
SPECIAL SECTION ON RECENT COMPUTATIONAL METHODS IN KNOWLEDGE ENGINEERING
AND INTELLIGENCE COMPUTATION

Received December 22, 2017, accepted January 22, 2018, date of publication February 19, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2807881

Structural Principles Analysis of Host-Pathogen
Protein-Protein Interactions: A Structural
Bioinformatics Survey
HUAMING CHEN 1, (Student Member, IEEE), WILLIAM GUO2, (Member, IEEE),
JUN SHEN1, (Senior Member, IEEE), LEI WANG1, (Senior Member, IEEE),
AND JIANGNING SONG3
1Faculty of Engineering and Information Science, School of Computing and Information Technology, University of Wollong, NSW, 2522, Australia
2School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702, Australia
3Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia

Corresponding author: Huaming Chen (hc007@uowmail.edu.au)

This work was supported in part by the Scholarship from the China Scholarship Council and in part by the Faculty Strategic Investments
Grant for DP 2019 Development.

ABSTRACT Computational-intelligence methods in bioinformatics and systems biology show promising
potential for leveraging abundant, large-scale molecular data. These methods can facilitate analysis and
prediction of the principles of biological systems through the construction of statistical and visualized
models. Specifically, structural data from exogenous and endogenous protein–protein interactions are
of vital significance in this context, encompassing primarily 3-D structural information for a cohort of
macromolecules underpinning the biological system. In this paper, we surveyed the main methodologies
and algorithms for the reconstruction and modeling of the structural-interaction networks (SINs) of host–
pathogen protein–protein interactions (HPPPIs), regarding how the protein domains interact with each
other to constitute a SIN. Surveying the pattern and the organization of the SIN delivers a state-of-the-
art view of HPPPIs and illustrates prospective future research directions. In addition to the binary PPI
network, we distilled the relevant data sources into several branching research areas and further expanded the
discussions into computational-intelligence methods according to the algorithms applied, including machine
learning statistical models, to shed light on effective method design. In particular, atomic resolution level
investigations can reveal novel insights into the underlying principles of the organization and the complexity
of HPPPIs networks. Combining data analytics and machine-learning technologies, we anticipate that our
systematic overview will serve as a useful guide for interested researchers to carry out related studies on this
exciting and challenging research topic in system biology.

INDEX TERMS Host-pathogen interactions, structural-interaction network, bioinformatics, machine
learning, data analytics.

I. INTRODUCTION
In this paper, we describe how the computational-intelligence
methods can help solve key problems and the dominant
mechanisms involved in proteomics research. Considering
proteomics represent the large-scale study of proteins, pro-
teomics relies upon the investigation of several aspects,
including when, where, and how proteins function, and how
proteins interact with each other. Recently, an abundance of
experimental data has accumulated, propelling hypothesis-
driven biomedical research into the big-data era.

Given the continuous growth and availability of large-
scale multi-omics data, both the protein-protein inter-
action (PPI) networks and structural analyses involving
proteomics remain hot topics. Exploration of proteomics
data sources, such as those from the European Bioinfor-
matics Institute [2]–[4], promotes research in transform-
ing biomedical research at system-level, mechanistic studies
aimed at a comprehensive and holistic understanding of bio-
logical systems [5]. Although challenges, such as specialised
domain knowledge and data issues, might hinder proteomics
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researches, this data-driven work to obtain extensive informa-
tion about systems from large amounts of raw data is currently
popular in both academia and industry [6].

Systems biology [7] represents the comprehensive study
of presenting a holistic view and analysis of biological pro-
cesses. Specifically, systems biology aims to understand and
further predict the behaviour of biological systems [8] and
includes studies on functional genomics and proteomics.
There are several studies focusing on genomics data, mostly
from The Cancer Genome Atlas (TCGA) [9], given that a
nearly complete map for human and other species had been
provided along with the development of genome-sequencing
projects [8]. These studies provided insights into gene-related
networks and a fuller understanding of how a set of molecules
interacts with each other [10]. Three-dimensional (3D) struc-
tures of these molecules are the most critical for deriving
relationships.

Our study was focused on proteomics, and specifically
on HPPPIs. Considering the prevalence of protein interac-
tions between species, most early studies were performed
within the same species due to the limited availability of
proteomics data at that time [11], [12]. Several recent stud-
ies demonstrated improvements in PPI between different
species, which were referred as ‘‘interspecies PPI’’, and that
offered important information for further analysis of infec-
tious mechanisms [8], [13]. However, beyond the interaction
between these PPIs, their structural information is vital to
their discovery. We anticipate that study of the identified data
collected via open databases [14] would present a compre-
hensive survey towards structural principles concerning the
PPI identified between the host and pathogen. These HPPPIs
are experimentally verified and manually recorded in sys-
tems and include information regarding infection pathways in
their interaction networks and are able to reveal much more
information regarding the infectious mechanisms between
hosts and pathogens. We first investigated a previous HPPPI
study [14] and expanded our work based on the preliminary
sequence information [13], [15] to exploit the online available
and experimentally verifiedHPPPI data. However, these stud-
ies simply focused on binary protein interactions prediction.

In addition to these studies, we expect to leverage the
structural information of the HPPPI data for building
structural-interaction networks (SINs) with respect to sim-
ply classifying pairs of proteins as interacting or not. The
structural information of the HPPPIs represents various pro-
tein properties, from which systems biology might extract
a highly convincing network-analysis result and introduce
trustworthy statistics in cooperation with the corresponding
structural information and domain data, as well as the atomic
resolution-level networks.

Therefore, the structural-principle analysis of HPPPI net-
works is discussed and surveyed in the following sections,
which covers most branches closely associate with the protein
structural information. This analysis was achieved by SIN,
an atomic-resolution PPI network [16]. Protein structural
information is another experimentally determined set of 3D

data previously described. It mainly contains several protein
properties, including domain information, family annotation,
secondary/tertiary structure.

Because there are few 3D-specific studies offering an
atomic view of HPPPIs, we provide an overview of progress
made by biologists in relation to bioinformatics, including
3D structural databases and analysis based on the struc-
tural information. Our efforts will help readers navigate gaps
between biological analysis and computational modelling.
This includes:
• Protein secondary/tertiary structure prediction
• Domain-domain interaction prediction

These provide the basics for reconstruction of a SIN.
The remainder of the paper is organised as follows.

We firstly present the preliminary concepts in Section 2,
including the sequence information and the representation
algorithms, structural information and domain-domain inter-
action. Section 3 lists the public repositories and databases.
In Section 4, a variety of machine-learning algorithms devel-
oped and applied for protein-structure analysis and domain
prediction are discussed, and a detailed process to layer
curated 3D structural models on top of the binary interaction
network is described in Section 5. Section 5 also provides a
linkage between model knowledge and analysis. The chal-
lenges to building a structural interaction model are discussed
in Section 6, and we conclude the review in Section 7.

II. PRELIMINARY CONCEPTS
The two main predictive tasks associated with proteomics
related to computational biology are the protein structure and
the domain-domain interaction. Both sets of data are usually
difficult for bioinformatics researchers to obtain; however,
building a SIN requires a complete understanding of both pro-
tein structure and domain features. In this section, we present
the biological meaning for both the structural information
and the domain-domain interactions, and also introduce the
modelling process necessary for completing the prediction of
both tasks.

A. SEQUENCE INFORMATION
Proteins are comprised of various numbers of amino acids
as their basic building blocks. The concatenated string of
amino acids forming the folded protein represents its pri-
mary sequence information. Typically, there are 20 different
proteinogenic amino acids [11], although five additional
amino acids exist in the human and pathogen protein
sequences [14], including selenocysteine/U, pyrrolysine/O,
aspartate or Asparagine/B, glutamate, and glutamine/Z.

Figure 1 shows the 20 different amino acids.
As a preprocessing step for inputting sequence data into

computational model built for protein classification and
regression tasks, transformation of efficient and effective
data into the model is necessary. Sequence representation
is a vital preprocessing step for efficiently and effectively
feeding data to any computational model for protein classifi-
cation and regression analysis. In TABLE 1, we list several
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FIGURE 1. Amino acids groups.

mainstream algorithms concerned with sequence represen-
tation, where the protein sequence is denoted as X =

x1, x2, . . . , xn. We define the amino acid number as 20 for
this paper.

These different sequence-representation algorithms pro-
vide as much information as possible to the computational
model in different vector lengths. Because the sequence infor-
mation is easier to obtain via the high-throughput technology,
it is primarily utilised for both protein structure prediction and
interaction prediction.

B. STRUCTURAL INFORMATION
Because protein sequences exhibit various lengths, those
with < 50 amino acids are generally referred to as polypep-
tides and contain only primary level information. For sec-
ondary structure, folding forms common structures, such as
α−helices and β− sheets (from β− strands). Another struc-
ture is referred to as a random coli. Upon folding, a secondary
structure subunit transforms into tertiary structure. For some
proteins, their structure consist of more than one polypeptide,
suggesting multiple tertiary structures. This context infor-
mation is subsequently referred to as quaternary structure.
We illustrate the 3D structure for protective antigen (UniProt
ID: ‘P13423’) in Fig. 2.

Because the wet lab is the site of protein-structure deter-
mination by X-ray crystallography, NMR spectroscopy or
cryo-electron microscopy, these methods are extremely time-
consuming and expensive. Therefore, an ab initio method
based on computational modelling is a current focus of aca-
demic and industrial research. Only< 0.5% of all sequenced
protein structures have solved structures according to the
limitations of biological experiments methods [24].

Study of secondary structure prediction creates a
dictionary of protein secondary structure (DSSP), which
is better defined and clearer than tertiary structure and
quaternary structure. Additionally, secondary structure can
be analysed using efficient sequence information from pri-
mary structure. The secondary structure is predefined with
three types of motifs: α-helix, β-strand and coli, allowing

FIGURE 2. The 3D structure of the protective antigen
(Uniprot ID: ‘P13423’).

Q3 accuracy [23], [25]–[27]. Statistical models and
machine-learning methods have extensively improved
Q3 predictive accuracy from 65% to 80%. Recently a more
challenging problem targeting on eight-category predic-
tion (Q8) defined in DSSP for secondary structure pre-
diction was described. These eight categories describe the
secondary structure based on additional elements: 310-helix,
α-helix, π -helix, β-strand, β-bridge, β-turn, bend and
loop/irregular [22], [28]. To achieve more accurate results
on secondary structure, these methods require not only an
efficient model but also sufficient feature representations
from the sequence information. The involved models will
be introduced in Section 4. The key challenge to predicting
secondary structure involves prediction of those proteins
having no close homologs and that have not experimentally
verified 3D structures.

To achieve sufficient feature representations for secondary
structure prediction, most studies introduced the protein-
sequence information, amino acid profile information, local
and global sequence information [23], [26], [29], [30]. In this
study, we first focus on the eight categories for secondary
structure prediction.

Fig. 3 provides an example of a tertiary structure of the
protective antigen protein (UniProt ID: P13423). Prediction
for this level of structure normally involves homology mod-
elling [31], which is also known as comparative modelling,
where the main resulting candidate is derived from amino
acid sequence alignment by mapping amino acids between
different sequences. Introduction of homology modelling
method into tertiary structure prediction allows evolution-
ary results to reveal proteins harboring similar amino acid
sequences based on their shared similar tertiary structure to
accomplish related biological function [32].
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TABLE 1. Protein sequence representation algorithms.
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FIGURE 3. Tertiary structure of protein protective antigen (Uniprot
ID ‘P13423’).

The structure information is a requisite for structural inter-
action networks, given that they provide atom level informa-
tion. In Section 3, wewill describe related databases available
for acquiring such information.

C. DOMAIN-DOMAIN INTERACTIONS
Given a protein sequence, protein domains are distinctive
functional or structural subsegments. Most protein domains
build independently stable and folded 3D structures, with
which the domains combined into different arrangements to
form a unique protein with different functions [33]. There-
fore, binary PPI networks can be further considered at the
domain level, especially when the interacting protein is large.
Although most proteins consist of multiple domains, a pair of
PPIs often involves only one pair of domain-domain interac-
tion focusing on the actual binding site.

Domain-level interactions provide a global view of the
binary PPIs network. For HPPPI investigations, this reveals
interaction location or pathological interactions and can help
facilitate drug-development targeting for infectious diseases.
To acquire a comprehensive understanding of how domain
interactions are mediated, the primary method involves anal-
ysis of individual interactions using experimentally deter-
mined 3D structures. However, this information is available
for only a small fraction of proteins, indicating the domain-
level PPI data not readily accessible.

There are several existing databases, including 3did [34]
and iPfam [35], that provide domain-domain interactions
by identifying these based on experimentally determined
3D structures. Other databases provide combined interac-
tions, in which data are derived experimentally and the
rest is computationally predicted. DOMINE [36] includes
both 3D-structure-based and predicted domain-domain inter-
actions and shows the predicted domain-domain interac-
tions at three different levels, namely ‘High’, ‘Middle’
and ‘Low’. Two primary methods, association [36] and
maximum-likelihood estimation [37], are introduced in this

FIGURE 4. Domain-domain interaction.

domain-domain interaction-prediction task. The essential
information utilised in these models includes domain infor-
mation from protein sequence and binary PPI information.

To provide a general understanding of domain-domain
interactions associated with binary PPIs, Fig. 4 shows a basic
diagram for domain-domain-interaction prediction [38].
‘Protein A’ interacts with ‘Protein B’ while ‘Protein C’ does
not interact with ‘Protein D’. Several different domains types
are identified using the related databases. Mostly, we choose
Protein Data Bank (PDB) [39] as suggested. Later, we will
compare differences between these two groups of domain-
domain relationships to identify the interacting domains
between two different proteins.

III. RELATED DATABASES
Ranging from protein-sequence information to their struc-
ture data, several different databases are currently available
and well maintained, including host-pathogen PPI databases,
structure databases, protein families and domain databases,
and also domain-domain-interactions databases.

A. HOST-PATHOGEN INTERACTIONS DATABASES
Although several different standardized formats for the host-
pathogen PPIs are published by different organizations, these
databases contain the most important binary information for
HPPPI researches. Some popular repositories are initially
built by universities, such asHPRDby JohnsHopkinsUniver-
sity and the Institute of Bioinformatics, PATRIC by Univer-
sity of Chicago, PHISTO by Boazii University, VirHostNet
by Universit de Lyon. Highly credible positive HPPPI pairs
are manually recorded in these systems and updated peri-
odically. The details of several popular databases are listed
in TABLE 2.

B. STRUCTURE DATABASES
The Protein Data Bank (PDB) [39] is the primary database
housing structural information for proteins and is managed
by the worldwide Protein Data Bank (wwPDB) international
collaboration. The PDB contains all experimentally deter-
mined protein structures ranging from different resolutions
and detection methods.

The PDB is currently updated weekly and has its own file
format standard, which is strictly defined to provide protein
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TABLE 2. Host-pathogens PPIs database.

and nucleic acid structure details. A standard PDB file should
contains atomic coordinates, observed sidechain rotamer,
secondary structure assignments and atomic connectivity
information. Apart from the critical information, abbreviation
content about the corresponding literatures is also mandatory
in PDB file, which is listed as Header. Several other specific
columns include the ID number, date for publication, obsolete
status, details about the related experimental methodology,
molecular components of the complexes, the source of the
complexes, the experimental method used to determine the
structure, the authors, modification and revocation records,
and related literature, the maximum resolution, and other
statistics.

A simple example of the protective antigen protein
(UniProt ID: P13423) using PyMOL [45], [46] is shown
in Fig. 2. It requires substantial time and effort to acquire an
experimentally determined protein structure, and currently,
not every protein has its corresponding structural informa-
tion available. Determination of this information for these
proteins is critical for building a SIN.

C. PROTEIN FAMILIES AND DOMAIN DATABASES
As an important database of protein domains and families,
Pfam provides a complete map for protein domains and fam-
ilies [47], [48]. It is regularly updated, with the latest version
being Pfam 31.0 released in March 2017 for instance and
containing >16,712 protein families.

Although amino acids are the elements comprising a pro-
tein sequence, functions occur in multi-sequential regions
which are called domains. Identifying these domains provides
details and insights regarding the functionalmechanism of the
protein.

Structural information allows bond information detailing
interactions between proteins, which is more concrete than

binary HPPPI network provided in HPPPI databases. There-
fore, iPfam is used in SIN studies to identify domain-domain
interactions between proteins [35]. iPfam was developed by
Howard Hughes Medical Institute, and currently harbors >
9,500 domain-domain interactions.

iPfam is based on two continuously updating databases,
PDB and Pfam, both of which are well established for
their 3D structure and domain-information purposes. Most
of the structural information in the PDB also contains mul-
tiple domains. The 3did is another domain-domain interac-
tion databases for 3D-interacting domains between proteins,
and is a collection of protein interactions from which high-
resolution 3D structures are known [34], [49].

By using iPfam and 3did to achieve domain-level resolu-
tion of HPPPIs, SIN considers proteins in their precise spatial
relationships by layering domain-domain interactions on top
of the conventional PPI networks. As protein-sequence infor-
mation accumulates at a staggering rate, these data depict its
characteristics with high volume, high velocity, high variety,
high value and high veracity (5V). This, along with big-data
analytics, including machine-learning technologies, allows
addressing structural and domain-domain-interaction predic-
tion problems. In the following section, we introduce the
related computational models or methods for SIN construc-
tion, including machine-learning methodologies.

IV. COMPUTATIONAL MODELS
SIN is designed to layer high-confidence 3D models on top
of PPIs. Before layering the structural information on the
binary HPPPI network, the structural information of corre-
sponding proteins is requisite. However, only a few proteins
have experimentally determined structure, specifically with
high-resolution scale. Therefore, herein we present related
studies outlining structure prediction and domain-domain-
interactions prediction. We review this section as an impor-
tant step in jointly studying protein structural information
while supplementing the structural interaction network.

A. BAYESIAN STATISTICS
The earliest studies on protein secondary structure prediction
mainly focused on the use of Bayesian statistics [50]–[52].
Basically, Bayesian statistics describes this problem as
follows:

I (S;R) = log[
P(S|R)
P(S)

] (1)

where P(S|R) is the conditional probability for observing a
conformation S, when a residue (amino acid) R is present,
and P(S) is the probability of observing S. According to the
conditional probabilities definition, P(S|R) = P(S,R)/P(R).
P(S,R) is the joint probability of S and R. Through the use of
Eq. (1), an estimation of I (S;R) from a database of known
protein sequences and corresponding secondary structures
can be achieved.

Specifically, a previous study [51] showed that the
the Garnier-Osguthorpe-Robson (GOR) method based on
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information theory used a 17-amino-acid sequencewindow to
extract properties from protein sequences. The GOR method
presented the observed frequencies of singletons, then in pairs
of residues on a local sequence of 17 residues to build the
Bayesian model, followed by estimation of the probabilities
for the Q3 structures. This method increased the accuracy
from 55% to 64.4%. Later, in [52], combined with informa-
tion theory, GOR V algorithm projects the known twenty
amino acids types for each specific secondary structure to
achieve a Q3 accuracy of 73.5%.

B. SUPPORT VECTOR MACHINE (SVM)
Using SVMs to predict protein secondary structure was
firstly introduced in 2001 [53], with the first SVM proposed
in 1995 [54]. It is not the first machine learning approach
used for protein secondary structure prediction, yet by then,
it achieved the best performance overall on Q3 task.

Similar to earlier researches using neural network based
methods [29], the encoding scheme for the input layer is
called a local-coding scheme and denotes every amino acid
with a 21-dimensional orthogonal binary vector as follows:

(1, 0, ę, 0) or (0, 1, ę, 0), etc

In the output layer, theQ3 taskwas first considered as a binary
classifier later combined into a tertiary classifier.

A previous study [53] considered the SVM as a superior
model based on its ability to effectively avoid overfitting and
to handle large feature spaces. In details, the authors [53]
selected the radial basis function as the kernel function to train
the SVM, resulting in a Q3 task of 73.5%.

C. RANDOM FORESTS
Apart from predicting secondary structure, domain-domain
interaction is also critical to the SIN. The random forest
model was introduced to build multi-classifiers to determine
a decision for a dataset with 1050-dimensional features [55].
Additionally, another study [56] showed an ensemble model
of random forests and SVMswere able to predict the domain-
interacting sites.

Derived from decision trees model, random forest lever-
ages the power of randomisation to increase model perfor-
mance [57], [58]. It is able to deal with imbalanced data
problems via the voting mechanism while its random feature
selection benefits the model in case of high-dimensional data.

D. ARTIFICIAL NEURAL NETWORKS
To the best of our knowledge, artificial neural networks
were first introduced in protein secondary structure predic-
tion using a fully connected three-layer network in [29],
with a learning algorithm involving back propagation. Later,
the authors of [59] used a two-tier architecture to deploy
neural networks for prediction; however, the improvement in
Q3 accuracy has since stalled.

Recently, Q8 accuracy has been the focus of academia and
industry, aiming to apply deep learning techniques to improve
performance. In [60], probabilistic graphical models, which

combine conditional neural fields (CNFs) with neural net-
work, were deployed to improve Q8 accuracy. The features
are extracted from position-specific score matrix (PSSM) and
the physico-chemical properties of the amino acids. Both
the complex relationship between sequence and secondary
structure information, and the interdependency relationship
among secondary structure types of adjacent amino acids
were studied using the CNFs model [60].

Generative stochastic networks (GSNs) were utilised to
learn a generative model of data distribution without explic-
itly specifying a probabilistic graphical model [22]. Specif-
ically, this supervised extension of GSNs is deployed via
learning a Markov chain to sample from a conditional dis-
tribution for training on a protein structure prediction task.
This model was presented with deep learning techniques to
tackle Q8 problem for protein secondary structure prediction.
The empirical design for the data preprocessing step involved
choosing 700 lengths as the cut-off threshold to balance
the efficiency and coverage of protein sequence. The main
features extracted included the evolutionary information
(PSSM feature) and the sequence information (one-hot binary
vector feature). The model achieved 66.4% accuracy on
Q8 problem.

The most recent result on Q8 accuracy task was reported
in [23], which proposed a deep convolutional and recurrent
neural network. The feature encoding the protein sequence
remained partially similar to the local-coding scheme.
In this network model, a feature embedding layer was
deployed to map sequence information and profile feature
(by PSI-BLAST) to a denser matrix. Multiple convolutional
neural network layers and stacked bidirectional relational
neural network layers were included to learn both local con-
text information and global context information from the
denser matrix. Fully connected and softmax layers were
layered on the top of the model to build the classifier for the
prediction task.

Considering the different properties of protein structure,
an iterative use of predicted features, including the back-
bone angles and dihedrals based on Cα atoms, improves
secondary structure prediction accuracy [61]. Stacked sparse
auto-encoders with three hidden layers were introduced. The
hidden layers were all with 150 neuron nodes. The method
achieved an accuracy 80.8% in secondary structure prediction
in the recent CASP targets1 [61].
Various models have been discussed in this section; how-

ever, our goal is to stack these different data types atop the
binary HPPPI network to achieve structural principles anal-
ysis. In the following section, we will discuss the structural
interaction network.

V. STRUCTURAL INTERACTION NETWORK
Since principles analysis of protein interactions between host
and pathogens still remains poorly understood, an ensemble
network of binary HPPPI networks and structural information

1http://predictioncenter.org/casp11/index.cgi
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would provide an efficient option for mining this knowledge
using a systems biology approach.

A previous study used 3,949 genes, 62,663 muta-
tions and 3,453 associated disorders for analysis using a
3D structurally resolved human interactome network [62].
By integrating data from iPfam, 3did and the Human Gene
Mutation Database (HGMD) [63], a high-quality binary
PPIs network with the atomic-resolution interfaces was
successfully built [62], providing key insights to in-frame
mutations, locations, and disease specificity for different
mutations in the same gene, which had not been possible to
be acquired on a low-resolution network. The original interac-
tion network obtained from literature-curated databases [62]
contained 82,823 pairs; however, after filtering out the pro-
teins without experimentally determined structures, only
4,222 structurally resolved interactions between 2,816 pro-
teins remained. To build a structural interaction network still
requires more efforts on experimental determination of a
structure or computational prediction, because only a tiny
fraction of these binary PPIs can be analysed with their
corresponding structure information.

Our previous study [14] collected all the experimental
protein interaction data from the published databases, among
which we chose the databases being manually checked and
uploaded. TABLE 3 shows the five bacterial species with
HPPPI statistics. The HPPPI network is further illustrated for
Clostridium botulinum in Fig. 52 [44].

TABLE 3. Statistic of HP-PPI data set.

Fig. 5 shows six primary human proteins interacting with
nine Clostridium botulinum proteins, resulting in 44 HPPPI
connections derived from the PHISTO database. These inter-
actions are considered as exogenous interactions. To further
analyse interactions from the PPI network, we embedded
this information with structural information. There are two
classes of protein-protein interaction in physical interactions:
interactions mediated by two domains and that between short
motifs and domains.

We observed that several possible structural principles
analyses were obtained within the human-virus protein-
protein interaction network [16]. The SIN approach in
human-virus PPIs network reveals atomic resolution, mecha-
nistic patterns, and allows systematic comparisonwith human
endogenous interactions.

Figure 6 shows an example detailing how to layer the
structure and domain-domain interaction information on top
of the binary PPIs network [16], [64].

2http://www.phisto.org/index.xhtml

FIGURE 5. Binary PPI network of clostridium botulinum.

FIGURE 6. Structure interaction network [64].

Figure 6 reveals the overlapping interfaces between the
‘‘Pathogen Protein-Host Protein2’’ and the ‘‘Host Protein3-
Host Protein2’’, which determine the interaction. This type of
information could not be observed in the binary PPI network.
Further analysis revealed that ‘‘Pathogen protein’’ is mimick-
ing the action of ‘‘Host Protein3’’. Layering the 3D structural
information to illustrate the details of the protein interaction
allows derivation of two different classes of protein interac-
tions (Fig. 7 and Fig. 8) [65]. The results are generated by
PyMOL [46].

The illustration examples present the non-overlapping
protein-protein interactions by 3D structures 1F5Q-
1BUH, and overlapping protein-protein interaction by
4MI8-2P1L [65]. Here, 1F5Q, 1BUH, 4MI8 and 2P1L are
their PDB id.

The host-pathogen PPI networks provide specific pathogen
protein functions and the global analyses on this network
help revealing critical proteins in the networks [64]. Although
Fig. 6 provides essential mappings via the overlapping inter-
faces, annotating the experimental HPPPI networks with
3D structural information will provide further information,
because the PPIs can be combined between two globular
domains and also between one short linear motif (a short
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FIGURE 7. The overlapping structure interaction: The red string is the
human protein Beclin-1, which is annotated with 5EFM as its PDB id. The
compound (in yellow), which is interacted by human protein ‘‘Beclin-1’’
and Gamma Herpesvirus protein ‘‘v-Bcl2’’, is associated with the
compound (in blue) by human protein ‘‘Beclin-1’’ and human protein
‘‘BCL-XL’’. The 3D structure of yellow compound can be fetched by
PDB id 4MI8 while the blue is 2P1L [65].

FIGURE 8. The non-overlapping structure interaction: The interaction is
linked by the human protein ‘‘CDK2’’. The PDB id is 5MHQ. The yellow
compound is the interaction between Gama Herpervirus ‘‘Cyclin’’ and
human protein ‘‘CDK2’’. The purple compound is by human protein
‘‘CKS1’’ and ‘‘CDK2’’ [65].

functional segment considered on secondary structure) and
globular domains. Superimposing structures of the HPPPI
can help to visually reveal the details.

Several methods to assemble structural information with
binary HP-PPI network include:
• Using only the experimentally determined structural
information. Both proteins in the HPPPI network could
be mapped along with the determined structural infor-
mation;

• Using both the experimentally determined and compu-
tationally predicted structural information. One of the
proteins in the HPPPI could not be mapped with its
determined structural information;

• Using only the computationally inferred structural infor-
mation. Both proteins in the HPPPI could not be mapped
with its determined structural information. The homol-
ogy modelling method is widely used for searching for
homologous proteins with having determined structure
according to the BLAST E-value.

Computationally predicted structural information mainly
comes from homology modelling, which is widely used
in bioinformatics, provided that protein structure and func-
tion are primarily determined according to their sequence
information [16].

Typically, for host-pathogen protein-protein interactions,
we hypothesised that imitating the binding activities between
proteins would allow insight into primary mechanism asso-
ciated with infections. Given a SIN, there are several types
of statistics data that may help us propose and support this
hypothesis. As a specific example between virus and host-
PPI networks, a previous study [16] analysed the exogenous
and endogenous interactions in the human-virus SIN model.

Meanwhile, the overlapping ratio of protein interactions
involved in exogenous interface to those involved in endoge-
nous interface indicates potential infectious targets, although
the mapping of endogenous interfaces is not guaranteed to be
complete [16].

To achieve a better understanding of the mimicry mech-
anism that possibly explains virus-infectious procedure,
similarity statistical analysis can be performed according to
z-score [66] and E-value [21] levels. Since the mimicry action
occurs between host protein and pathogen protein, similarity
statistics might help elucidate potential activities.

Overall, SIN, combined with binary protein-protein inter-
actions, has many advantages for precise analysis based
on statistics associated with 3D structure and domain
information.

VI. CHALLENGES
While the boom of big data analytics appears promis-
ing, when dealing with both the structural information and
domain-domain interactions, there remains several chal-
lenges in the areas of SIN and HPPPI network development.

A. FEASIBLE AND EFFICIENT FEATURE REPRESENTATION
For computational models, especially protein sequences,
feature representation remains a challenging topic. Various
methods for feature representation currently exist [13]–[15],
[20], [27]–[30]. Previous results indicate that various rep-
resentational methods yielded different performances across
several species, although additional protein sequence infor-
mation is being experimentally generated. We might observe
this from the aspect of a small dataset (i.e. Clostridium
botulinum and the big dataset: Bacillus anthracis).

Additional models based on deep learning techniques
present end-to-end frameworks for learning from big data
sets. The automatic feature extraction process could be a
promising option for protein sequence research. Previously,
we successfully employed a stacked denoising autoencoder
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as an unsupervised learning model to extract high-level fea-
ture for model learning [13]. Our result showed a potential
direction for introducing deep learning neural networks.

Prior to inputting data into learning models, several tra-
ditional feature representation methods, including one-hot
vector method, PSSM feature, and other statistic methods
shown in TABLE 1, were widely used. Additionally, deep
learning techniques are also first introduced in protein sec-
ondary structure prediction [22], [23] and HPPPI prediction
tasks [13]. In terms of feature representation, deep learning
techniques could harness the power of high-dimensional data
in large volumes, enabling acquisition of large volumes of
feature information to further improve model performance.

B. IMBALANCED DATA
Another challenging issue is the imbalanced ratio among
different classes of the structural information, such as the
eight categories of protein secondary structure. For structure
prediction, domain-domain interaction and host-pathogen
protein-protein interaction problems, the imbalanced ratio
between different classes is important in improving model
performance.

The ratio of non-interface interactions to interface interac-
tions is about 9:1 [55]. In structure prediction task, the ratios
in both Q3 and Q8 tasks are also different and imbalanced
between different protein families. Specifically, for Q8 tasks,
some structures are barely observable in the protein struc-
tures. In a previous study, the interacting pairs and non-
interacting pairs were defined with 1:100 ratio, which is a
highly skewed number [14].

With the continuous expansion and availability of struc-
tural information and domain data, the issues involving
imbalanced data biological areas intensifies.

VII. CONCLUSIONS
In this study, we presented a survey describing the building
of structural interaction network (SIN) for host-pathogen
protein-protein interactions to analyse the resulting network
using a systems biology approach. We focused on structural
information and also SIN analysis. Several multidisciplinary
and interdisciplinary areas were reviewed, including protein
feature representation, protein structure prediction, domain-
domain interaction prediction and machine learning methods
applied for these prediction tasks.

For HPPPI researches, building SIN using atomic level
data can provide insights into high-resolution interactions
based on protein structures and offer high-quality analyses
of interactions targeting infectious mechanisms. To the best
of our knowledge, multiple areas still need to be addressed
in this research direction. We anticipate this survey will ben-
efit future proteomics studies, as well as the computational
method design.
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