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ABSTRACT Diabetic retinopathy (DR) is one of themost commonmicrovascular complications and its early
detection is critical for the prevention of vision loss. Recent studies have indicated that microaneurysms
(MAs) are the hallmark of DR. However, the detection of MAs relies on trained clinicians and relatively
expensive software. Moreover, manual errors often lower the accuracy of this detection. Therefore, an auto-
matic analysis technique is highly demanded in the detection of DR progression. In this paper, we present
a novel and complete methodology involving two different ways from the view of MAs turnover and
pathological risk factors to diagnose the progression of DR. Specifically, one approach follows the traditional
image analysis-based roadmap to obtain MAs turnover. The other investigates seven pathological features,
related withMAs turnover, to classify the unchanged, new, and resolvedMAs bymeans of statistical analysis
and pattern classification techniques. The evaluations on Grampian diabetes database show that the proposed
image analysis method could achieve a sensitivity of 94% and a specificity of 93%, while the classification
model could achieve 89% sensitivity and 88% specificity, respectively.We also analyzed the potential weight
of pathological risk factors leading to the MAs turnover, which could provide an alternative guidance for
the progression of DR than traditional detection methods. In conclusion, this study provides a novel and
noninvasive detection technique for early diagnosis of diabetic retinopathy with a competitive accuracy.

INDEX TERMS Mircoaneurysms turnover, lesion coordinates comparison, pathological risk factors.

I. INTRODUCTION
Diabetic retinopathy (DR) is the most common complica-
tion of diabetes and one of the major causes of vision
impairment [1]. The early diagnosis and treatment of DR are
very critical to the prevention of blindness. Microaneurysms
(MAs) are the first sign of diabetic retinopathy. According to
the Early Treatment Diabetic Retinopathy Study (ETDRS),
the appearance of only a few MAs shows the symptom
of mild non-proliferative diabetic retinopathy (i.e., ETDRS
level 20) [2]. The more MAs, the higher risk of developing
the diabetic retinopathy. Currently, ophthalmologists inspect

the color fundus image, perform the screening and detect
the MAs manually, which is a repetitive, tiring and error-
prone procedure. Additionally, a manual diabetic retinopa-
thy screening alone cannot meet the detection needs of
large and increasing diabetic population. Fortunately, med-
ical researches show that progression to vision impairment
can be slowed or averted, if DR is detected earlier [3].
However, detecting DR is a time-consuming process and
carried out manually, which requires a trained clinician to
examine and evaluate digital color fundus photographs of the
retina. Therefore, the development of automatic DR detection
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techniques based on eye screening has aroused widespread
interests and led to researches both academic and medical
communities [4]–[6]. Thus, the majority of DR diagnostic
systems are based on the image analysis methods. In this
article, we propose an image analysis approach to classify
MAs turnover, by combining the image registration and the
lesion coordinate detection together. Importantly, we further
propose a SVM (support vector machine)-based approach
on classifying MAs turnover by recording the variance of
pathological risk factors in-between each episode, and further
predict the weight of each pathological risk factor leading to
the MAs turnover. The medical contribution is to provide a
referral for the ophthalmologists on controlling these high-
risk factors.

The rest of the paper is organized as follows. Section 2
briefly reviews the related work. Section 3 describes the
testing and training data preparation for the two paralleled
methods. Section 4 details our image analysis approach,
while the proposed classification model is described in
Section 5. Section 6 compares the image analysis and classi-
fier methods by referencing the gold standard confirmed from
our ophthalmologists, and further investigates the potential
pathological risk factors for diabetic retinopathy regression.
Finally, the conclusion and future work are summarized in
Section 7.

II. RELATED WORK
A. RECENT METHODS ON DIABETIC RETINOPATHY
BY DETECTING MICROANEURYSMS TURNOVER
Microaneurysms (MAs) are the focal dilatation of capillaries
which occurs adjacent to an occluded capillary. As further
capillaries occlude, new MAs form. However, MAs attached
to a capillary that subsequently occludes will thrombose and
no longer be visible. Recent studies indicated that MAs are
the hallmark of diabetic retinopathy [7]. Thus, most of the
existing automatic methods usually treat diabetic retinopathy
as MAs detection and analyze the problem on color fundus
images conquering it in two consequent stages: detection and
classification of MA candidates. This involves different tech-
niques of image preprocessing, image segmentation, feature
extraction and classification, such as [8] and [9]. In previ-
ous work, the software ‘‘iGrading’’ is to detect the microa-
neuryms and hemorrhages as described in [9]. In this article,
we adopt the iGrading software to detect the MAs lesion
coordinates from baseline and follow-up retinal images.

An early method proposed a new constraint for optic
disk detection to find the location of optic disk for lesion
detection. Based on this, exudates, MAs, and hemorrhages
can be detected quite accurately using different morpholog-
ical operations, when they are applied appropriately [10].
Niemeijer et al. [11] showed that the fusion of these results of
several MA detectors leads to an increased average sensitiv-
ity, measured at seven predefined false positive rates. Then,
the extraction ofMA candidates is accomplished by grayscale
diameter closing to find all sufficiently small dark patterns on

the green channel [12]. Finally, a double threshold is applied
to extract MAs candidates. A simple but effective approach
for detectingmicro-aneurysms in retinal angiographic images
was presented in [13]. The proposed scheme is based on
the removal of blood vessels from the image and then
classifying whether all detected circular objects are micro-
aneurysms. In order to extract candidates, Zhang et al. [14]
constructed a maximal correlation response image for the
input retinal image. The maximal correlation response image
is thresholded with a fixed cut-off value to obtain candidates.
Quellec et al. [15] proposed a wavelet transform for the detec-
tion of microaneurysms in retina photographs, by matching a
lesion template in sub-bands of wavelet transformed images.
Besides, Antal and Hajdu [16] introduced an ensemble-
based framework to improve MA detection. The authors
proposed a combination of internal components ofMA detec-
tors, namely preprocessing methods and candidate extractors.
Tavakoli et al. [17] also used the RetmarkerDR software
to identify the early biomarkers of diabetic retinopathy
by combining Radon transform (RT) and multi-overlapping
windows.

After extracting the MAs from two successive images,
image registration methods can be applied to both images for
the detection of new, unchanged, and resolved MAs. To our
best knowledge, early attempts on the image pair registration
aimed to find the corresponding position in successive images
to compare the changed and unchanged MAs [18]. Later,
Bernardes et al. [19] mapped the detected MAs locations
by an image registration software (named as MA-Tracker).
Leicht et al. [20] adopted the RetmarkerDR software to
analyze MAs turnover after the treatment of ranibizumab.
These attempts indicate that theMAs turnover is an important
biomarker for the early diagnosis on diabetic retinopathy as
recorded in [21].

In our image analysis method, we adopt the Generalized
Dual Bootstrap-ICP image registration (GDBICP) [22] to
register the MAs candidates from baseline and follow-up
images. GDBICP is an automated image registration algo-
rithm; it extracts and matches the key points from image pair
(for details, please refer to [22]).

B. RECENT CLASSIFICATION METHODS ON
MICROANEURYSMS DETECTION USING
PATHOLOGICAL RISK FACTORS
On the other hand, recent studies found that the pathological
factors associated with diabetic retinopathy are fasting blood
glucose value, blood pressure (diastolic and systolic), high
and low-density lipoprotein, genetic factors, intraocular pres-
sure, vitreous state and optic neuropathy and so on [23], [24].
Our hypothesis is that some pathological risk factors might
be also related with MAs detection longitudinally.

Besides, in a recent diabetes progression research [25],
SVM proves its effectiveness to perform better than
traditional statistical methods, like logistic regression,
especially in situations that include multivariate risk fac-
tors with small effects, limited sample size, and limited
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knowledge of risk factors. This technique can be also
extended to MAs detection in the large data sets, as the early
biomarkers of diabetic retinopathy. Therefore, the analysis
on pathological risk factors could be an effective diagnostic
technique for both MAs turnover and the progression of dia-
betic retinopathy. It is worthy to mention that the linear SVM
model has this specific indication to find feature weighs [26].
Akram et al. [27] presented a hybrid classifier by combin-
ing the Gaussian mixture model (GMM) and SVM in an
ensemble to improve the accuracy ofMAs detection. Besides,
Adal et al. [28] adopted scale-adapted blob analysis to find
the texture descriptors and semi-supervised learning to detect
MAs.

The common feature of these classification models
requires an image feature extraction for the pre-processing
on fundus images, which needs a retinal screening in advance
and could be affected by the poor image quality or clinician’s
error operation.

In this research, we propose a semi-supervised approach
by recording the pathological risk factors after each reti-
nal screening. After proposing an image analysis method to
classify MAs turnover from each pair, their corresponding
changes of risk factors were also recorded as the training fea-
tures, to classify theMAs turnover from the remaining testing
set. We also adopt the labeled class from the number counting
ofMAs turnover, to predict theMAs turnover from the testing
data set. The agreement measurement between ground truth
and our proposed methods proved its effectiveness in the
testing data set.

C. OUR CONTRIBUTION
The contributions of this study are concluded as follows:

1. An automated image analysis method is proposed to
classify the microaneurysms turnover, by combining
the image registration algorithm (GDBICP) and iGrad-
ing (MAs detection) software. This image analysis
method was used to detect the MAs turnover longitudi-
nally, i.e., unchanged, new and resolved MAs.

2. By further recording the variance of the pathological
risk factors in-between two consecutive episodes and
assigning the label on the number of MAs turnover as
the training set, the SVM classifier was also used to
detect the MAs turnover longitudinally in the testing
set. In this semi-supervised machine learning method,
the input features are the variance of risk factors
between two episodes.

3. By using the linear kernel from SVM, we can pre-
dict the weights of these pathological risk factors. The
medical contribution is to monitor the high-risk factors
regularly, which could control the progression of DR at
an early stage.

III. TRAINING AND TESTING DATA PREPARATION
For image analysis of MAs turnover, the MA detector
was applied to the baseline image and follow-up images.
We therefore prepare 156 image pairs collected from

FIGURE 1. The retinal imaging data sets, with eye screening at the
6-month interval for each patient. The illustrated images indicate the
right-eye screening.

52 patients, by taking 4 episodes in both the retinal screening
and risk factors recording, which means there exist 3 image
pairs for each patient. By comparing two detected MAs from
the baseline image and follow-up image, our method can
distinguish new, unchanged and resolved MAs.

For machine learning classifier using pathological risk
factors, we also collected seven pathological risk factors from
52 patients during each risk factor recording.

It is worthy to note that MAs also occur in non-diabetic
retinopathy (e.g., hypertension, cardiovascular disease, infec-
tion, etc), we thus only selected the data used are from
DR-diagnosed persons.

A. THE TOTAL IMAGE DATA SET OF PATIENT
FOR IMAGE ANALYSIS APPROACH
Longitudinal retinal imaging data was acquired retrospec-
tively from Grampian Diabetic Research Unit, UK. A fundus
camera (VISUSCOUT 100) was used to record the retinal
images. A patient’s images were included in the test sets
if the patient had at least two digital retinal images taken
between 6 months apart. Thus, an image pair was defined
as two images acquired around the 6-month interval of each
other.

At least oneMA at the initial screening spotted all patients.
The aim of this larger test set was to examine the technique’s
ability to perform with data representative of the screening
environment.

B. TRAINING SAMPLE AND TESTING SAMPLE OF
PATHOLOGICAL RISK FACTORS FOR SVM CLASSIFIER
In this study, we refer to the clinical study on pathological risk
factors [29] leading to diabetic retinopathy and hypothesize
these risk factors as shown in lower part of Figure 2. In our
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FIGURE 2. The proposed parallel framework to classify MAs turnover for each patient. The upper part indicates an image analysis
approach and the lower part indicates a semi-supervised machine learning approach. The final stage is to compare the accuracy
of both methods on the classification of MAs turnover.

FIGURE 3. Visualization of the seven pathological risk factors.

pathological risk factors database, 7 attributes have been
selected and saved into a CSV file. For each two episodes,
the variance is calculated and saved into this CSVfile. Totally,
a 52∗7∗3 matrix is formed in our database - here 3 indi-
cates the pathological risk factors variance between 1st to 2nd

episode, 2nd to the 3rd episode and 3rd to the 4th episode,
respectively, 52 indicates the total patients. The visualization
of these seven pathological risk factors is shown in Figure 3.

After successfully analyzing the MAs turnover using
image analysis from 30 patients, we treated their previ-
ous recorded corresponding pathological risk factors as the

training sample and tested the remaining 22 patients for
classifying the MAs turnover. There are many works which
used the hold-out way to split the data [30]–[32]. Because
we have only few samples at hand, the whole data was
split via cross-validation strategy, i.e., 12 subsets for training
and the remaining 1 subset for testing. Each subset contains
4 patients’ pathological risk factors. In detail, the training
set consisted of 7 pathological risk factors, with 3 variance
in-between each episode by tracking and screening
30 patients continuously. Besides, these pathological risk
factors variance from each patient are encapsulated into a
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FIGURE 4. An example on MAs turnover between image n+1 and image n, and the corresponding variance on the pathological risk factors. (a) image n in
sequence with iGrading software marked MAs. (b) Image n+1 (registered to the same coordinate system of image n) with iGrading software marked MAs.
(c) The iGrading software output showed unchanged (green), new (blue) and resolved (red) superimposed on image n+1. (d) Shows how the expert
observer classified the MAs. On the right side, the table indicates the corresponding changes from seven selected risk factors, i.e., the pathological risk
factors variance between nth and (n+1)th eye screening.

training subset, and the numbers of unchanged, new and
resolved MAs of each subset are also encapsulated as the
training labels. Besides, the testing sample consisted of 7
pathological risk factors, with 3 variance in-between each
episode by tracking and screening 22 patients continuously.
Our task is to predict the unknown labels of unchanged,
new and resolved MAs number in the testing sample. All
pathological risk factors are collected after each episode
of retinal screening, for example, after we collected the
retinal imaging in Figure 1, the eye clinicians will further
ask the patient to record their pathological risk factors. All
imaging and pathological risk factors are collected fromNHS
Grampian Diabetes Centre, UK. After the preparation of all
data sets, we explain our image analysis method to classify
MAs turnover in Section IV.

IV. IMAGE ANALYSIS TO CLASSIFY
MICROANEURYSMS TURNOVER
In this section, the image analysis techniques are applied to
automatically classify the MAs turnover. The flowchart of
this image analysis approach is illustrated in upper part of
Figure 2.

A. MICROANEURYSM CANDIDATES
EXTRACTION USING iGRADING
The automated extraction onMAs candidates was done using
iGrading software on the unprocessed retinal image using
all images from the training data sets. The iGrading is a
CE-accredited package that detects signs of diabetic retinopa-
thy, such as MAs ( http://www.medalytix.com/). The product
is the result of a collaboration with NHS Grampian diabetes
center and commercial partner Medalytix Ltd (Manchester,
UK). The core algorithm of this software is described in [8].
The automated grading system iGrading integrated image
processing algorithms which evaluate the image quality
(clarity and field definition) and detect signs of diabetic
retinopathy (for example, hemorrhage or MA detection and
their number counts) in retinal images. The iGrading soft-
ware is currently implemented in the Grampian Diabetes
Center to provide the automatic grading of retinal images
and detect MAs from the images. Once an MA was identi-
fied, its coordinates, using its native image format, were also

generated and recorded. The location of the MAs generated
by the iGrading software for a typical image pair is shown in
Figures 4.

B. IMAGE PAIR REGISTRATION USING GDBICP
The image transformation or warping is a common problem
after 6-months retinal screening. Thus, the image pair regis-
tration was completed by using Generalized Dual Bootstrap-
ICP (GDBICP), a fully-automated 2D image registration
algorithm [23]. GDBICP was chosen over other free or com-
mercial registration packages because it has previously been
tested using retinal images [23] and found to be efficient in
natural image registration testing.

For each patient, the next retinal image was registered
with the previous retinal image (first episode as shown
in Figure 4a) in the sequence. The transformation operation
required to align the image was generated and stored (the reg-
istration transformation matrix in Figure 4b). The registration
process was applied to all images for all patients. The images
are shown in Figure 4a and 4b have applied this registration
transformation.

C. LESION COMPARISON
The spatial coordinates of each MA detected were trans-
formed using the generated transformation operation, there-
fore MAs from the same eye screening at different episodes
could be compared. This comparison was implemented for
all MAs detected in both training and testing sets. If the
angular distance between an MA on image n+1 and that
on image n was less than 0.3◦, the MA was judged to be
static. This value of 0.3◦ was chosen by comparing a pair
of images in which all MAs candidates have been confirmed
by an expert observer to be static(unchanged). An MA was
defined as ‘new’ if it was present in the (n+1)th image but no
corresponding MA could be found in the nth image. An MA
was defined as ‘resolved’ if it was present in the nth image but
no corresponding MA could be found in the (n+1)th image.
The image displayed in Figure 4c displays the output of the
proposed image analysis technique with the lesions classified
in different colors, while Figure 4d shows how the expert
observer classifies MAs turnover from this image pair. The
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number count of MAs turnover, i.e., the number count of
unchanged, new and resolved MAs, is then saved into a CSV
file for the labeled class in SVM classifier and the further
comparison with the ground truth.

Section V describes the SVM classifier, for the same pur-
pose of classifying the MAs turnover in a semi-supervised
machine learning way.

V. SVM CLASSIFIER FOR MICROANEURYSMS TURNOVER
As depicted in the lower part of Figure 2, we further propose
a classification model to detect MAs turnover on the longi-
tudinal changes, i.e., the variance of pathological risk factors
from nth to (n+1)th eye screening. To our best knowledge,
there exist recent diabetic retinopathy studies on patholog-
ical risk factors using the logistic regression model, such
as [29] and [33]. Unlike fitting data to a logistic curve,
the support vector machine (SVM) [34] has proved to be
more effective for classification tasks in the biomedical prob-
lems, particularly in bioinformatics [35], [36]. In detail, SVM
distinguishes multiple classes by transforming the input data
into a high-dimensional space to find the optimized hyper-
plane. Because the SVM approach is data-driven and model-
free, it demonstrates its effectiveness for classification study,
especially in cases where sample sizes are small, and a large
number of variables are involved (transforming the raw data
into a high-dimensional space). This technique was used
to develop the automated classification of diseases and to
improve methods for detecting diseases in a clinical setting
[37], [38]. Therefore, LIBSVM [39] is adopted to classify
the testing data into three categories, i.e., new, unchanged and
resolved MAs.

In this study, we investigated seven attributes (pathologi-
cal risk factors) which are deemed to associate highly with
diabetic retinopathy according to [29] and [33], with our
further hypothesis leading to MAs turnover. These attributes
are fasting glucose value, Hba1c, low-density lipoprotein,
creatinine, systolic, diastolic and triglyceride obtained after
each eye screening. The definition of these risk factors is
explained below.
â Fasting Glucose Value: the blood glucose level in an

individual who has refrained from eating or drinking any
liquids other than water for at least 8 hours prior to the
test. This test is usually carried out in the morning before
breakfast.

â Hba1c: is the abbreviation of glycated hemoglobin.
It refers to a form of hemoglobin which indicates the
average blood glucose concentration over the course of
three months.

â Low-density lipoprotein (LDL): one group of lipopro-
teins responsible for the delivery of cholesterol to
the arteries. Higher levels of LDL can be responsible
for arteriosclerosis, myocardial infarction, stroke and
peripheral arterial disease.

â Creatinine: creatinine is a waste product of creatinine
phosphate in muscle usually produced at a constant rate
day to day.

â Systolic Blood Pressure: Pressure in the arteries during
contraction of the heart which pushes the blood around
the body.

â Diastolic Blood Pressure: Pressure in the arteries in the
rest period of the heart between beats.

â Triglyceride: An ester which derives from glycerol and
three fatty acids. Body fat in humans and other ani-
mals, as well as vegetable fat, are mainly constituted
by triglycerides. Their function in the blood is to allow
adipose fat and blood glucose to travel to and from the
liver. They also form a major part of human skin oils.

Unlike conventional machine learning methods using the
static pathological risk factors, we investigated the variance
of these selected factors from the baseline to the follow-up
recording. For the example in the right table of Figure 4, fast-
ing glucose value is 9.82 mmol/L for episode n, while it was
recorded as 9.74 mmol/L for episode n+1 after 6 months, and
the variance from n to n+1 is −0.08 mmol/L. Then this vari-
ance (−0.08 mmol/L) can be scaled down to −0.073 for the
total variation from the maximum fasting glucose value to the
minimum fasting glucose value in all sequential recordings,
i.e., from 9.748 mmol/L to 8.650 mmol/L for all episodes.

TABLE 1. Pathological risk factors in patient cohort from episode 1
to episode 4.

Further, statistical analysis was performed using SPSS
17.0 software (SPSS Inc, Chicago, IL, USA). The above
pathological risk factors were all used to analyze and identify
statistical differences. Detailed statistical analysis results are
described in Table 1. Spearman correlation test was used for
the analysis of the indicators correlating to DR patients. All
analysis which had p value less than 0.05 (5% significance
level) were considered to have statistical significance.

The lower part of Figure 2 plots the diagram of our
classifier model on MAs turnover for the testing sample
into three classes of MAs turnover (unchanged, new and
resolved). In this study, the values of all kernel functions
are set at the default values for fair comparison. The con-
fusion matrix of MAs turnover classification using linear,
polynomial, Gaussian RBF and sigmoid kernel functions are
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TABLE 2. Confusion matrix of classification accuracy on MAs turnover
with linear kernel.

TABLE 3. Confusion matrix of classification accuracy on MAs turnover
with polynomial kernel.

TABLE 4. Confusion matrix of classification accuracy on MAs turnover
with gaussian RBF kernel.

TABLE 5. Confusion matrix of classification accuracy on MAs turnover
with sigmoid kernel.

TABLE 6. Computational time using different kernel functions.

listed in Tables 2-5, respectively. It can be found that the
classification accuracy of linear kernel is similar to Gaussian
RBF kernel, and higher than polynomial and sigmoid kernel
function. Additionally, we compare the computational com-
plexity. As shown in Table 6, it is apparent that the linear
kernel is much faster than using other kernel functions. Thus,
we finally selected the linear kernel function for the sake of
computational efficiency, and the dimension of input vector
is 7 (features). The mean of the support vector (SV) numbers
is 892. Both of the slack variable C and kernel width g was
initialized in the range of [2^(-5), 2^5]. After using grid
search with 13-fold cross validation, the optimal value of
C is tuned at 0.3516 when achieving the best classification
accuracy, g is not required due to our selection on linear kernel
function.

The next section compares our image analysis and SVM
classifier with gold standard confirmed from two expert eye
clinicians by using the Bland-Altman plots.

VI. COMPARISON BETWEEN TWO METHODS ON THE
CLASSIFICATION OF MICROANEURYSMS TURNOVER
Two expert eye clinicians were asked to examine the
retinal images for the confirmation of the ground truth

(gold standard). The location of the MAs identified by the
automated image analysis approach was indicated in each
image and the expert observer identified whether the lesions
were new, resolved or unchanged. The aim was to assess how
well the relative positions of MAs in the sequential images
were identified by the image analysis algorithm and hence
its ability to assess turnover. The algorithm was applied to
all of the image pairs in the testing sample and the num-
ber of new, static and resolved MA’s for each pair was
summarized.

We compare the image analysis and the SVM classifier
with gold standard confirmed by two clinicians, by using
the Bland-Altman plot for the agreement measurement [40].
Here, each dot represents a patient from testing sample, with
totally 22 patients for the comparison. X-axis indicates the
mean value of MAs between the automated methods and
the gold standard, Y-axis represents the difference of MAs
between the automated methods and the gold standard. Note
there exists the overlapping dots in the new and resolvedMAs
number counts in this agreement measurement.

As demonstrated in Figure 5, the standard deviation (SD)
and mean (Bias) among unchanged, new and resolved MAs
are very close for two methods. For example, the bias of
unchanged MA using image analysis is -0.13 and bias for
SVM classifier is 0.24, whilst SD is 0.91 and 0.88, respec-
tively. The agreement measurements of unchanged, new and
resolved MAs indicate a similar performance between two
methods in terms of classification accuracy.

VII. DISCUSSION
Based on the agreement measurement using Bland-Altman
plot, both methods proved to classify MAs turnover effec-
tively. In this section, we further predict the weights of the
pathological risk factors from this SVM classifier model.

A. FURTHER INVESTIGATION ON
PATHOLOGICAL RISK FACTORS
We predict the weights of pathological risk factors of MAs
turnover by recalling the SVM linear kernel function. The
weights of each risk factor are listed in Table 7 with the
variation after ten trials. After adopting the linear kernel
form SVM classifier, each weight from these risk factors can
estimate the relevance of MAs turnover. A higher weight
indicates that the corresponding risk factor plays a more
important role leading to MAs turnover. As referred [24], the
linear SVM model has this specific indication to find feature
weights.

TABLE 7. Predict weights of pathological risk factors of MAs turnover.

Table 7 indicates that the cause of MAs turnover coin-
cides with our hypothesis at the beginning. Regarding MAs
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FIGURE 5. Comparison of the Bland–Altman plot on unchanged, new and resolved MAs number counts between two proposed methods and the gold
standard confirmed by two expert clinician observers. The x-axis indicates the mean value between the clinician and our proposed method using image
analysis (above) and SVM classifier (below), respectively. (a) the top row is to measure the agreement between the image analysis on unchanged, new
and resolved MAs with the ground truth, (b) the bottom row is to measure the agreement between SVM classifier on unchanged, new and resolved MAs
with the ground truth.

TABLE 8. Sensitivity and specificity on the classification of MAs turnover.

turnover, the triglyceride, LDL and fasting blood glucose are
probably the high-risk factors with a close relationship to the
MAs turnover. The traditional diagnosis of diabetic retinopa-
thy (DR) is routine to control blood glucose, however, this is a
generalizedmethod for the prevention of further development
of DR. Our analysis provides a deeper understanding of the
pathological factors is critical for the early detection of DR.

Three high-risk factors (fasting blood glucose, triglyceride,
and LDL) demonstrate their close relationship with MAs
turnover. Our findings are consistent with the results of
epidemiological investigations on DR. For example, recent
research has proved that severe DR is closely related to the
higher value of triglyceride [41]. Latest findings demon-
strated that the levels of triglyceride and cholesterol are
largely varied between DR and non-DR patients [42]. The
findings on triglyceride also apply to the analysis of MAs
turnover as shown in the above table. Our study also sug-
gests that fasting glucose and low-density lipoprotein could
play a key role in MAs turnover. However, the experiments
demonstrated that creatinine, Hba1c (glycated hemoglobin),
diastolic and systolic are less critical to MAs turnover, which
contradicts our hypothesis at the very beginning.

B. COMPARISON WITH OTHER CLASSIFIERS
FOR MAs TURNOVER
Several state-of-the-art classification models were proposed
to predict diabetic retinopathy in recent studies [43]–[46].

To our best knowledge, there is still limited analysis
on the pathological factors with a specific aim on MAs
turnover. We also attempted above classification models to
compare the best performance by adopting the ‘‘sensitivity vs
specificity’’ curve. We still adopt the variance of pathological
factors and the training labels of the unchanged, new and
resolved MAs numbers from the training data set. In detail,
Nearest Neighbor Classifier [43], Bayesian Classifier [44],
PCA+ANFIS [45], LDA [46], and Convolutional Neural
Network in TensorFlow Toolbox are compared with our SVM
classifier on the testing data set. The performance compari-
son in Table 8 proved the SVM classifier outperforms other
machine learning methods regarding to this testing data set,
probably due to the small size of all pathological risk factors.

C. COMPARISONS WITH OTHER MAs
DETECTION METHODS
Based on the literature significance on recent MAs detection
approaches [18]–[20], [47]–[52], we compared the sensitivity
and specificity of the longitudinal changes for the comparison
on unchanged MAs. Table 9 is the comparative results with
other methods on detecting the unchanged MAs longitudi-
nally. For example, 100%/98% indicates the sensitivity vs
specificity obtained from two expert observers as the golden
standard, respectively. Comparing with our retinal image
analysis approach by combining iGrading and GDBICP
toolbox, the proposed classification model also proves its
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TABLE 9. Comparison on unchanged MAs detection using sensitivity and specificity metrics.

potential effectiveness in identifying theMAs turnover. As the
classification model is free of purchasing and maintaining the
image processing software, it would be a promising approach
for automatic analysis on the progression of diabetic retinopa-
thy, considering that MAs turnover is the early biomarker of
diabetic retinopathy.

VIII. CONCLUSION
In this paper, we proposed a parallel framework to classify
MAs turnover based on the sequential retinal images and
longitudinal pathological factors. This study is a valuable
step towards the intelligent diagnosis on the progression of
diabetic retinopathy, in both health and medical commu-
nities. The proposed automated analysis on MAs turnover
combining two different approaches presented can signifi-
cantly improve this situation, and therefore is fundamental
for the screening of a large diabetic patient population for
diabetic retinopathy. Both two methods can effectively clas-
sify the MAs turnover. Importantly, our automated analysis
tool can make the DR detection process more reliable and
cost-effective. As a result, it can greatly reduce the burden on
health care systems while providing improved care to the DR
population.
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