existing methods should be
improved to enhance human-robot interactions. The limita-
tions of the existing methods for understanding uncertain
information have been analyzed, and possible improvements
are suggested based on the following three aspects: scope,
interaction and adaptation. Uncertain information can be
related to various entities, such as spatial information, time,
and event count, and these related entities define the scope

of the uncertain information to be interpreted. The way in
which the interactions between users and robots occur and
the way in which the perception of uncertain information
is adapted are regarded as the aspects of interaction and
adaptation, respectively, in this analysis. The current status
of the methods used for understanding uncertain information
and the identified possible improvements are summarized
taxonomically in Table 1.

A. SCOPE
Humans unthinkingly include uncertain terms related to
many different entities in voice instructions and suggestions.
However, most existing systems are limited to handling only
uncertain information related to distances in the environ-
ment [63], [70], [76], [79], the speed of movements [55], [75],
the directions of objects [53], the sizes of objects [60], [68]
and the joint angles of manipulators [69], [72]. Uncertain
terms related to other aspects such as time, event counts
and processing tasks have not been addressed. Therefore,
it would be interesting to extend the capabilities of the exist-
ing systems to incorporate the ability to understand uncertain
information related to such entities. However, this would be
a challenging task since the factors that affect the meanings
of such uncertain information would need to be identified,
as previous studies have not revealed this information.

B. INTERACTION
The present systems that have been developed for interpret-
ing uncertain information are capable only of interacting
with humans through voice communication. Hence, their
interactions are unimodal, and these systems are not capa-
ble of gathering information conveyed through interaction
modalities such as hand gestures, facial expressions or body
movements. The information conveyed through modalities
other than voice communication can be used as a supportive
aid to enhance the understanding of uncertain information
contained in voice instructions. Furthermore, facial expres-
sions and subconscious body movements can be used as a
substitute for voice feedback in systems that adapt based
on user feedback, such as that presented in [76]. This will
ultimately reduce the overhead burden on the user and hence
improve interaction.

The inclusion of uncertain terms in vocal responses gener-
ated by robots can enhance their human-like communication
abilities. However, most present systems are only capable of
interpreting uncertain information in user instructions, and
few studies have addressed the generation of uncertain terms
to be used in robot vocal responses. The system proposed
in [53] assigns fixed meanings to uncertain terms used in
responses, whereas the method proposed in [68] is capable
of synthesizing uncertain terms related only to the sizes of
objects by adapting the robot’s perception based on visual
attention. Therefore, the capabilities of the existing systems
are not sufficient in this regard, and studies should be con-
ducted to developmethods of effectively generating uncertain
terms to be used in the vocal responses of robots.
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TABLE 1. Summary of the current status of the methods used for understanding uncertain information and the possible future improvements.

C. ADAPTATION
According to the analysis of the existing literature, various
methods are used in existing systems to adapt a robot’s
perception of uncertain information. These methods rely on
different types of information and different artificial intel-
ligence (AI) techniques. Therefore, the limitations of the
existing systems and the possible improvements to the adap-
tation methods are analyzed separately with respect to these
two aspects, i.e., the adaptation entities and the artificial
intelligence techniques. Furthermore, the performance eval-
uation methods used in the existing approaches are also
discussed.

1) ADAPTATION ENTITIES
Existing methods are capable of adapting a robot’s perception
based on different factors (or entities) that effect the meaning
of uncertain information. For example, the methods proposed
in [58], [63], and [65] are capable of perception adaptation
based on the environment, whereas the methods proposed
in [70], [72], and [76] are capable of perception adaptation

based on experience, and the method proposed in [79] is
capable of utilizing both experience and environmental fac-
tors for perception adaptation.

Systems that adapt their perceptions based on the environ-
ment are capable of adaptation based on the spatial factors of
the environment. For instance, the method proposed in [63]
uses the room size, the method proposed in [58] uses the
average distance between objects, and the method proposed
in [65] uses the room size, the available free space and the
arrangement of the obstacles in the environment. In most
studies, a robot perceives its environment through sonar sen-
sors and navigation maps; visual feedback is used only in
the system proposed in [58]. Therefore, the environmental
perception capabilities of the existing methods are limited to
a few aspects of the environment. For example, Muthugala
and Jayasekara [79] proposed a navigation system that con-
siders the sizes of landmark objects when assigning quanti-
tative values to uncertain positional information. However,
the system cannot determine the actual size of a landmark
object because it uses only the footprint area of the object
without considering the height. This ultimately hampers the
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performance of the system. The system that utilizes visual
information to perceive its environment [58] does not pos-
sess stereoscopic vision; instead, it uses an overhead camera.
Therefore, the view of the camera is not similar to that of
a human. However, the meaning of uncertain information
may differ depending on the field/angle of view. Hence,
this system is at a disadvantage for interpreting uncertain
information since it does not have human-like environmental
perception. To improve the effectiveness of robots in under-
standing uncertain information, a human-like visual attentive
mechanism should be incorporated into robots in future work.
Furthermore, other environmental factors that influence the
meaning of uncertain information are not utilized by the exist-
ing methods. However, no comprehensive studies have been
conducted to identify all of the environmental factors that
affect the meaning of uncertain terms and how their influence
manifests. Therefore, investigations need to be performed
to identify the influential environmental factors and how
they can be used to adapt a robot’s perception of uncertain
information.

2) AI TECHNIQUES
Most systems that can understand uncertain terms in user
commands utilize fuzzy inference systems to assign quanti-
tative values to those uncertain terms (e.g., [57], [58], [63],
and [79]). To achieve a learning ability, fuzzy neural networks
are utilized in systems that can adapt their perceptions of
uncertain terms based on user feedback (e.g., [75], [76],
and [78]). Fuzzy logic systems are most often used for this
purpose due to their ability to effectively model the knowl-
edge of human beings in robotic systems without knowledge
of the underlying dynamics [66], [77] ormost of the behaviors
related to the human-robot interaction domain [83], [84].

The fuzzy inference systems utilized in these systems
are fuzzy type I systems. However, Mendel [85] showed
that interval type II fuzzy sets can better represent linguis-
tic uncertainties since the membership grade of an interval
type II fuzzy set is an interval instead of a crisp value. There-
fore, interval type II fuzzy sets can be used to improve the
understanding of uncertain information by robots. Further-
more, the recent development of computationally effective
algorithms for implementing type II fuzzy inference sys-
tems [86] offers the possibility of using general fuzzy type II
techniques for improved performance. Therefore, an interest-
ing direction for future work would be to model such systems
using general type II fuzzy sets or interval type II fuzzy sets
in order to investigate the resulting performance gain, despite
the implementation and computational complexity.

As explained in section IV-C.1, the perception of uncertain
information should be adapted in accordance with the con-
text. To identify the relevant context, a fuzzy Naive Bayesian
network could be used, as explained in [6]. For the fusion of
multimodal interactions, it may be possible to use Bayesian
networks in a manner similar to the methods explained
in [44]. Such methods could be adopted as supportive aids
for the interpretation of uncertain information. In addition,

finite-state intention machines [1] and hierarchical structures
such as the Robot Experience Model (REM) [79] are used
in some systems as supportive aids for intelligent systems
that interpret the uncertain information in user instructions
(e.g., [79] and [80]).

3) PERFORMANCE EVALUATION
Few methods of evaluating the performance of systems for
interpreting uncertain information in voice commands issued
to robots can be found in the available literature. An index
called the user satisfactory level [76] has been used to evalu-
ate the ability of a robot to adapt its perception toward that of
the user. The user satisfactory level is calculated based on the
user’s acceptance of the responses of the robot to successive
user instructions. Specifically, the user satisfactory level is the
ratio between the number of cases accepted by the user and
the total number of cases considered. In [65] and [79], user
feedback was used to evaluate system performance. In [68],
a human study was conducted by asking the participants to
rate the sizes of objects in different scenarios using linguistic
terms, and the results of that study were compared against
the linguistic terms synthesized by a robotic system. Further-
more, in [67], a user study was conducted by asking users
to operate a robot using a joystick. Using this approach,
the findings of the user study and the output of the system
could be quantitatively compared to evaluate system perfor-
mance. However, these experiments and evaluation methods
are highly subjective due to the subjectivity of the human
participants. Therefore, the necessary human studies should
be conducted in such a way that the experimental results
can provide a basis for generalizability; recommendations for
designing, planning and executing human studies for HRI
can be found in [87]. The convergence capability of the
learning function was also analyzed in the method proposed
in [72], which can also be a good choice for evaluating
the performance and parameter variations of such intelligent
systems.

V. CONCLUSION
This paper has presented a review of service robots cop-
ing with uncertain information in natural language voice
instructions and responses. Service robots are currently being
developed to cater to demands in emerging areas of robotic
applications, such as health care, education, rehabilitation and
assistance, and service robots with human-like interaction
capabilities are preferred for such applications.

Voice communication is one of the predominant interac-
tion modalities used to convey information between peers.
Hence, service robots with human-like voice communica-
tion capabilities can provide better service. However, nat-
ural voice instructions do not convey precise quantitative
information, and humans typically prefer to use uncertain
terms, lexical symbols and notions rather than more precise
quantitative values. Hence, the ability to interpret such uncer-
tain information is mandatory for a human-friendly service
robot.
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The quantitative meanings of uncertain terms depend on
several factors, such as the environment, past experience
and the current context. Therefore, robotic systems should
have ability to adapt their perception of uncertain informa-
tion based on these entities. The existing robotic systems
have been critically taxonomically investigated based on their
adaptation entities.

Fuzzy logic and fuzzy neural networks are often used in
the existing methodologies to interpret the uncertain infor-
mation in voice instructions due to their ability to model
natural human tendencies. Fuzzy inference systems and
fuzzy neural networks are capable of effectively interpreting
uncertain information to a great extent. However, the exist-
ing systems are nevertheless subject to limitations in their
ability to interpret uncertain information in a human-like
manner.

The limitations of the existing systems have been identi-
fied, and possible future improvements have been presented
in this paper. In summary, the capabilities of the existing
systems are far below the cognitive capabilities of human
beings with regard to understanding uncertain information.
Furthermore, minimal research has been done in this partic-
ular research area, although there is promising potential for
future developments.
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