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ABSTRACT Though commonly used to calculate Q-factor and fractional bandwidth, the energy stored by
radiating systems (antennas) is a subtle and challenging concept that has perplexed researchers for over half
a century. Here, the obstacles in defining and calculating stored energy in general electromagnetic systems
are presented from first principles as well as using demonstrative examples from electrostatics, circuits,
and radiating systems. Along the way, the concept of unobservable energy is introduced to formalize such
challenges. Existingmethods of defining stored energy in radiating systems are then reviewed in a framework
based on technical commonalities rather than chronological order. Equivalences between some methods
under common assumptions are highlighted, along with the strengths, weaknesses, and unique applications
of certain techniques. Numerical examples are provided to compare the relative margin between methods on
several radiating structures.

INDEX TERMS Electromagnetic theory, antenna theory, Poynting’s theorem, Q-factor, energy storage.

I. INTRODUCTION
For many in the field of electromagnetics, stored energy is
best known by its appearance in the definition of a time-
harmonic system’s Q-factor (quality factor, antenna Q, radi-
ation Q) [1], [2],

Q =
2πWsto

Wdiss
, (1)

from which an estimate of fractional bandwidth is available.
In the above expression,Wsto andWdiss denote the cycle-mean
stored and dissipated energies within the system, respectively.
The dissipated energy is typically well defined and can be
easily calculated, while in many cases the definition of stored
energy is ambiguous. This issue is particularly troublesome in
distributed and radiating systems, where there exists no con-
sistent, physically-intuitive method of delineating the overlap
between energy which is stored and that which is propa-
gating. Analogous problems can be encountered in lumped
circuits, where specific networks can be arbitrarily inserted
to increase the total energy without altering the impedance
characteristics as seen from a port. The first of two goals of
this paper is to elucidate the challenges involved in defining
stored energy within a general electromagnetic system. To do

so, we draw upon examples of lumped circuits and radiating
systems which exhibit the general issue of ‘‘unobservable
energy states’’. Although this concept is somewhat abstract,
it provides a consistent framework for understanding what
makes defining stored energy in certain systems so difficult.

Because of the powerful relationship between fractional
bandwidth and stored energy, many researchers have worked
to rigorously define stored energy in an attempt to obtain
bounds on the broadband behavior of systems. Of particular
practical and historical importance is the study of stored
energy in radiating systems, i.e., antennas. Work in this area
dates back over half a century and has given rise to many
unique (and sometimes controversial) interpretations and
claims. One regime where most methods agree is in the quasi-
static limit, i.e., for small antennas. However, for problems
involving larger antennas or antennas next to larger objects
(e.g., ground planes or human bodies), most methods disagree
and there is no consensus on a definition of stored energy.
In some cases, the similarities and differences between these
existing approaches are clear, though in other instances the
technical and philosophical connections between works from
different eras are more subtle. The second goal of this
paper is to provide a clear summary of the many previously
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published approaches to defining stored energy, with empha-
sis on works studying distributed and radiating systems.
We aim to provide not a chronological history of this topic,
but rather an organized guide to the major themes and con-
cepts used in previous works.

The paper is organized as follows. In Section II, we present
a general definition for stored energy within an electromag-
netic system using the concept of unobservable energy states.
In Section III, existing approaches to defining and calculat-
ing stored energy within radiating systems are summarized.

Where applicable, the similarities and differences between
these methods are highlighted, along with their strengths,
weaknesses, and relation to the formal definition of stored
energy given in Section II. Analytical and numerical exam-
ples are presented in Section IV, giving both quantitative and
qualitative insight into the relative results obtained by the
methods outlined in Section III. The paper concludes with a
discussion of applications of certain methods in Section V
and general conclusions in Section VI. Further details are
provided on the classical definition of stored energy in Box 1,
unobservable states in Boxes 2 and 3, and electrostatic energy
in Box 4.

II. DEFINITION AND PHYSICAL RATIONALE OF
STORED EM ENERGY
The total energy of a dynamic system, see Box 1, represents
a well-known and fundamental characteristic describing the
energy stored in all of its degrees of freedom. By contrast,
the observable part of total energy is a more subtle quantity
typically defined in such a way that its value has a direct
correspondence with the input / output relation of the system
as seen by a fixed observer [3]. In lossless systems, these two
quantities are equal due to Foster’s reactance theorem [6], [7,
Sec. 8–4]. In general dissipative systems, however, they lose
their relation due to the presence of states not observable from
outside the system, see Boxes 2 and 3.

The energy supplied to a radiating system is converted
into several different forms. Consider a radiator made of
non-dispersive isotropic media with permittivity ε, perme-
ability µ and conductivity σ , which is placed in otherwise
free space (effects induced by frequency dispersion are dis-
cussed in Appendix A). The radiator is enclosed within a
volume V with bounding surface S, see Figure 1. Here
we use E and H to represent the time-domain electric
and magnetic fields, respectively, while J source denotes an
impressed current distribution. Assuming the initial condi-
tions E (r, t →−∞) = 0, H (r, t →−∞) = 0, Poynting’s
theorem can be written [11] and [12]

Wsupp (t0) =WEM (t0)+Wheat (t0)+Wrad (t0) , (7)

where the supplied energy is

Wsupp (t0) = −

t0∫
−∞

∫
V

E ·J source dV dt, (8)

the energy lost as heat is

Wheat (t0) =

t0∫
−∞

∫
V

σ |E|2 dV dt, (9)

and the net energy escaping the volume through the bounding
surface S is

Wrad (t0) =

t0∫
−∞

∫
S

(E ×H) · n̂ dS dt. (10)
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These terms account for energy supplied to and lost from the
system, letting us define the remaining term in Poynting’s
theorem as the total electromagnetic energy stored within the
volume V at time t = t0,

WEM (t0) =
1
2

∫
V

(
ε |E|2 + µ |H|2

)
dV . (11)

All aforementioned quantities depend upon a choice of vol-
ume V and its bounding surface S. A specific choice of
the surface S lying in the radiation zone1 [11] leads to (11)
representing the total electromagnetic energy and (10) the

1Here we make an assumption that electric and magnetic fields are tem-
porarily bandlimited and thus the radiation zone can be defined in a usual
manner by the dominance of the 1/r field components.

FIGURE 1. Sketch of an antenna region Ω , a smallest circumscribing
sphere of radius a, an arbitrary volume V with its boundary surface S and
the far-field sphere bounded by S∞.

total radiated energy. This division, however, depends on
surface S due to time retardation.

The energy defined in (11) encompasses all electromag-
netic energy localized in the chosen volume V containing the
system. Nevertheless, for an observer situated at the input port
of the system, the entirety of energy WEM is not necessarily
observable, see Box 2. By definition, unobservable energy
states cannot affect physical measurements at the location of
the observer. For this observer a more sensible definition of
the stored energy is,

Wsto (t0) =WEM (t0)−Wunobs (t0) , (12)

where Wunobs (t0) is the energy of all unobservable states.
This definition suggests that the value of stored energy
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depends on the position of the observer. Throughout this
paper it is assumed that the observer is positioned at the input
port of the electromagnetic system and therefore perceives
the minimum stored energy from all observers. Note, how-
ever, that even the minimum value of energy Wsto (t0) is not
necessarily recoverable [13], [14] by experiments performed
at the location of the observer (recoverable energy Wrec (t0)
is detailed later in Section III). The stored energy is fully
recoverable only in special cases, the most important being
closed lossless systems satisfyingWheat (t0)+Wrad (t0) = 0.
Examining the properties of aforementioned energy defini-
tions, we arrive at the following inequality

0 ≤Wrec (t0) ≤Wsto (t0) ≤WEM (t0) ≤Wsupp (t0) . (13)

In the preceding discussion, all quantities are defined in the
time domain. However, in many cases cycle mean values of
the energies in (10), (11) and (12) in time-harmonic steady
state are of interest, where time-harmonic quantities at angu-
lar frequencyω are defined as G(t) = Re{G(ω)ejωt } and cycle
means are denoted as 〈·〉. The conversion of all preceding
energy terms into the time-harmonic domain is straightfor-
ward, but induces an issue with potentially unbounded energy
values. This happens when the volume V is chosen to consist
of all space (denoted V∞) with bounding surface S being
a sphere at infinity (denoted S∞). In such a case the time-
averaged total electromagnetic energy

WEM=〈WEM〉=
1
4

∫
V∞

(
ε|E (ω)|2 + µ|H (ω)|2

)
dV (14)

is infinite due to the infinite amount of radiation energy
contained in propagating fields within the volume V∞. Sub-
tracting the propagating energy from the total energy WEM,
i.e., to identify unobservable energy with radiation, is the
aim of several approaches calculating the stored energy
Wsto = 〈Wsto (t0)〉. These methods rely on the fact that time-
averaged radiated power

Prad =
∫
S∞

P(ω) · r̂ dS

=
1
2Z0

∫
S∞

|E (ω)|2 dS =
1
2Z0

∫
S2

|F (ω)|2 dS (15)

in time-harmonic steady state is the same for all surfaces
enclosing the sources. The quantities

F (ω) = lim
r→∞

rejkrE(ω) (16a)

P (ω) =
1
2
Re{E (ω)×H∗ (ω)} (16b)

used above denote the far field and the real part of the
Poynting vector, respectively. In the far right-hand-side
of (15), the surface S2 denotes the unit sphere and k =
ω/c0 in (16a) denotes the free-spacewavenumber.When used
to evaluate Q-factor, the cycle-mean stored energy Wsto is
normalized by the cycle-mean dissipated energy (see (1)).

In radiating systems without ohmic losses, the cycle-mean
dissipation reduces to the radiated power Prad in (15).

Note that inmany cases, theQ-factor in (1) is assumed to be
tuned such that the system as a whole is resonant. In general,
a non-resonant system can be tuned by the addition of a
specific reactance, which stores additional energyWtune. The
tuned Q-factor can then be explicitly rewritten as

Q =
2π (Wsto +Wtune)

Wdiss
. (17)

Since the stored energy in a pure reactance is well-defined,
throughout this paper we discuss only the general stored
energy Wsto.

III. EXISTING METHODS
So far, we have discussed stored energy only in terms of the
abstract definition in (12) involving the total and unobserv-
able energies. For practical purposes, more specific expres-
sions are required to evaluate a system’s stored energy. This
Section compares many methods developed to calculate the
stored energy in electromagnetic systems. These methods
vary in approach and generality, though most were motivated
by the desire to calculate the Q-factor of radiating systems,
as defined in (1).

The many attempts at defining and calculating stored
energy in radiating systems can be classified and grouped
in several ways, cf. the electrostatic case in Box 4. In this
section, we briefly discuss these methods using the physical
quantities required in each technique as a primary distin-
guishing feature. All discussed methods are listed in Table 1,
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TABLE 1. Methods for evaluating stored energy. Rows are grouped by the data required for its evaluation, i.e., methods derived from fields (blue), source
distributions (green), and systems (red). The final two uncolored methods are metrics not generally related to stored energy which are used for
comparison purposes.

where they are grouped using this convention. Specifically,
methodologies are grouped into those derived mainly from
electromagnetic fields (blue color), those with energy values
directly calculable from source current distributions (green
color), and those which take a more abstract system-level
approach (red and gray color).

This particular division is by no means unique, and
throughout this section mathematical equivalences and philo-
sophical similarities between methods are discussed.

The data required for implementing each method are listed
in the Requirements column, along with the region over
which those data sets are required. These regions are denoted
using R3 to represent all space, Ω the support of sources,
S∞ the far-field sphere, and Port the port of the system.
Three salient features are indicated for each method in the
Properties column. These features are:
• coordinate independence, rind: A check mark in this
column indicates that energy expressions are coordinate
independent, i.e., they are independent of an antenna’s
position within a coordinate system.

• positive semi-definiteness, Wsto ≥ 0: In Section II it
was argued that the stored energy Wsto should always
be non-negative. A check mark in this column indicates
that energies obtained by a given method obey this
requirement.

• applicability to current optimization, J-opt: A check
mark in this column indicates that a given formulation
of stored energy can be directly applied to source cur-
rent optimization, useful in determining certain physical
bounds.

For the sake of simplicity, all the methods described in
Section III are presented assuming radiators made only of
perfect electric conductor (PEC) or assuming electric currents
placed in a vacuum environment. All presented methods
however allow generalization to non-dispersive inhomoge-
neous media of finite extent, although validations of such
generalizations are scarce. Specific information regarding

this procedure for each method is left to corresponding sub-
sections. Similarly, certain methods may be applicable to
systems containing dispersive media, though the accuracy
and interpretation of results in these cases is still an open area
of study.

FIGURE 2. Sketch of electric field intensity E generated by dominant TM10
spherical mode.

A. STORED ENERGY EXPRESSED IN TERMS OF
ELECTROMAGNETIC FIELDS
Methods derived from the fields E and H attempt to calcu-
late stored energy (12) by subtracting unobservable energy
from the total energy locally at the level of electromagnetic
fields around the radiator, see Figure 2. These procedures
commonly allow for the definition of a local stored energy
density by identifying energy in radiating fields as unobserv-
able energy. An explicit relation for the unobservable energy
density can be identified in these methods, and is given by
the subtraction terms in (19), (20) and (21). An advantage of
these methods is that they require only field quantities, not the
physical structure of the radiator. However, these methods are
typically computationally demanding, rendering even simple
optimization tasks prohibitively expensive. Other common
issues are the unknown form of unobservable energy within
the smallest sphere circumscribing a source regionΩ (which
can lead to over-subtraction [16]) and omission of other forms
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of unobservable energy such as non-radiating currents [17],
see also Boxes 2 and 3. In all known cases, general dispersive
materials cannot be treated with these methods. The inclusion
of non-dispersive materials can be made [18]–[20] in all
methods described in this subsection by changing ε0 → ε

and µ0→ µ in the first two terms in (19), (20) and (21).
The published results are dominated by analytic evaluation

of the stored energy for spherical modes in the exterior region
of a sphere circumscribing the radiator [18], [19], [21]. The
radiated power (15) expressed in the power flux and the far
field are identical for this case and the classical expressions
can be extended to arbitrary shapes in several ways. Here,
we consider radiated energy expressed as the: power flux in
the radial direction, magnitude of the power flux, and far-field
amplitude, see first three rows in Table 1.

1) SUBTRACTION OF THE RADIAL POWER FLOW r̂ · P
Collin and Rothschild [18] suggested identification of radi-
ated energy with the power flux in the radial direction to
define the stored energy as

WPr=
1
4

∫
R3

(
ε0|E|2+µ0|H|2 − 4

√
ε0µ0 r̂ · P

)
dV . (19)

They used this expression to evaluate the stored energy in
the exterior of a sphere using mode expansions and produced
explicit results on the Chu [22] lower bound, see also [19] for
a time-domain extension. The expression (19) is non-negative
and does not subtract energy for standing waves, e.g., in the
interior of a sphere for spherical mode expansions [18], [21].
The main drawbacks of (19) are the coordinate dependence
and the need for numerical integration for general fields,
see [23], [24] for spheroidal geometries and [25] for an FDTD
approach.

2) SUBTRACTION OF THE MAGNITUDE
OF THE POWER FLOW |P|
The problem with coordinate dependence in (19) can
be resolved by subtraction of the magnitude of the
power flow |P|, i.e.,

WP =
1
4

∫
R3

(
ε0|E|2 + µ0|H|2 − 4

√
ε0µ0|P|

)
dV . (20)

This expression for the stored energy was originally proposed
in an equivalent form by Counter [26]. The expression is
identical to (19) for fields expressed as a single spherical
mode [26]. It is non-negative and less than or equal to (19)
for general fields with a power flow in non-radial directions.
The main drawback with (20) is the numerical evaluation of
the energy density over R3.

3) SUBTRACTION OF THE FAR-FIELD AMPLITUDE |F|2

The energy of the radial component of the power flow, sub-
tracted in the previous method (19), can be expressed in
the far-field amplitude |F|2 outside a circumscribing sphere.

This leads to the formulation [20], [21], [27]–[31]

WF =
1
4

∫
R3

(
ε0|E|2 + µ0|H|2 − 2ε0

|F|2

|r|2

)
dV

=
1
4
∂Xin
∂ω
|I0|2 −

Im
2Z0

∫
S2

∂F
∂ω
· F∗ dS (21)

for the stored energy, where S2 denotes the unit sphere
and the frequency derivatives are evaluated for a fre-
quency independent input current I0. Here, all radiated
energy is subtracted and the expression makes no differ-
ence between standing and radiating waves, e.g., in the
interior of the smallest circumscribing sphere. Hence,
the energy WF differs from WPr by kaPrad for spherical
modes and implies a difference of the Chu bound by ka,
i.e., QChu − ka. Variations of (21) exist in the literature
and, e.g., Rhodes [27] suggested to use subtraction (21)
only in the exterior region, keeping the total electromagnetic
energy in the interior region. A shielded power supply
is also often excluded from the integration in (21), [20].
This is equivalent to setting E and H to zero in the region
of the power supply.

The stored energy WF in (21) can be rewritten using the
frequency-differentiated input reactance X ′in and far field F′

for antennas with a fixed feeding current I0 using a reactance
theorem [20], [21], [27]. This form of the stored energy is
shown in the far right of (21) and simplifies the numerical
evaluation from a volume integral to a surface integral. More-
over, it shows that the energyWF is coordinate dependent for
non-symmetric radiation patterns [20], [29]. The reactance
theorem is extended to complex media in [20] and [32]. The
formula (21) is also rewritten in the current density in [29],
see Section III-B.2.

FIGURE 3. Illustration of surface current of dominant TM10 mode on a
spherical shell Ω .

B. STORED ENERGY EXPRESSED IN CURRENTS
Several methods exist for calculating the energy stored by a
source current distribution J placed in vacuum, see Figure 3.
These methods can be used to evaluate stored energy from
any system (including materials, feeds, and ports) which
can be represented by an equivalent current distribution J .
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A powerful feature of this approach is an immense reduction
of information needed to evaluate stored energy. Commonly,
only current densities on finite surfaces are needed. These
methods are also well suited for various tasks in antenna
design [33], since the feeding which leads to the current
density J need not be known. This makes it possible to deter-
mine fundamental performance bounds on antennas with
given support [33]–[36] or to utilize modal decomposition
methods [37].

Similarly to field approaches, the methods discussed in this
subsection identify radiation energy as unobservable energy.
In contrast to the field-based methods, however, the explicit
form of the unobservable energy is, with an exception of
Sec. III-B.4, not known for current-based methods. Their use
for evaluation of (12) for lumped circuits will thus always
count the entire electromagnetic energy WEM regardless of
the complexity of the circuit. The formulation of the methods
for general dispersive materials is not well studied except
for the state-space method of moments (MoM) approach
in Section III-B.3. In the case of non-dispersive materials,
electric polarization can be included in the current density J .

1) DIFFERENTIATED MoM REACTANCE MATRIX X′

Harrington and Mautz [38] proposed to use frequency differ-
entiation of the MoM reactance matrix

WX′ =
1
4
IH
∂X
∂ω

I =
1
4
IHX′I (22)

to estimate the stored energy. The reactance matrix is deter-
mined from the impedance matrix Z = R + jX derived
from the MoM approximation of the electric field integral
equation (EFIE) [39]. The expression (22) is not derived
in [38], but is merely motivated by the analogous expression
of Foster’s reactance theorem for lossless systems [40], see
also (30). The stored energy for lumped circuit networks can
be determined with the formula (22) by substituting theMoM
impedance matrix with the lumped circuit impedance matrix,
see (5) and [4].

For currents in free space, the expression (22) is identical
to the MoM state-space approach in Section III-B.3 and the
MoM approximation of the stored energy expressions by
Vandenbosch [41]. Hence, it also suffers from the matrix X′

being indefinite for large structures and potentially produc-
ing negative values for the stored energy [16]. The expres-
sion (22) is easily applied to temporally dispersive materials
but is inaccurate for many cases [42], cf. the state-spaceMoM
approach in Section III-B.3.

2) REACTIVE ENERGY
The expressions in the frequency domain introduced by
Vandenbosch [41] start from the same classical idea as
described by Collin and Rothschild [18]: the subtraction of
the radiated energy density from the total energy density.
However, the subtracted term is defined in a slightly different
way on the basis of an energy balance equation involving
the derivatives of Maxwell’s laws. The resulting difference

is analytically integrated over all space, yielding closed-form
expressions for the reactive energy (both the electric andmag-
netic part) in terms of the currents flowing on the radiator. The
new definition thus eliminates the coordinate dependency,
resulting in the expression

Wreac

=
Z0
4ω

∫
Ω

∫
Ω

((
k2J1 · J∗2 +∇1 · J1∇2 · J

∗

2

) cos(kr12)
4πr12

− k
(
k2J1 · J∗2 −∇1 · J1∇2 · J

∗

2
) sin(kr12)

4π

)
dV1 dV2.

(23)

This expression was later found to conform [29] to the coordi-
nate independent part of energy WF given by (21). The same
expression is found also from a line of reasoning starting
in time domain [43], [44]. The expression is positive semi-
definite for circuits and small radiators but indefinite for
larger structures [16]. This method essentially can be seen as
a ‘‘transformation’’ of the original field based definition (21),
acting on all space, into a current based interpretation, acting
only within the volume of the radiator. The MoM approxi-
mation of (23) is identical to (22) for the free-space case and
hence (23) offers a rigorousmotivation for (22). The first term
in (23) is also similar to the time-domain formulation using
the product of sources and potentials proposed by Carpenter
in [45]. Moreover, Geyi presented an approximation of (23)
for small antennas in [46]. This small regime formulation
was also addressed in [47] and [48]. The formulation based
on (23) is generalized to electric and magnetic current densi-
ties in [49] and [50].

3) STATE-SPACE MoM MODEL X̃′

The state-space method is based on the classical approach
to define stored energy in a dynamic system, see (3). The
stored energy for a radiating system is more complex as
the dynamics are not described by the simple system in (3).
In [51], a state-space model

Z̃Ĩ =

(
jωµL 1

−1 jωεC

)(
I

U

)
=

(
B

0

)
Vin (24)

is derived from the MoM impedance matrix Z = jωµL +
Ci/(jωε), where U is the voltage state and V = BVin = ZI
is the excitation. The stored energy is constructed by differ-
entiation of the state-space reactance matrix X̃ = Im{Z̃} with
respect to the frequency, cf. (4). The resulting stored energy
is identical to the X′-formulation in Section III-B.1 for PEC
structures in free space and suffers from the same problem
of being indefinite for larger structures. The advantage of
the state-space approach is that the quadratic forms for the
stored energy are derived for small structures in temporally
dispersive and inhomogeneous materials.
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4) SUBTRACTION OF THE RADIATED
POWER IN TIME DOMAIN
The subtraction of unobservable energy (12) in the form of
radiation can advantageously be applied in time domain [52].
In this paradigm the system is brought into a given state (for
example time-harmonic steady state) during time t < t0 and
then its excitation is switched off. The system is then let to
pass a subsequent transient state in which all its energy is
lost via radiation and heat. With the time-dependent current
densityJ (t) existing in the system, which has been recorded
during the entire time course, the stored energy can be
calculated as

Wtd (t0) =

∞∫
t0

(
Pheat (J )+Prad (J )−Prad (J freeze)

)
dt,

(25)

where Pheat and Prad are the power lost and power radiated
corresponding to the lost and radiated energyWheat andWrad
defined by (9), (10), with bounding surface Sfar located in
the far field. The current density J freeze (t) is defined as the
current density at time t = t0 artificially frozen for times
t > t0, i.e., J freeze (t > t0) = J (t0). Cycle-mean stored
energy in time-harmonic case is achieved by moving time
t0 within one period and averaging. Note that although the
power terms in (25) are evaluated for time t > t0, the time
retardation demands knowledge of the current density also in
preceding times.

This subtraction technique closely follows the stored
energy definition (12) and its more detailed exposition [52]
also shows that the method gives non-negative stored energy,
is coordinate independent, and can subtract the radiation
energy inside the smallest circumscribing sphere. The unob-
servable energy can in this case be identified with the sub-
tracted term in (25). The major disadvantage of this approach
is that it requires numerically expensive evaluation.

FIGURE 4. Synthetized circuit for dominant TM10 mode of a spherical
shell with radius a [22].

C. APPROACHES USING SYSTEM, PORT, OR FEED
System-level approaches evaluate energy storage directly
from quantities available in the input/output ports of the
system, see Figure 4. Grounded in thermodynamic prin-
ciples, energy balance calculations of this kind preceded
local approaches in mechanics, however, they are not
commonly seen in the domain of electromagnetic stored

energy evaluation. The oldest application of system-level
energy quantification in electromagnetics uses circuit syn-
thesis [4], [22] and is also tightly related to the concept of
recoverable energy [14]. The generality of these approaches
is unprecedented as they are applicable to arbitrarily com-
plex electromagnetic systems. Unfortunately, this generality
comes at the price of losing all physical interpretation of
the unobservable energy content. Additionally, application
of these techniques require systems with well defined input
ports. This latter restriction makes these techniques inap-
propriate for evaluating the Q-factors of currents without
a well-defined port, such as those encountered in modal
decompositions and current optimization.

1) CIRCUIT SYNTHESIS
Chu’s classical antenna bound was originally derived using
the stored energy in lumped inductors and capacitors within
circuit models representing wave impedances of spheri-
cal modes [22]. Thal has extended this approach to hol-
low spheres [53] and arbitrarily shaped radiators [54]. The
stored energy for arbitrarily shaped antennas can analogously
be estimated from equivalent circuit networks synthesized
solely from the input impedance [55], where Brune synthe-
sis [5], [56] is used. Alternative synthesis methods [5] can be
used but it is essential that the synthesized circuit is a recipro-
cal minimal representation [3]. Non-reciprocal methods such
as the minimum-phase Darlington synthesis [4], [57] can be
used to estimate the recoverable energy in Section III-C.2.

It is hypothesized [55] that the Brune circuit synthesis
procedure produces a circuit withminimal stored energy from
all reciprocal realizations, and thus best estimates the stored
energy Wsto. By definition, this means the procedure only
includes the observable part of the stored energy. Note that
this is zero for the Zöbel network in Box. 2. The formulation
can be used for arbitrary antennas and material models, but
its application requires approximation of the input impedance
Zin(ω) as a positive-real function. This approximation is
computationally difficult for electrically large antennas that
require high-order rational functions.

2) RECOVERABLE ENERGY
The recoverable energyWrec (t0) is defined as the maximum
energy which can be extracted from a system which has been
driven for times t < t0 by a known set of sources [13], [14].
In the most general sense, calculating Wrec (t0) involves
finding the optimal ‘‘recovery source’’ [14] as a function of
time t > t0. This recovery signal implicitly depends on the
sources applied at times t < t0 and the locations where
recovery is allowed to occur. The optimal recovery source
extracts maximum energy from the system and equivalently
minimizes energy lost by the system during recovery. When
both driving and recovery sources are confined to a single
port as they are in many antenna systems, the task of finding
the optimal recovery source is greatly simplified [58]. Given
a port impedance Zc and a system reflection coefficient Γ (ω),
the recovery source (in the form of an incident voltage u+in(t))
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is obtained by solving

F−1
{
1
Zc

(
1− |Γ (ω)|2

)}
∗ u+in(t) = 0 (26)

for times t > t0, where ∗ denotes convolution and F−1 {·}
denotes the inverse Fourier transform.

Applying this recovery source to the antenna port,
the recoverable energy is given by

Wrec (t0) = −

∞∫
t0

uin(t)iin(t) dt, (27)

where uin and iin are the total port voltage and current corre-
sponding to the optimal time course u+in(t) from (26).

For time-harmonic excitation prior to time t0, the cycle-
mean recoverable energy can be calculated directly in closed-
form from a rational function fit of the system’s input
impedance [58]. The process of approximating an antenna’s
input impedance as a rational function, however, suffers from
the same problems as Brune synthesis for electrically large
antennas. The formulation of energy Wrec in terms of field
quantities can be found in [14] and an overview of its physical
properties and more detailed exposition can be found in [59].
A first generalization of the concept to more arbitrary excita-
tions of radiators can be found in [60].

D. SYSTEM-LEVEL METRICS NOT DIRECTLY
DERIVED FROM STORED ENERGY
Determining the stored energy in a system is largely moti-
vated by its approximate inverse proportionality2 to the fre-
quency selectivity of a single resonance system,which ismost
commonly described by its fractional bandwidth (FBW) or
Q-factor. There are however methods which attempt to eval-
uate Q-factor without knowledge of stored electromagnetic
energy. The most well known are the Q-factors QZ′ derived
from the frequency derivative of an input impedance and
QFBW derived directly from the fractional bandwidth of the
system. Both of these methods belong to the system-based
class of approaches and share those properties. For com-
parison purposes, both methods will be calculated alongside
Q-factors derived from stored energy.

1) FRACTIONAL BANDWIDTH
The Q-factor QFBW is calculated directly from the fractional
bandwidth B as [20]

QFBW =
2Γ0√
1− Γ 2

0

1
BΓ0

, (28)

where Γ0 denotes the level of the reflection coefficient |Γ | at
which the fractional bandwidth BΓ0 is evaluated. The relation

2Often, this inverse proportionality is taken for granted. It is, however,
important to stress that a strict functional relation of Q-factor based on stored
energy and fractional bandwidth does not exist [61], and the discrepancy
from the inverse proportionality can in specific cases be enormous [62].
On the other hand, in many cases, including practically all electrically small
radiators, the inverse proportionality is almost exact.

assumes that the system is matched and tuned to resonance at
the evaluation frequency, i.e., Γ (ω) = 0. The most important
merit of the Q-factor QFBW is its exact proportionality to
fractional bandwidth. The major drawback of this method
is its inability to evaluate Q-factor from data at a single
frequency and its dependence on the choice of parameter Γ0.

2) DIFFERENTIATED INPUT IMPEDANCE
The Q-factor QZ′ has been derived [20] from QFBW in the
limit where Γ0 → 0 and it represents the differential frac-
tional bandwidth of the system. Similarly toQFBW, it assumes
the system is matched and tuned to resonance. It is most
commonly defined as [20]

QZ′ =
ω

2Rin

∣∣∣∣∂Zin∂ω

∣∣∣∣ = ω ∣∣∣∣∂Γ∂ω
∣∣∣∣ . (29)

Alternatively, QZ′ can be viewed as the classical Q-factor (1)
derived from a local approximation of an input impedance
by a single resonance (RLC) circuit [20], [63] for which
the relation QZ′ = Q ≈ QFBW holds. The advantage
of QZ′ over QFBW is its much simpler evaluation and its
independence of the parameter Γ0. However, the cost of this
simplification is the loss of a direct relation to fractional
bandwidth [20], the possibility of predicting QZ′ = 0 [61],
[62], and the problematic interpretation in cases of closely
spaced resonances [64]. The Q-factor QZ′ can also be written
solely in terms of source current density [42], [65] which
relates it to the Q-factor based on energiesWF andWreac, see
Section IV-A.

In systems which are not self-resonant, tuning via an
ideal series or parallel lumped reactance is commonly
assumed [20]. The values of the corresponding QZ′ factors
differs in those two scenarios, but in practical cases (including
those shown in this paper), the differences are minor. The
evaluation of QZ′ factor with parallel reactance tuning can
also be seen as evaluating the tuned QY′ factor which would
result from using (29) on the input admittance and input
conductance [42].

E. OTHER METHODS
The list of methods discussed above is not complete and we
have intentionally selected those which follow the defini-
tion (12) and at the same time exhibit generality. In this sub-
section we briefly comment on those not explicitly treated.

The first concept is that of employing angular field decom-
position, identifying stored energy with the energy of the
evanescent (invisible) part of the spectra [66], [67]. A sim-
ilar concept was proposed in [68] to evaluate Q-factors of
electrically small dipole radiators and in [69] to evaluate
Q-factors of arrays. This spectral decomposition method is
an interesting scheme which gives important insight into the
subtraction of the radiation part of unobservable energy. Its
most important drawback is its applicability solely to planar
radiators. A generalization to general radiators has been pro-
posed in [70], [71], but has not been tested.

The second concept, proposed by Kaiser [72], bears
similarity to the time domain version of the method of
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Collin and Rothschild [19] and claims to be its relativis-
tic generalization. The major difference from (20) is the
use of squared instead of linear subtraction which was
introduced as an analogy to relativistic energy-momentum
relation [72], [73]. The merit of this concept is positive semi-
definiteness, coordinate independence, and the capability to
deliver a local stored energy density. In canonical cases it
leads to stored energy values [74] very close to (20), but its
testing in more general scenarios is not available.

The last presented concept is based on a fact that the stored
energy in a lossless network can be determined by differenti-
ation of the input reactance Xin or susceptance Bin [40] as

WX′in
=

1
4
IHin
∂Xin

∂ω
Iin (30a)

WB′in
=

1
4
VH
in
∂Bin

∂ω
Vin, (30b)

respectively. This formula is related to Foster’s reactance
theorem [75] where a positive energy implies a positive slope
of the reactance. The input resistance of antennas is, how-
ever, non-zero and the approximation (30) is hence generally
inadequate. This is also concluded from (21), as (30) neglects
the far-field term in (21). Moreover, it is necessary to include
the input resistance to accurately estimate the fractional
bandwidth as shown by QZ′ expression in (29). Although
the expression (30) has the same form as the differentiated
reactance matrices in Sections III-B.1 and III-B.3 there are
substantial differences. It is sufficient to know only the input-
output relation for the lossless system in (30) whereas (22)
requires knowledge of the internal dynamics of the system.

IV. ANALYTIC AND NUMERICAL COMPARISONS
In this section, two classes of comparisons are made
between the methods described in the preceding section.
First, we study the analytic relation between some methods
under certain specific conditions. Following that, numerical
examples are presented where the Q-factor of driven antennas
are calculated and compared.

A. ANALYTICAL COMPARISON OF VARIOUS METHODS
Whenmethods from Table 1 are applied to fields and currents
generated by PEC structures operating in the quasi-static limit
where radiation is negligible, the stored energy predicted by
them reduces to the electro- and magnetostatic expressions,
see Box 4. They however start to differ for electrically larger
structures. Here, the methods are analytically compared for
canonical cases such as spherical geometries, PEC structures,
and single-resonance models.

Spherical modes have dominated evaluation of stored
energy and Q-factors since the publication by Chu [22].
Collin and Rothschild [18], see Section III-A.1, pre-
sented closed form expressions of the Q-factor and stored
energy WPr for a single radiating spherical mode outside
a sphere with radius a. Comparing the definitions of the

methods in Table 1 for this case reveals the identities

WPr = WF +
a
c0
Prad = WP = WZBin

, (31)

where the difference with aPrad/c0 (ka for the Q-factor) for
the subtracted far-field expression WF originates from the
subtraction of the radiated power inside of the sphere in (21)
and the equality for the Brune circuit follows from the circuit
model of the spherical modes [22]. Thal [53] analyzed the
corresponding case with electric currents by inclusion of the
stored energy in standing waves inside the sphere. This case
is identical to (31) for the field-based methods but with an
added connection toWreac, i.e.,

WPr = WF +
a
c0
Prad = WP = Wreac +

a
c0
Prad, (32)

where the spherical mode expansion in [29] is used forWreac
in (23). The identity (32) can be generalized to arbitrary
electric current densities on the sphere with exception forWP.
When stored energy WF given by (21) is written as

a bilinear form of source current density [29], it relates
to energy (23) as WF = Wreac +Wcoord, where coordinate-
dependent termWcoord is given by [29, eq. 26]. The coordinate
dependent part vanishes in the important case of equiphase
current densities, i.e., |ITI| = IHI, which appear as a result of
characteristic mode decomposition [37], minimum Q-factor
modes [36], and often approximately for small self-resonant
antennas. The equiphase case is also related to differentiation
of the input admittance (30) for a fixed voltage source [42]
revealing the following connection between the field, current,
and port based methods:

WF = Wreac = |WB′in
| ≈ QZ′

Prad
ω
, (33)

where the final step is valid for self-resonant cases for which
the change of reactance dominates over the resistance.

The MoM discretized version of (23) for PEC structures is
also identical to the differentiated reactance matrix (22) and
the state-space MoM (24), i.e.,

Wreac = WX′ = WX̃′ . (34)

This equality is used for the presented numerical results in
Section IV-B, where the energy Wreac is used to indicate all
three methods in (34).

Finally, the system methods agree for single-resonance
RLC circuit networks

QZBin
= Qrec = QZ′ ≈ QFBW, (35)

where the subscripts used are the same as for corresponding
energies.

The above comparison suggests that the proposed methods
agree for many cases. However, the identities are based on
specific assumptions and discarding the imposed restrictions
on the geometries, equiphase currents, and single resonance
can produce very different estimates of the stored energy. For
an example designed to demonstrate the effects of breaking
these assumptions, we generalize the single mode case (32) to
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FIGURE 5. Q-factors for concentric spherical current shells
radiating the spherical TM01 mode with a2 = 6a1: a) J2 = (0.5+ 0.05j)J0,
b) J2 = (1− 0.5j)J0. Note that the energy WF has been evaluated
according to the first line of (21) which does not demand the
frequency normalization of the current and QZ′ is calculated
using the current based formulation in [42].

to a TM01 electric current mode distributed on two spherical
shells with radii a1 and a2 > a1. Let the inner current have
amplitude J1 and normalize the outer current amplitude with
J0 such that J2 = J0 cancels the radiation from the inner
surface. This non-radiation current has no dissipated power
and hence an infinite Q-factor. Lowering the amplitude to
J2 = 0.5 J0 increases total the radiation as only half of the
radiated field is canceled. Figure 5a depicts the case a2 = 6a1
with J2 = (0.5+ 0.05j)J0, where the small imaginary part is
added to invalidate the equiphase identity (33). In the figure,
we observe that QF ≈ Qreac ≈ QZ′ as expected from (33) as
the current is approximately equiphase. The Q-factors from
the subtracted power flow (19) and (20) are substantially
lower than the other Q-factors around ka2 ≈ 5. This is
contrary to the expectation from the single mode case (32)
and can be explained by the power flow between the spherical
shells that is not subtracted by the far field in (21). The effects
on the Q-factors of an increased phase shift between the
current is depicted in Figure 5b, where J2 = (1 − 0.5j)J0 is
used. Here, all considered methods produce different results.

These simple examples illustrate the challenges to define
stored energy and that the challenge increases with the elec-
trical size of the object and phase variation of the current.

B. NUMERICAL COMPARISON OF VARIOUS METHODS
Numerical results for different antenna types are presented in
this section. The examples are: a center fed cylindrical dipole,
an off-center fed cylindrical dipole, a strip folded dipole, and
a Yagi-Uda antenna. The tuned Q-factor (17) is chosen as an
appropriate measure to compare the different methods, as it
is only a renormalization of the stored energy along with
an addition of a known tuning energy, see Section II. This
permits us to compare and contrast methods for evaluating
the stored energy with the methods in Section III-D which
only calculate the tuned Q-factor, such as QZ′ and QFBW.
All example structures are modeled as PEC in free space and
are each fed by a single delta-gap voltage source. In this case
many of the methods described in Section III are formally
equivalent, see Section IV-A. Hence, only one representative
of each such group is presented here. Each method follows
the notation introduced in Table 1. The frequency axis of all
plots is expressed in the dimensionless quantity ka, where a
is the radius of the smallest sphere that circumscribes each
antenna. The Q-factor QFBW has been calculated at the level
Γ0 = 1/3 ≈ −10 dB in (28).

FIGURE 6. Q-factors of a hollow cylindrical dipole of length L and
radius r = L/200, fed at its center. The gray solid and dashed vertical lines
denote resonance and anti-resonances of the antenna.

1) CENTER FED CYLINDRICAL DIPOLE
Figure 6 depicts the Q-factors calculated by the methods
discussed in Section III for a hollow cylindrical dipole. All
the methods agree well for low ka values, which are typical
dimensions for electrically small antennas. The methods start
to diverge for electrically larger structures, when ka � 1.5.
It should be noted that the relative difference in Q-factor is
very small, even for larger structures. The only major diver-
gence is the Q-factor from the recoverable energyWrec which
predicts significantly lower values than the other methods for
ka > 3. This, however, is to be expected as the recoverable
energy is the lower bound to the stored energy, see (13).
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FIGURE 7. Q-factors for a hollow cylindrical dipole of length L and radius
r = L/200, with an off-center feed l = 0.23L from the center. The gray
solid and dashed vertical lines denote resonance and anti-resonances of
the antenna.

2) OFF-CENTER FED CYLINDRICAL DIPOLE
The dipole examined here is identical to the center fed dipole
in Section IV-B.1 except that its feeding point is shifted by
a distance l = 0.23L from the center. This gives rise to a
phase shift which changes the stored energy and Q-factor.
If we compare Figures 6 and 7 we see that the Q-factors
fluctuate much more than observed in the center fed dipole.
However, the Q-factors retain the same behavior with respect
to each other as for the center fed dipole for most of the
simulated interval. They predict essentially the same results
for low values of ka and diverge slightly for ka > 1.5.
However, around ka = 6.2 the Q-factorQZ′ has a dip which is
not mimicked by the other methods. The recoverable energy
Wrec predicts lower values of Q-factor than the other methods
but seems to follow the behavior of the curves with smaller
fluctuations.

FIGURE 8. Q-factors for a folded strip dipole of circumscribing
dimensions L× L/2, with strip width L/200. The gray solid and dashed
vertical lines denote resonance and anti-resonances of the antenna.

3) STRIP FOLDED DIPOLE
In Figure 8, Q-factors are depicted for a folded strip dipole.
Due to computational complexity the subtraction of the power
flow |P|, the energy WP has not been calculated for this

example. With exception of recoverable energy, the depicted
methods shown agree well for ka < 4, above this point
the Q-factors QZ′ and QFBW start to diverge from the other
methods.

FIGURE 9. Q-factors for a Yagi-Uda antenna specified in the upper right
corner of the figure. All the dimensions of the Yagi-Uda antenna are
normalized to the center dipole length L. The elements have been
modeled as strips of width L/200. The gray solid and dashed vertical lines
denote resonance and anti-resonances of the antenna.

4) YAGI-UDA
Figure 9 depicts Q-factors calculated for a Yagi-Uda antenna,
again the subtraction of the power flow, |P| has not been
calculated due to computational complexity. All methods
presented agree well over the entire interval, excluding a
small dip from Q-factor QZ′ at ka = 1.8 and some small
divergence at ka > 6. This can be explained by the off reso-
nance behavior of the Yagi-Uda antenna. When the parasitic
elements are no longer active, the antenna essentially behaves
as a center-fed dipole. Because of this simple behavior the
relative difference between the methods becomes very small.

V. APPLICATIONS
Stored energy for radiating systems was initially used
by Chu [22] to derive his classical antenna bounds for
spherical shapes. Bounds have continued to be a major
driving force for research into stored energy [76]–[78]
as antenna designers are, naturally, interested in how
good their antennas are and how far they are from
the optima [79]–[81]. The Chu bound was originally
derived with a circuit model for spherical modes see
Section III-C.1, see also [53], [54], [82]. The model was
reformulated in fields (19) by Collin and Rothschild [18]
and subsequently refined in [20], [21], [83], see [79]–[81]
for an overview. Formulations as optimization problems
has generalized the classical bounds on the Q-factor
to a multitude of problems formulated as combinations
of stored energy, radiated fields, induced currents, and
losses [33]–[36]. Many problems are formulated as convex
optimization problems [33], [34], [36], [84], [85] which are
efficiently solved with standard algorithms. Here, it is essen-
tial that the quadratic forms for the stored energy are positive

10564 VOLUME 6, 2018



K. Schab et al.: Energy Stored by Radiating Systems

semidefinite, see Table 1. Unfortunately, several presented
methods are indefinite for electrically large structures. This
restricts the problems to sub-wavelength structures where
the expressions are positive semidefinite. Apart from convex
optimization and considering mainly sub-wavelength radia-
tors, other techniques like parameter sweeps [47], [48], polar-
izabilities [49], [86], [87], or modal decomposition [35], [50],
[88], [89] can be applied to determine bounds.

Although stored energy has so far mainly been used to
determine physical bounds, stored energy has great potential
to be an important concept also in antenna design. The results
by Chu [22] showed that small antennas are dipole radiators
and the explicit shape of the current distribution can give
insight to design. Thal [53] showed how the stored energy in
the interior of a sphere contributes [90], [91]. The importance
of the polarizability and its associated charge separation was
shown in [87] and [92]. With the current-based formulations
in Section III-B and optimization of the current distribution
we get suggestions for optimal currents for many antenna
parameters [16], [33]–[36].

Another direction from which the problem of minimiza-
tion of Q-factor was attacked is characteristic mode the-
ory [93] as it provides favorable separation of reactive stored
energy (23), constituting thus modal Q-factors for arbitrary
bodies [37]. Mixing rules similar to those used with spher-
ical modes can be applied, leading to approximative, but
straightforward rules for fundamental bounds on Q-factor of
arbitrarily-shaped radiators. Stored energy expressions are
also used to construct new type of modes with properties
differing from those of characteristic modes. Energy modes
formed from eigenvalue problems involving the matrix X′

in (22) were introduced in [38]. These types of modes are
also useful to determine and interpret the physical bounds
discussed above [33], [89].Moreover, as thesemodes are real-
valued many of the proposed expressions for stored energy
agree (33) and the resulting Q-factor is also a good estimate
of the fractional bandwidth for single mode antennas.

Stored energy can also be used to simplify some antenna
optimization by replacing simulations over a bandwidth
with a single frequency calculation of the Q-factor [94].
This single frequency optimization increases the compu-
tational efficiency but is restricted to narrow band cases.
A typical representative of an application which can benefit
from this approach is a design and optimization of Radio
Frequency Identification (RFID) tags with minimal mutual
coupling [95], [96].

VI. SUMMARY
A definition of stored energy in a general electromagnetic
system was proposed and discussed using the concept of
unobservable energy. Various aspects of subtracting the unob-
servable energy have been pointed out in the examples
of Zöbel’s network, matched transmission lines, and, most
importantly, radiating structures. It has been shown that
a majority of the well-established concepts for evaluating
stored energy in radiating systems can be categorized into

three different groups – whether they used field quantities,
source currents, or rely solely on knowledge of a system as
a whole without possibility to probe its internal structure.
An important outcome of this paper is understanding that
all existent concepts, in fact, attempt to define unobservable
energy. Nevertheless, the common association of unobserv-
able energy purely with radiated energy is insufficient. By the
proposed definition, the unobservable energy represents the
difference between the total electromagnetic energyWEM and
the stored energy Wsto so that it contains the energy of all
unobservable states.

Careful analysis of the presented results revealed good
agreement between all evaluated methods for equiphased
currents and electrically small (ka < 1.5) antenna struc-
tures, though simple analytically-constructed examples and
larger objects revealed significant disagreements. The sys-
tematic difference between recoverable energy Wrec and
stored energy Wsto is due to reciprocity of the resulting
realizations. While the recoverable energy allows for non-
reciprocal circuits, the stored energy approaches, as illus-
trated by Brune synthesis, deal with reciprocal systems only.
Taking QFBW as reference measure of fractional bandwidth,
it is obvious that the Q-factor resulting from recoverable
energy considerably overestimates the fractional bandwidth.
The other presented methods have much better agreement
with fractional bandwidth. However, from this point of view,
the best predictor of bandwidth potential is Q-factor QZ′ , but
only when the system under study can be approximated as a
single resonance system.

For practical aspects of stored energy evaluation,
the method evaluating energy Wreac or, alternatively,
energyWX′ , gives precise approximation of stored energy for
electrically small structures, offers simple implementation,
and, in addition, is fully compatible with present approaches
to minimization of Q-factor like convex optimization and
pixeling. Whenever negative values of stored energy could
be an issue, an alternative method, possibly Brune synthesis,
is recommended since the breaking point at which stored
energy Wreac fails is not exactly known. As confirmed by
all treated examples, Brune synthesis is capable of distill-
ing the maximum amount of unobservable energy from the
total energy, thus surpassing other contemporary approaches.
However, complications in performing Brune synthesis for
electrically large antennas may be an obstacle limiting its
application.

Though many researchers have contributed to the study of
stored energy with corresponding indisputable achievements,
several fundamental questions remain open. The missing
proof of the minimal reciprocal realizations generated by
Brune synthesis, as well as closely related reformulation of
this circuit synthesis in terms of the electromagnetic quan-
tities, may open the final stage to explicit, coherent, and
exact definition and evaluation of unobservable energy. Addi-
tionally, further work is needed on the calculation, verifica-
tion, and interpretation of stored energy in general dispersive
media.
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APPENDIX
STORED ENERGY IN DISPERSIVE MEDIA
The definition in Section II covers antennas in a non-
dispersive background. Consider instead a radiator embedded
in an isotropic dielectric material described by a Lorentz
dispersion model

∂2P
∂t2
+ 0

∂P
∂t
+ ω2

rP = ε0ω2
pE, (36)

where P is the polarization, 0 is the loss factor, ωr is the
resonance frequency of the material, and ωp is the coupling
constant [11]. If we divide the energy analogously to (7),
the material properties influence the heat and total energy
terms [12]. The new heat term reads

Wheat (t0) =

t0∫
−∞

∫
V

σ |E|2 +
0

ε0ω2
p

∣∣∣∣∂P∂t
∣∣∣∣2 dV dt, (37)

and the total energy reads

WEM (t0)

=
1
2

∫
V

ε0 |E|2+µ0 |H|2+
1

ε0ω2
p

[∣∣∣∣∂P∂t
∣∣∣∣2+ω2

r |P|2
]
dV .

(38)

The stored energy definition (12) still applies, but the dis-
persion generally rise the energy of unobservable states. The
subtraction of unobservable energy states becomes especially
problematic in dispersive background since in a such case
far field is no longer well defined and many classical meth-
ods break down. System based methods, see Table 1, and
engineering metrics QZ′ and QFBW are unaffected, in prin-
ciple, but, in certain cases, they are more likely to predict
unphysical results, see [42]. Extensive comparison of the rela-
tion between Q-factor and fractional bandwidth in dispersive
environments are scarce but the case of antennas in Lorentz
media (36) is treated in [51] using state-space models.
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