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ABSTRACT Ultrasound contrast imaging (UCI) aims to detect flow changes in the vascular bed that can help
differentiate normal from diseased tissues thus providing an early screening tool for diagnosis or treatment
monitoring. Ultrasound contrast agents (UCAs), used in UCI, are microbubbles that scatter ultrasound
non-linearly. To date the signal processing research has successfully subtracted signals from the linear
response of tissue (linear signals), but, in general, has not provided a sensitive detection that is specific to the
UCA signal. This paper develops a method for the temporal and spectral estimation of linear and non-linear
ultrasound echo signals. This technique is based on non-parametric methods for coarse estimation, followed
by a parametric method within a Bayesian framework for estimation refinement. The results show that the
pulse location can be estimated to within ±3 sample points accuracy for signals consisting of ≈80 sample
points depending on the signal type, while the frequency content can be estimated to within 0.050 MHz
deviations for frequencies in the 1 to 4 MHz range. This parametric spectral estimation achieved a 5-fold
improvement in the frequency resolution compared with Fourier-based methods, and revealed previously
unresolved frequency information that led to over 80% correct signal classification for linear and non-linear
echo signals.

INDEX TERMS Bayesian inference, Markov chain Monte Carlo, medical ultrasound, microbubbles,
ultrasound contrast imaging.

I. INTRODUCTION
A large number of human diseases are associated with
abnormal vascular networks such as cancer, ischaemia,
inflammation and also novel therapeutic interventions such
as tissue regeneration. The measurement of perfusion and
its quantification has been the subject of intensive research
across the spectrum of imaging technologies for decades.
However, the real time detection and monitoring of per-
fusion or microvascular flow currently represents a major
clinical and research bottleneck and is essential in the under-
standing, diagnosis, and therapy monitoring of such dis-
eases. Ultrasound contrast imaging (UCI) uses injections
of sub-capillary sized microbubbles (MB) stabilized with
a biocompatible shell in diameters between 1 − 6 µm,
to ensure image contrast from the vascular bed [1]. Suitably,
these MBs remain within the vascular bed and have flow

kinetics similar to blood cells. This enables the measure-
ment of vascular and microvascular blood flow using modern
ultrasound systems [2], [3]. However, this technology has
not achieved quantitative status and, compared to magnetic
resonance imaging (MRI) and positron emission tomogra-
phy (PET), UCI has lower sensitivity and reproducibility and
it is highly operator dependent [4]–[7].

Historically, the introduction of MBs to diagnostic ultra-
sound contrast imaging sparked a debate on their physical
behaviour and a number of theoretical models have been
proposed [8], [9]. This debate remains open and inconclu-
sive [10]. This is partly due to the high number of param-
eters that affect the behaviour of MBs and the difficulty in
isolating these experimentally. As a result this theoretical
debate has not converged into models that can aid the UCI
signal processing design. State of the art clinical UCI signal
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processing is based on basic amplitude and phase modulation
techniques, that successfully suppress linear tissue echo but
offer very little in the enhancement or differentiation of non-
linear MB signals [11]–[14]. In addition, despite the intro-
duction in the clinic of a few UCI applications (e.g. liver
lesion diagnosis), today the MB signal and image processing
remain sub-optimal and there are still significant discrepan-
cies between in-vitro and in-vivo contrast image data that
are difficult to interpret [15]. Thus, signal processing tools
especially designed for the analysis of echo signals need to
be developed. MBs provide ultrasound echoes [13], [14],
that can be distinguished from linear scatters such as tissue;
statistical properties of these echo returns include total inten-
sity, spectral content, and temporal information. By detecting
the presence of UCAs and differentiating them from tissue,
the resolution and sensitivity of ultrasound images can be
greatly improved to detect vascular activity.

Compared to soft tissue, MBs are more compressible and
expandable when insonified with ultrasound. As a result
when exposed to ultrasound they oscillate under the varying
pressure of the field. This oscillating behaviour results in high
scattering strength of the contrast MBs [16]. In the ultrasound
literature, soft tissue provides linear scatter, which will be
related to the incident field following linear scatter theory.
This means that the linear scatter spectra are expected to con-
sist of specific frequency components, with small variations
among them. By contrast, MBs usually provide non-linear
scatter and theymay generate amore variable spectral content
including various sub- and ultra-harmonics [17], [18]. Most
traditional frequency estimation techniques in ultrasonics are
based on the Fourier transform (FT) [19]. The frequency reso-
lution (1f ), i.e. the ability to distinguish two frequency com-
ponents that are closely-spaced, depends solely on the signal
length and the sampling frequency. However, the ultrasound
signals are short in duration and the FT results in spectral
peaks that are not narrow enough to determine their exact
position and number. Moreover, the FT does not localize in
time whereas in ultrasonics analysis, the pulse locations and
durations are also important.

In previous work [20], [21] a Bayesian spectral analysis
technique was introduced providing improved frequency res-
olution compared to the FT for echo signals from non-linear
scatter. Similar results were obtained from a preliminary
study on echo signals from linear scatterers [22]. Hence,
it is important to investigate whether ‘‘hidden’’ spectral fea-
tures can be used to identify unclassified scatter received
by a transducer. In this study the frequency estimation sys-
tem is expanded to include temporal information. This was
accomplished by incorporating a modified voice activity
detection (VAD) technique, mainly used in speech process-
ing [23]–[25]. From the observation of responses from ultra-
sound scatterers, the pulse location estimation of the echo
signals in ultrasound imaging is similar to the signal burst
detection in speech detection. However, if the SNR or the
amplitudes are low, the performance of the VAD is poor.
There is little information in the ultrasonic literature about

joint estimation of pulse locations and frequencies system
especially for multiple pulse echo signals from MBs [26].
A first study in [27] showed accurate pulse location for
MB echo signals on top of the frequency estimation shown
in [21] and [22].

The current work builds on the temporal and spectral anal-
ysis tools first presented in [21] and [27], by proposing a
lower-uncertainty spectral estimator through statistical post-
processing of the system’s output, and by providing an evalu-
ation of the system performance. The latter was accomplished
by testing the system on both synthetic data, and experi-
mentally in-vitro, with linear scatterer and non-linear MB
ultrasound signals. The findings are discussed with a view to
further development of the algorithm as well as to precision
improvements in the ultrasound signal characterization.

FIGURE 1. Illustration of the experimental setup for echo signal
acquisition from (a) SCSs, and (b) MBs.

II. MATERIALS AND METHODS
A. SINGLE ULTRASOUND SCATTER EXPERIMENT
A commercial phased array ultrasound transducer
(S3, Philips, Andover, MA, USA) was used to acquire echo
signals from solid copper spheres (Goodfellow Cambridge
Ltd, Huntingdon, UK) and Definity MBs (Lantheus Inc,
MA, USA). The solid copper spheres (SCSs) were used as
linear scatterers [11], [28]. All themeasurements were carried
out using a modified ultrasound scanner (Sonos5500 Philips
Medical Systems, Andover, MA, USA). The transmit focus
was set to 60 mm depth and the acquisitions were performed
between 70 mm and 80 mm depths for both SCSs and MBs,
to ensure that the same calibrated settings applied. At this
depth range, peak negative pressure of 550 kPa was recorded,
ensuring MB survival for more than 50% of the MBs.
A 6-cycle sinusoid was used as the excitation pulse with a
transmit frequency (f0) equal to 1.62 MHz. The transducer
was not operated at its resonance (around 2.8 MHz), but
rather at the low edge of its bandwidth. Data were sampled
at 20 MHz and the raw echo signals were stored for further
processing. A schematic diagram of the experimental setup,
consisting of a water tank and tubing that allowed the flow of
SCSs or MBs, is shown in Fig. 1.

VOLUME 6, 2018 14189



K. Diamantis et al.: Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization

In Fig. 1(a), a water tank was used tomeasure the SCS scat-
ter. This setup was previously used to calibrate the ultrasound
receiver at a point in the field in order to provide absolute cal-
ibration of microbubble signals [28]. A 4 cm diameter hole at
the base of the tank was sealed with a 25 µm thickness Mylar
film to provide an acoustic window. The central cylindrical
space defined by the circular acoustic window at the base
was filled with degassed water. The remainder of the tank
was filled with the tissue mimicking material (TMM) [29],
in order to minimize multiple reflections. A glass pipette was
placed at the top of the tank and its bottom tip with 1 mm
internal diameter was held at the center of the tank. Alignment
was achieved by aligning a thread inserted through the glass
pipette, which was held straight by attaching a lead bead
to the bottom. The maximum echo from the thread ensured
alignment of the SCS path with the centre of the ultrasound
beam. SCSs with a variety of radii, ranging from 29 µm
to 58 µm, were dropped individually into the glass pipette,
with the help of another micro-pipette, and then into the
tank following a path that coincided with the centre of the
ultrasound transducer.

The setup for MB echo acquisition (Fig. 1(b)) was similar
but with an inverted geometry. The tank was filled with
degassed water. A Perspex tube was placed at the center of the
bottom of the tankwith an 8mm internal diameter. The tip of a
glass micropipette, with approximate diameter 100 µm, was
placed at the center of the Perspex tube. The suspension of
MBs was diluted enough to ensure the release of single MBs
at the tip of the micropipette. The flow in the Perspex tube
ensured a MB path at the centre of the ultrasound beam and
towards the face of an ultrasound probe, which was placed at
the top of the tank.

B. NON-PARAMETRIC TEMPORAL AND
SPECTRAL ESTIMATION
Pulse location and spectral estimates using conventional
non-parametric estimation (NPE) methods were initially
employed to provide the initial conditions for the proposed
parametric estimation system. For the pulse localization the
Hilbert transform (HT) is commonly used in ultrasound
imaging [30] as it enables the extraction of the envelope
of the modulated signal [19]. A wavelet denoising (WD)
method [31], [32] was also adopted as it presents various
advantages compared to traditional filtering approaches in
cases of multiple-pulse signals [31], [32]. The combination of
the above 2 methods (HTWD) improves the pulse detection
accuracy but may fail when there are closely-spaced pulses
present in the measured echo signals. The latter was resolved
with the addition of a VAD complement [23], [25], and
the formation of a joint HTWD-VAD method as presented
in [27]. For the spectral estimation, the multi-taper spec-
trum [33] was chosen to initially analyse the ultrasound sig-
nals in the frequency domain [21]. In this technique, several
data windows are used on the same data record to obtain a
number of modified periodograms, which are averaged to
produce a multi-taper spectrum. By reducing the variance,

a cleaner spectrum is achieved compared to the Discrete
Fourier Transform (DFT).

C. ESTIMATION REFINEMENT
1) PARAMETRIC MODELLING
For the experimentally measured echoes from MBs and
SCSs, the number of pulse segments in the signal and the
number of frequency components in each pulse segment were
all unknown. Based on the excitation pulse used, the multiple
pulse-echo signals can be modelled as several segments of
sum of sinusoids in noise [34]. It was assumed that there
were m pulses in the observed signal with N data points.
For each pulse, there are 2 change-points, Ti and Ti+1, hence
2m change-points in total. A typical MB signal with 9 pulse
segments and 2900 points is shown in Fig. 2. The multiple
pulses model can be defined as follows:

D0 : x(t) = n(t)

Dkm : x(t) =


n(t) if T2i−2 ≤ t ≤ T2i−1 − 1,
xi(t)+ n(t) if T2i−1 ≤ t ≤ T2i − 1,
n(t) if T2m ≤ t ≤ T2m+1,

where i ∈ (1,m), and xi(t) is given by:

xi(t) =
ki∑
j=1

acj,ki cos(ωj,ki t)+ asj,ki sin(ωj,ki t). (1)

FIGURE 2. Display of an experimental MB raw signal including 9 MB
responses in the time domain as recorded after array processing.

Note that the model D0 corresponds to the lack of any
pulses in the observation sequence, andDkm denotes there are
m pulse segments in the signal. The indices k1, k2, . . . , km
denote the number of super-positioned frequency compo-
nents in the m pulse segments. In each i−th pulse segment,
acj,ki and asj,ki are the cosine and sine amplitudes respectively
of the ωj,ki , that is the j−th frequency component of the
i−th segment with ki frequency components. Moreover,
n(t) is a sequence of a zero mean white Gaussian noise with
variance σ 2

ki . The signal model can be written in vector-matrix
form:

x = G
(
ωkm , T2m

)
akm + n, (2)
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where akm , [ak1 , ak2 , . . . , akm ]
T , in which aki (i =

1, . . . ,m) , [(ac1,ki , as1,ki ), . . . , (acki,ki , aski,ki )]
T represents

the amplitudes of the frequency components in each pulse
segment. G(ωkm , T2m) is a matrix of non-overlapping ele-

ments with a size of 2N ×
m∑
i=1

ki given by:

G =



0 0 · · · 0
G1 0 · · · 0
0 0 · · · 0
0 G2 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0
0 0 · · · Gm
0 0 · · · 0


.

The matrix G contains the information about change-points
[T1,T2, . . . ,T2m], and spectral contents [ωk1 ,ωk2 , . . . ,ωkm ]
for m different pulse segments. Each component
Gi(i = 1, . . . ,m) in the G matrix represents a single pulse
where the number of frequency components, the frequency
values, their amplitudes, and the noise variance are all
unknown parameters. They can all be represented by θki ,(
ωki , aki , σ

2
ki

)
. As far as each segment is concerned, the Gi

matrix can be defined as:

Gi =


E(ωk1 ,T2i−1) . . . E(ωki ,T2i−1)

E(ωk1 ,T2i−1 + 1) . . . E(ωki ,T2i−1 + 1)
...

...
...

E(ωk1 ,T2i − 1) . . . E(ωki ,T2i − 1)


where E (·) , [cos (·) , sin (·)]. Moreover, T2i−1 and T2i are
the two corresponding change-points for each pulse segment.

2) JOINT POSTERIOR DISTRIBUTION
The Bayesian posterior probability for the frequencies of
a signal provides an accurate estimation of frequency
peaks [35]. According to Bayesian inference, samples from
the posterior distribution can be drawn given the appropriate
prior distributions. These priors reflect the degree of belief of
the relevant values of the parameters. The joint prior distri-
bution can be considered as the product of the independent
parameter priors, displayed in Table 1 for the m segments.

TABLE 1. Prior distributions for independent parameters.

In Table 1,3m is the hyperparameter of the number of fre-
quency components km, and δ2m is the hyperparameter of the

amplitudes akm . The joint prior distribution can be expressed
in (3):

p({k, θk}m,T2m)

= p({k, ak ,ωk}m|σ 2
k )p(σ

2
k )p(T2m)

∝

(3km
m

km!
exp(−3m)×

1

|2πσ 2
k6km |

1/2
×

1
πkm

× exp[−
aTkm6

−1
km akm

2σ 2
k

]
)

×
1

σ 2
k

(
1

N − 1
1

N − 2
· · ·

1
N − 2m

), (3)

where 6−1km = δ
−2
m GT (ωkm ,T2m)G(ωkm ,T2m).

The posterior distribution is the product of the joint prior
distribution and the likelihood function, which based on the
signal model is given by:

p (x | {k, θk}m,T2m) = (2πσ 2
k )
−N/2

× exp

{
−

1

2σ 2
k

‖ x

− G(ωkm ,T2m)akm ‖
2

}
, (4)

where m in {k, θk}m represents different pulse segments and
‖A‖2 , AT · A. The posterior distribution in (5) can be
obtained after integrating out the nuisance parameters: ampli-
tudes ak and noise variance σ 2

k based on Bayes’s rule.

p(T2m, {k,ωk}m|x) ∝ (γ0 + xTPkmx)
−(N+v0)/2

×
(3m/[(δ2m + 1)π ])km

km!
(5)

where Pkm = IN − G(ωkmT2m)MkmG
T (ωkm ,T2m), IN is

the identity matrix with N -by-N dimensions, and M−1km =
GT (ωkm ,T2m)G(ωkm ,T2m)+6

−1
km .

3) REVERSIBLE JUMP MARKOV CHAIN
MONTE CARLO ALGORITHM
The refinement of the model parameters, for both pulse loca-
tions and frequency components, using a parametric model
with numerical Bayesian method, consisted of two steps in
each iteration. First, based on the initial guesses given by
aforementioned combination algorithm of the VAD and the
HTWD for envelope detection, a random walk perturba-
tion was adopted as the proposal distribution for refinement
of the pulse location estimates. Specifically, the update of
each change-point depended on its previous value and per-
formed a local exploration of the initial guess, which can be
described as:

T ∗|T ∼ N (T , σ 2
T ). (6)

where T and T ∗ are previous state and new state of the
change-point respectively. N (·) represents the normal distri-
bution with mean T and variance σ 2

T .
Second, for the frequency estimation, a reversible jump

Markov chain Monte Carlo (rjMCMC) algorithm was used
to explore the regions around dominant peaks from the
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multitaper power spectrum initial guess. After the pulse loca-
tions were coarsely estimated, frequency estimation was per-
formed for different pulse segments. Although the posterior
distribution was simplified, it was still highly non-linear,
which means the closed form of p(T2m, {k,ωk}m|x) can not
be easily obtained. Therefore, the rjMCMC algorithm was
introduced to sample from the complicated joint posterior dis-
tribution and then to estimate the multiple pulse locations and
frequency contents for each pulse segment simultaneously.
An ergodic Markov chain whose equilibrium distribution
is the specific joint posterior distribution given by (5) was
formulated. The simulation was run long enough to reach
the stationary distribution. The reversible jump technique
(rjMCMC) allowed to jump between subspaces of different
model orders. Based on the obtained samples, the Maximum
APosterior (MAP) estimator was adopted to obtain a mode of
the estimated posterior distribution p̂(km|x) and p̂(ωkm |km, x).
Then, the desired parameters (km,ωkm ) were estimated as:

k̂m|x = arg max
km

p̂(km|x)

ω̂km |k̂m, x = arg max
ωkm

p̂(ωkm |km, x) (7)

For each of them segments, there are three candidatemoves to
be selected. The birth and death moves introduce dimension
changes according to the state of Markov chain, by randomly
proposing a new frequency on (0, π ), or randomly removing
an existing one respectively. The updatemove only refines the
frequencies within the same dimension. Details of the birth,
death and update moves can be found in [21].

D. DATA ANALYSIS
The Bayesian analysis resulted in a highly multi-modal pos-
terior distribution. This made the interpretation of the algo-
rithm’s output difficult and several non-sensible parameter
estimates were obtained. Imposing limitations such as k ≤ 20
in [21] is a partial solution to this problem but higher perfor-
mance could be achieved if further processing is applied to the
rjMCMC frequency estimates. Here, this was accomplished
by extracting a reasonable summary of the posterior distribu-
tion through clustering and outlier rejection.

An initial processing of a number of synthetic signals using
the parametric statistical estimation (PSE) system, enabled
comparisons with true pulse locations and frequency com-
ponents that were known, as well as with estimates derived
from non-parametric methods. The algorithm was then set to
a large number of realizations (Nreal = 500) when applied
to real ultrasound signals, to ensure that there were sufficient
data for analysis, since many estimates were ignored during
a single-case study. A single realization was also set to a
high number of iterations (Niter = 10000) to ensure that
convergence to a specific model order was achieved. The
output data from all realizations were considered for the
current processing. They were clustered based on the number
of detected frequencies (or else model order, k), so that the
marginal posterior distributions of parameters of interest can

be considered unimodal. Previous allocation of estimated
values in histograms, regardless of the model order [21],
was no longer adopted. In this work, realizations with the
same number of estimated parameters were grouped in terms
of model order and the data from the most frequent model
order were chosen for further processing. These enabled the
calculation of the mean frequency values and the associated
standard deviation by applying normal distribution fits to
the data from all the realizations of this model order. Fre-
quency estimates referring to the same frequency component
(i.e. the first or the last) may contain values that differ greatly
from realization to realization. For this reason all values
significantly higher than two times the standard deviation
were removed.

The pulse location estimation as well as the frequency esti-
mation based on the post-processing described above were
followed for an ultrasound transmit pulse, the MB signal of
Fig. 2 containing 9 MB pulses, and also 9 SCS individual
responses for comparison. The underlying hypothesis here
was that super-resolved spectra are possible to extract using
this methodology and that real short duration signals provide
a reproducible super-resolved spectrum. Ultrasound linear
scatter has a well-defined spectrum and was used here to
provide this test. The frequency estimates from the transmit
pulse were used as a standard of comparison for all the linear
and non-linear ultrasound responses. The frequency estimates
from all the MB and the SCS responses were then analysed in
an attempt to classify any given response into one of the two
categories. Specific features in common for most SCS or MB
responses revealed initially by the PSE, and subsequently by
the use of data-fitting functions were exploited in order to
create Nd data points that render the classification possible.
A standard k-means algorithm was employed to solve this
clustering problem [36]. The number of clusters (Ncl) was
2 and therefore two centroids (c) were eventually estimated.
Each data point belonging to either a SCS or MB response
was associated to the nearest centroid. The S function is a
measure of the distance of all data points from their centroids
and is given by:

S =
Ncl∑
p=1

Nd∑
q=1

‖ d (p)q − cp ‖
2, (8)

where ‖ d (p)q − cp ‖ is the Euclidean distance between a data
point d (p)q and the centroid cp. The algorithm was repeated
several times until the centroids no longer change and the
squared error function (S) was minimized.

III. RESULTS: ESTIMATION ALGORITHM
A. ESTIMATION OF SYNTHETIC SIGNALS
A synthetic signal was used for an initial performance eval-
uation of the estimation algorithm. The signal included two
pulse segments and consisted of 1500 sample points. As an
exemplar, white Gaussian noise with an SNR = 5 dB was
also added to the signals. The sampling frequency, fs, was
20 MHz, and the two pulse segments were synthesized as

14192 VOLUME 6, 2018



K. Diamantis et al.: Super-Resolved Ultrasound Echo Spectra With Simultaneous Localization

a sum of 2 and 3 frequency components, respectively. The
two pulses were located between samples (450, 600) and
(750, 850) with frequency components (in MHz) at (0.6π =
1.885, 0.7π = 2.199) and (0.2π = 0.628, 0.3π = 0.943,
0.32π = 1.005) respectively. The estimation procedure
was repeated for 100 times with different noise realizations,
amplitudes, and phase components. A paradigm of such a
synthetic signal is shown in Fig. 3(a). The 2nd segment was
shorter than the first (100 sample points instead of 150).
Given the fs, all Fourier-based methods result in a1f compa-
rable to 20 MHz/100 = 0.200 MHz [37]. As a consequence,
the two larger frequencies separated by 0.062 MHz were
regarded as a single frequency by non-parametric analysis
(Fig. 3(b)).

FIGURE 3. (a) Display of a synthetic signal consisting of two pulse
segments. (b) Fast Fourier Transform (FFT) of the 2nd segment.

The pulse locations from both NPE and PSE are com-
pared in Table 2. The NPE resulted in less-accurate average
estimates for the starting points of both pulses (1st and 3rd

change-points), where a 10 point standard deviation (SD)
from the true values was measured. By using the para-
metric method the accuracy of the pulse location estimates
improved significantly with standard deviations no higher
than 2 sample points, for both pulses, between the different
signals. The results confirmed the higher accuracy of the
parametric estimation in cases of lower SNRs. Fig. 4 shows
the pulse location convergence diagnostics for the 2nd pulse
(3rd and 4th change-points) of a single synthetic signal and
thus single algorithm realization, as an example. The pulse
location estimates were in this case 750 and 849 for the 3rd

and 4th change-point, respectively (Fig. 4). The first value
(750) was observed with probability of ≈ 0.5, clearly stand-
ing out from other estimates (≈ 0.2 at best). The second value
(849) was observed with a probability of ≈ 0.42 while the
probability of the second most frequent estimate (850) was
also relatively high (0.34). Both estimates were within the
range described in Table 2. After the first 1000 iterations, all
the change-points, related to the start and end points of pulses,
reached their stationary distributions.

Each rjMCMC realization detected a specific number of
frequencies for each pulse segment as shown in Fig. 5.

FIGURE 4. Localization of the second pulse segment of a single synthetic
signal. Histogram of position and convergence diagnostics are shown in
(a) and (b) for the 3rd change-point, and in (c) and (d) for the
4th change-point respectively.

TABLE 2. NPE and PSE (Mean ± SD in sample points) of pulse locations
for 100 synthetic signals of varying noise, amplitude and phase.
(a) Change-points comparison for the 1st pulse segment.
(b) Change-points comparison for the 2nd pulse segment.

For the 1st segment, the most frequent number of frequencies
was 2 and for the 2nd segment, the most common value is 3.
The detection of the 3rd component indicates the robust-
ness of the new algorithm. Similar to the pulse locations,
the frequency values obtained from 100 realizations using
the PSE for the two pulse segments of the synthetic signal
were compared to the ground truth, and to the results using
NPE (Table 3). Both the non-parametric and the parametric
methods provided accurate frequency estimates, for the first
pulse segment as shown in Table 3(a). However, the SD values
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FIGURE 5. Histogram showing the number of detected frequencies using
a synthetic signal with 100 randomly selected noise, amplitude, and
phase components for (a) the first and (b) the second pulse segment.
A single rjMCMC realization was performed on the synthetic signal with a
random component set, thus 100 rjMCMC realizations in total.

TABLE 3. FFT peaks and PSE (Mean ± SD in MHz) for a synthetic signal
of 100 randomly selected noise, amplitude and phase components.
(a) Frequency estimates comparison for the 1st pulse segment.
(b) Frequency estimates comparison for the 2nd pulse segment.

were almost two orders of magnitude lower for the parametric
method compared to the non-parametric one. In Table 3(b)
for the second pulse segment, the NPE can identify two
frequency components where the 2nd was estimated between
the 2nd and the 3rd true frequency values. On the other hand,
not only did the PSE provide estimates closer to the true
values, but it was also able to distinguish the two closely-
spaced frequencies.

Fig. 6 shows the histogram of detected frequencies and
the convergence diagnostics for the 2nd pulse of a single
realization, as an example. The most frequent value (3) was
observed with probability of 0.78, with significant difference
from number 4 which was the second most common estimate
with a probability of 0.16. It can be seen that the number of
detected frequencies converged to the number 3 after about
2000 iterations. As a result of this convergence, the first 2000
iterations can be considered as the burn-in period.

B. ESTIMATION OF AN ULTRASOUND TRANSMIT PULSE
Fig. 7(a) displays an ultrasound transmit pulse (Tx). The
pulse had a duration of≈ 4 µs which translated to≈ 80 sam-
ple points, given the fs used here. This resulted in a 1f

FIGURE 6. (a) Histogram of detected frequencies and (b) convergence
diagnostics for the 2nd pulse segment of a single synthetic signal, from a
single rjMCMC realization.

comparable to 20 MHz/80 = 0.250 MHz when using non-
parametric methods for spectral estimation. The proposed
estimation system was applied 500 times to the signal. The
two change-points, as estimated using the parametric pulse
localization system are also shown in Fig. 7(a) together with
their standard deviations. The start of the pulse was located at
sample point 24 ± 1 (or 1.2 µs) and the end at sample point
96 ± 1 (or 4.9 µs). Importantly a single start and a single
end point were found at sample points 30 (or 1.5 µs) and
120 (or 6.1 µs), respectively, using the non-parametric esti-
mation. These were not a good estimate of the pulse edges as
displayed in Fig. 7(a). Each of the 500 rjMCMC realizations
provided detections of specific number of frequencies for
the transmit pulse as shown in Fig. 7(b). The most probable
number of frequencies (model order) was k = 10, which
accounted for 76.4% of the realizations, while the number 11
for 20%. The frequency estimates from the rjMCMC real-
izations that resulted in k = 10 were further processed
using histograms. These frequency distribution histograms
are displayed in Fig. 7(c), together with their normal distri-
bution fits from where it was possible to calculate mean fre-
quency values and their corresponding standard deviations.
The result is shown in Table 4 and also overlaid to the FFT
in Fig. 7(d). Given the 1f limitation, the FFT did not result
in more than 6 peaks. The transmit pulse broadly looks like
a windowed pure sinusoid, and therefore by Fourier analysis
side-lobes are expected. Since there is uncertainty in the start
and end of the pulse, some of (but not all) the additional
frequencies in Fig. 7(c) effectively represent frequencies in
these side-lobes, although these components will have small
corresponding amplitudes.

Table 4 shows that instead of a single fundamental fre-
quency at 1.62 MHz, which was the f0 used here, the PSE
returned two components around the f0. A clean single sinu-
soidal signature was not expected due to the extreme f0 choice
as described in subsection II-A. These two components were
f1 = 1.562 (±0.024) MHz and f2 = 1.717 (±0.026) MHz
and their corresponding harmonics (hx ≈ 2 × fx , where
x = 1, 2) were the last two frequencies of the spectrum,
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FIGURE 7. (a) Display of a 6-cycle ultrasound transmit pulse in the time domain. The pulse locations found by using the PSE
system, as well as by the NPE are also indicated. (b) Histogram showing the number of detected frequencies, and
(c) frequency distribution histograms and their normal distribution fits using 500 rjMCMC realizations. (d) FFT of the
transmit pulse and mean frequency estimates with their standard deviation obtained by the PSE system.

TABLE 4. PSE for an ultrasound transmit pulse (Mean ± SD in MHz).

h1 = 3.211 (±0.028) MHz and h2 = 3.297 (±0.041) MHz,
respectively. These two frequency pairs (f1 − f2, h1 − h2)
and others from the Table 4 (i.e. 5th and 6th) were separated
by less than 0.250 MHz, and thus they were not resolved
by NPE. By using the rjMCMC algorithm and the process-
ing described in subsection II-D, the 1f was reduced to
0.086 MHz which was the distance between the most closely
spaced estimated frequencies (9th and 10th). Further, it is seen
from Table 4 that SD values were kept below 0.041 MHz at
all cases.

C. ESTIMATION OF SCS RESPONSES
Fig. 8(a) displays an example of a typical SCS response.
This entire signal, received by the ultrasound transducer,
consisted of ≈ 1500 sample points and included a single
pulse segment of ≈ 80 sample points (or ≈ 4 µs dura-
tion), similar to the transmit pulse. The two change-points,
as estimated using the parametric pulse localization system

are also shown in Fig. 8(a), together with their standard
deviations. The start of the pulse was located at sample point
580 ± 2 (or 29 µs) and the end at sample point 655 ± 3
(or 32.75 µs). The SD values were slightly increased in the
SCS signal (up to 3 sample points) compared to the transmit
pulse localization (1 sample point). The equivalent start and
end points using the NPE were found at sample points 590
(or 29.5 µs) and 660 (or 33 µs), respectively (Fig. 8(a)).
Each of the 500 rjMCMC realizations provided the detections
of a specific number of frequencies as shown in Fig. 8(b).
The most probable number of frequencies (model order) was
k = 10, which accounted for 69.2% of the realizations, while
the number 11 accounted for 25.2%. All frequency estimates
from the rjMCMC realizations that resulted in k = 10 are
displayed in the histograms of Fig. 8(c), together with their
normal distribution fits. Fig. 8(d) displays the resulting mean
frequency and standard deviation values alongside the FFT
of the SCS response. The latter as in the transmit pulse case,
did not reveal more than 6 peaks. The frequency estimates of
Fig. 8(d) using the PSE are shown in Table 5 (SCS1), where
the equivalent estimates of the other 8 SCS responses can also
be found.

Table 5 shows that the PSE resulted in between 9 and 11
frequency components for all SCS responses, which is com-
parable to the number found in the transmit pulse. These
results show that the SCS responses were reproducible and
that 9 responses are an adequate sample size to describe
their distribution. The fundamental frequency values found
were consistently similar to those of the transmit pulse.
Specifically, the PSE returned a single frequency compo-
nent between 1.506 MHz (SCS3) and 1.619 MHz (SCS8),
for all SCS responses. The mean and SD values of these
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FIGURE 8. (a) Display of an experimental SCS response in the time domain. The pulse locations found by using the PSE
system, as well as by the NPE are also indicated. (b) Histogram showing the number of detected frequencies, and
(c) frequency distribution histograms and their normal distribution fits using 500 rjMCMC realizations. (d) FFT of the SCS
signal and mean frequency estimates with their standard deviation obtained by the PSE system.

TABLE 5. PSE for 9 SCS responses (Mean ± SD in MHz).

components were 1.566±0.041MHz. Thus, 4×SD (i.e. 95%
of the distribution) corresponded to 10.6% of the mean value.
This result is statistically similar to the f1 (1.562 MHz) of
the transmit pulse (subsection III-B). The frequency compo-
nent closest to the f2 of the transmit pulse ranged between
1.674 MHz (SCS1) and 1.817 MHz (SCS7) for all SCS
responses. The mean and SD values of these components
were 1.752 ± 0.044 MHz, with 4×SD corresponding to
10.2% of the calculated mean value. This result is not signif-
icantly different to the f2 (1.717 MHz) of the transmit pulse
(subsection III-B).

High reproducibility was found for the two harmonic
frequency components, which were approximately in the
2 × fx range. First, all SCS responses included strictly
one frequency component in the narrow range between
3.227 MHz (SCS4) and 3.301 MHz (SCS8). Their mean
and SD values were 3.268 ± 0.021 MHz, with 4×SD cor-
responding to 2.6% of the calculated mean value. Second,
a single frequency component for each SCS response was
found in the also narrow range between 3.415 MHz (SCS4)

and 3.496 MHz (SCS9). Their mean and SD values were
3.454 ± 0.024 MHz, with 4×SD corresponding to 2.8% of
the calculated mean value. The two components in these
ranges represented a shift to larger values compared to the
harmonics h1 (3.211 MHz) and h2 (3.297 MHz) of the
transmit pulse. Importantly, Table 5 shows that only two
frequency components per SCS response were found in the
harmonic frequency range, with the exception of SCS9 that
resulted in 3. In addition, the SCS8 response included a sec-
ond spectral signature in the f2 range. Frequency pairs cor-
responding to f1 − f2 (average difference 0.185 ± 0.039
MHz), and h1 − h2 (average difference 0.186± 0.024 MHz)
were separated by less than 0.250 MHz, and were there-
fore resolved only after using the PSE. The minimum 1f
measured was 0.053 MHz that was the distance between the
8th and the 9th frequency estimates of the SCS9 response.
Table 5 also shows that several frequencies between 2 MHz
and 3 MHz were in common for only a group of 3 − 4 of
the SCS responses, and were not repeated in all of them.
Further, it is seen that SD values varied from a few kHz to
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FIGURE 9. (a) Individual display of the second MB response from Fig. 2 in the time domain. The pulse locations found by
using the PSE system, as well as by the NPE are also indicated. (b) Histogram showing the number of detected frequencies
and (c) frequency distribution histograms and their normal distribution fits using 500 rjMCMC realizations. (d) FFT of the
MB response and mean frequency estimates with their standard deviation obtained by the PSE system.

TABLE 6. PSE for 9 MB responses (Mean ± SD in MHz).

0.155 MHz. However the larger SD values were associated
mainly with the SCS8 response, and the average SD value
was 0.049 MHz.

D. ESTIMATION OF MB RESPONSES
The enlarged version for a single pulse segment of Fig. 2,
is illustrated in Fig. 9(a) for clarity. This was similar in
duration to the transmit pulse or the SCS response shown
above (≈ 80 sample points or ≈ 4 µs), resulting in the same
conventional 1f = 0.250 MHz. The proposed PSE system
was applied 500 times to the MB signal and the results for
the segment are shown in Fig. 9. The two change-points,
as estimated using the parametric pulse localization system
are also shown in Fig. 9(a), together with their standard
deviations. The start of the pulse was located at sample point
305 ± 5 (or 15.5 µs) and the end at sample point 379 ± 10
(or 19.3 µs). The SD values were significantly higher (up to
10 sample points) compared to the SCS pulse localization
(3 sample points at worst). The equivalent start and end points

using the NPE were found at sample points 310 (or 15.8 µs)
and 380 (or 19.4 µs), respectively (Fig. 9(a)). Fig. 9(b)
displays the number of detected frequencies for the single
MB pulse of Fig. 9(a) and for the 500 rjMCMC realizations.
The most probable number of frequencies (model order)
was k = 14, which accounted for 49% of the realizations,
while the number 15 accounted for 36%, and the number 16
for 10%. Similar to the previous subsection, all frequency
estimates from the rjMCMC realizations for k = 14 were
further processed. The frequency distribution histograms are
displayed in Fig. 9(c), together with their normal distribution
fits from where it was possible to calculate mean frequency
values and their corresponding standard deviations. Fig. 9(d)
displays the resulting mean frequency and standard deviation
values alongside the FFT of the MB response. The latter did
not reveal more than 7 peaks. The frequency estimates of
Fig. 9(d) using the PSE are shown in Table 6 (MB2), where
the equivalent estimates of the other 8 MB responses can also
be found.
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FIGURE 10. Cumulative frequency distribution histograms from 9 MB and 9 SCS responses
respectively, using 500 rjMCMC realizations. The bin width was set to 0.020 MHz.

The results from all the different MBs showed that there
was reproducibility on these individual frequency signatures
but the spread of responses was wider compared to the
SCS, and often there was significant overlap between the
significant fundamental and harmonic frequencies. Table 6
shows that the PSE resulted in between 8 and 15 fre-
quency components for the 9 MB pulses. This is a much
wider range compared to that of the SCS responses. Par-
ticularly, the MB responses resulted in a higher number
of > 3 MHz frequencies compared to the SCS ones, which
made the harmonic frequency definition less straightforward.
For the MB2 response, the equivalent to the f1 frequency
was 1.567 (±0.028) MHz and its harmonic was h1 =
3.221 (±0.032) MHz. However, f2 was not distinct, since
the 4th frequency estimate significantly overlapped with the
5th (Fig. 9(c)). Therefore, it was not clear whether f2 was
1.686 (±0.029) MHz or 1.756 (±0.047) MHz. The corre-
sponding harmonic h2, was also not distinct and both the
12th and the 13th frequencies of the spectrumwere candidates.
In such cases, the fundamental component (fx) closest to
the transmit one was considered for further analysis. Subse-
quently, those frequency components closest to 2 times the
selected fx were assumed to be their corresponding harmon-
ics (h1, h2). The same processing was followed for all MB
responses.

The PSE returned one frequency component between
1.556 MHz (MB1) and 1.654 MHz (MB5), for all
MB responses. The mean and SD values values of these
components were 1.603±0.038MHz. Thus, 4×SD (i.e. 95%
of the distribution) corresponded to 9.4% of the mean value.
This result is not significantly different to the frequency
f1 (1.562 MHz) of the transmit pulse (subsection III-B).
The frequency component closest to the f2 (1.717 MHz)
of the transmit pulse was between 1.685 MHz (MB1) and
1.788 MHz (MB3). The mean and SD values of these com-
ponents were 1.727±0.039MHz, with 4×SD corresponding
to 9% of the calculated mean value. The harmonic frequency

components that corresponded to ≈ 2 × f1, ranged between
3.141 MHz (MB6) and 3.265 MHz (MB5). Their mean and
SD values were 3.206 ± 0.038 MHz, with 4×SD corre-
sponding to 4.6% of the calculated mean value. This result
is not significantly different to the h1 (3.211 MHz) of the
transmit pulse (subsection III-B). Likewise, the harmonic
frequency components that corresponded to the ≈ 2 × f2,
ranged between 3.366 MHz (MB1) and 3.648 MHz (MB5).
Their mean and SD values were 3.468 ± 0.100 MHz, with
4×SD corresponding to 11.6% of the calculated mean value.
This result indicates a shift to larger values compared to
the h2 (3.297 MHz) of the transmit pulse. Note, that in the
f2, h1, and h2 ranges there were several MB responses that
provided more than one frequency components, thus showing
a larger variability compared to the SCS responses. Similar
to the SCS spectra, there were several frequencies from the
Table 6 separated by less than 0.250MHz, and were therefore
resolved only after using the PSE. The minimum 1f was
found to be 0.056 MHz which was the distance between
the 7th and the 8th frequency estimates from the results of
the MB9 pulse. Importantly 1f was similar to that found in
subsection III-C, which demonstrates the consistency of the
algorithm. Table 6 also shows that there were a number of
frequencies between 2 MHz and 3 MHz, that did not reveal
a particular trend between the resulting frequency values of
the MB responses. Further, it is seen from Table 6 that all SD
values were kept below 0.147MHz, and the average SD value
was 0.045 MHz.

IV. RESULTS: DATA CLASSIFICATION
A. CLASSIFICATION FEATURES
All resulting frequency estimates were put into two sepa-
rate cumulative histograms one for the SCS and one for
the MB responses, with a 0.020 MHz bin width. The two
histograms are shown together in Fig. 10. The PSE of the
SCS responses showed thatmost echoes from linear scatterers
included specific frequency components, forming relatively
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FIGURE 11. Plots for SCS and MB differentiation using various combinations of mean frequency values and their standard deviations obtained by
the parametric spectral estimation. (a) The f 1 is plotted over the h2 − h1 difference based on the frequency estimates of the 9 SCS and the 9 MB
responses. (b) The f 1 is plotted over the h1 and (c) the h1 is plotted over the h2.

high and narrow histogram peaks in the frequency ranges
primarily between 3 MHz and 3.8 MHz and secondarily
between 1.5MHz and 1.8MHz. This is related to the fact that
in each of the two fundamental and two harmonic signatures
there was only one frequency value found, apart from two
cases mentioned in subsection III-C. By contrast, the MB
frequency values in Fig. 10 were more spread across the
bandwidth. There were several less pronounced peaks, that
were shorter and broader compared to the SCS population,
which reflected the larger variability and overlap in frequency
values across the MB responses. These histograms show
frequency distribution patterns that may help differentiate the
two populations.

TABLE 7. Five highest peaks (Mean ± SD in MHz) from the cumulative
frequency distribution histograms including all the rjMCMC realizations
for all SCS and MB responses.

Kernel smoothing functions were employed to fit the data
around the 5 most significant spectral peaks of the two his-
tograms [38]. Such functions perform better than normal dis-
tribution fits with continuously distributed samples as these
shown in Fig. 10. They were used here to confirm the equiv-
alent f1, f2, h1, h2 frequency components that were obtained
from the individual analysis of the SCS and MB responses
in subsections III-C and III-D respectively, without taking
into account the transmit pulse frequency estimates. This is
closer to a real imaging setting, where the knowledge of the
transmit pulse is not provided. The mean frequency estimates
and their standard deviations derived by the smoothing func-
tions, are shown in Table 7. The first 4 frequency estimates
in Table 7 for the SCS responses, compare well to the mean
values calculated in subsection III-C, from Table 5. The first 3
frequency estimates in Table 7 for the MB responses, are also
not significantly different from the mean values calculated

in subsection III-D, from Table 6. Only the 4th frequency
estimate (3.585± 0.060 MHz) is significantly different from
the value calculated in subsection III-D (3.468±0.100MHz).
By visual inspection, the latter value correlates to a lower and
wider histogram peak (Fig. 10) between the two peaks which
provided the 3rd and 4th mean frequency values in Table 7 for
theMB responses. This is an extra indicator of the larger vari-
ability across the MB population compared to the SCS one.

B. SCS AND MB DIFFERENTIATION
Mixed plots are shown in Fig. 11 in an attempt to distinguish
the MB from the SCS responses and classify any of the 18
given signals as either linear or non-linear scatter. The plots
aim to exploit the different frequency values and respec-
tive uncertainties found in the SCS and MB populations as
described above. In Fig. 11(a) the f1 frequency was plotted
over the h2 − h1 difference resulting in a concentration of
8 out of 9 SCS data points in a narrow-band area (between
0.15-0.2 MHz) in the centre of the graph. In Fig. 11(b) the
f1 frequency was plotted over the h1 frequency with the SCS
data points concentrated on the centre-top area of the graph.
This is a diagonal band for the SCS signals, while the MB
population was less clearly defined. However the SCS and
MB populations were not fully differentiated, as shown by the
errorbar overlap. In Fig. 11(c), the h1 frequency was plotted
over the h2 frequency resulting in the concentration of most
SCS data points in a narrow centre-right region.

Fig. 12 is a similar comparison to that of Fig. 11 including
the output from all rjMCMC realizations instead of average
values, which enabled classification using a standard k-means
clustering method. In Fig. 12(a), the two centroids were cal-
culated to (1.566, 0.181)MHz and (1.609, 0.374)MHz for the
SCS and the MB data respectively. The centroids fitted well
with the values displayed in Table 7 and resulted in 90.1%
correct classification for any given input signal. Similarly,
Fig. 12(b) is the equivalent to Fig. 11(b) and includes the
signal classification information. The two centroids were
calculated to (1.568, 3.268) MHz and (1.604, 3.166) MHz
for the SCS and the MB data respectively, and the percentage
of correct signal classification is 82.8%. Finally, Fig. 12(c)
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FIGURE 12. Scatter plots and k-means clustering using frequency estimates from all rjMCMC realizations, for the 9 SCS and the 9 MB responses.
(a) The f 1 is plotted over the h2 − h1 difference resulting in 90.1% correct signal classification. (b) The f 1 is plotted over the h1 and (c) the h1 is
plotted over the h2 with 82.8% and 88.2% correct signal classification respectively.

corresponded to Fig. 11(c). In this case, the two cen-
troids were calculated to (3.256, 3.441) MHz and (3.189,
3.566) MHz for the SCS and the MB data respectively, and
the percentage of correct signal classification was 88.2%.

V. DISCUSSION
The spectral estimation of ultrasound scatter signals can
be achieved with high accuracy using parametric methods.
Closely spaced frequencies 0.053MHz apart can be resolved,
while the signal duration does not allow less than 0.250 MHz
separation for any non-parametric method. These figures are
approximately a 5−fold improvement in frequency reso-
lution (1f ). For the example signals examined here, this
resulted in double the amount of detected frequencies com-
pared to Fourier Transform based methods. The parametric
spectral estimation was particularly efficient in detecting fre-
quencies with low amplitudes in the FFT spectrum, such as all
components > 3 MHz in Figs. 7(c), 8(c) and 9(c) (harmonic
content). The frequency estimates were also associated with
low standard deviations (SD) always below 0.150MHz and≈
0.050 MHz on average, for frequency values in the MHz
range. These SD values are up to 5 times lower compared
to these reported in [21]. The improvement is due to the
post-processing which uses a larger number of rjMCMC real-
izations and separates the frequency estimates based on the
model order of each realization (subsection II-D). Such low
SD values resulted in revealing: (a) the similarity of the SCS
and MB signals with that of the transmit signal in the pair of
fundamental frequency components, (b) the fundamental and
harmonic components reproducibility across the population
of the 9 SCS signals, which also suggests that 9 signals is
an adequate sample size for the SCS population in order to
characterize its spectral content. These results confirm the
linearity of the SCS which had different sizes.

In addition to the automatic spectral estimation, the pro-
posed system allows the simultaneous accurate localization
of each pulse. This is expected as it is inherent to the func-
tion of the algorithm, i.e. a specific number of frequencies
is expected within the bounds of one signal, which helps
differentiate with accuracy the time domain of the signal
from that of the surrounding noise. This is not the case for

non-parametric methods that provide several miscalculations
of the signal boundaries, while they are also unable to handle
signals includingmultiple pulses. Therefore, this newmethod
may be part of a robust tool to estimate ultrasound signal
information in both time and frequency domains. The lin-
ear (SCS) and non-linear (MB) data showed that the super-
resolved frequency detection may lead to differentiating their
echo signals and classify them into one of the two types
successfully even with small sample sizes.

The SCS responses result in a similar number of
frequency components (10 ± 1), narrow spectral peaks
(Figs. 8(c) and 10) and low standard deviations between the
different spectra (Tables 5 and 7) also seen in the transmit
pulse (Fig. 7(c)), while in the MB signals the number of
frequency components varies and their values tend to overlap
(Fig. 9 and Table 6). The increased spread of MB signal
response invites further work in this differentiation process.
Unlike the SCS, and despite the reproducibility of the specific
spectral signature, the MB sample size here is not adequate
to characterize its population. Thus, the characterization of
a MB population requires a large sample size. However,
the comparison and classification using the PSE affords a
large number of degrees of freedom such as number of spec-
tral peaks, their values and their estimation uncertainty, and
the comparison of all these to the transmit signal. The initial
difference in these statistics shown here, was attributed to
both the high reproducibility of the SCS responses as well
as the variability of the MB responses, and shows promise
in the identification of a single signal in the future. The
SCS fundamental and harmonic frequency pairs are due to
their linear response, fairly similar to those of the transmit
pulse. It is not entirely clear why the harmonic location is
different to that of the transmit (subsection III-C). Physical
processes like non-linear propagation, attenuation and speed
of sound variations may play a role and this merits further
investigation.

The large variability in the MB responses (Fig. 10) may be
attributed to their variable physical behaviour. The varying
state of resonance due to the variable MB size distributions in
addition to the dispersion of shell mechanical properties (not
all MBs of the same size behave the same) [39], may provide
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adequate explanation. While the experimental setup is well
controlled, in a real ultrasound imaging situation this vari-
ability may be further enhanced. First, different locations in
the ultrasound beamwith different ultrasound field character-
istics provide exposure to different field amplitudes and fre-
quencies [40]. Second, the consecutive pulse exposure may
result in a varying echo evolution state [12], [13] and third,
the different vessel confinements in-vivo may also affect the
MB response as arteries and veins vary from micrometres
to millimetres in diameter [14], [41]. The comparison of the
fundamental and harmonic responses from MBs and SCSs
(Figs. 11 and 12) is a first step towards utilizing physical
understanding in the examination and characterization of
their signals, but a much larger sample size is required for
broad conclusions. However, the robustness of the methodol-
ogy suggests that all these results may help elucidate mecha-
nisms that may be possible to quantify using PSE.

Further, the study of single MB acoustics [11], [42]
may help develop new UCI signal processing with the aim
to enhance the MB response. The detection of MB spe-
cific signatures may help in further increasing sensitivity
of UCI. This may operate in the context of conventional UCI
where large concentrations of microbubbles are injected as
a bolus or intravenously, with the aim to provide images of
the vascular bed. Specific spectral signatures may be used
to further enhance those signals. It is important to note that
the theoretical modelling of MB physics behaviour has not
been of great assistance to signal processing development.
Pulse modulation (amplitude or phase) that is used in current
ultrasound contrast modes [17] is more successful in tissue
signal cancellation than MB echo enhancement, as its basic
aim is set to differentiate linear from non-linear scatter. This
is partly due to the inability of the FFT to resolve spec-
tral signature and partly due to the cumulative effect of the
above ultrasound propagation factors and MB characteristics
that contribute to the echoes within an image pixel, when
large MB concentration are utilized. The result should not
be significantly different to the cumulative effect presented
in Fig. 10, which has provided 90% successful differentiation.

The gains from super-resolved spectral analysis may be
more appropriate for single MB processing that is currently
the subject of the newly emerging field of super-resolution
UCI [43], [44]. The method draws from the localization
microscopy and shows potential for an order of magnitude
improvement in spatial resolution. It deals with detecting and
localizing single MBs, and subsequently tracking them in the
vascular bed. Conventional ultrasound transmissions utilize
pulses that are short in order to maximize spatial resolution
at the expense of frequency resolution. So far these methods
are mainly image-based, and may benefit from the technique
presented here which has been shown to work well with short
duration raw signals. The wide range of MB responses stated
above and the ability of the spectral analysis method here to
provide high sensitivity information on each individual echo
may be beneficial to super-resolution UCI as: (a) the location
of the MB pulse can be found accurately and automatically,

(b) the MB pulses can be robustly differentiated from linear
signals and noise, (c) signal processing may be deployed
to adaptively enhance the individual characteristics of each
MB and (d) each MB may be recognized thus enabling the
identification of the next MB pulse location as a result of
consecutive ultrasound exposures, which will improve the
identification of their path. In other areas of sensing, it is pos-
sible to implement adaptive beamforming methods to create
images of improved quality [45]–[47] that will work as an
adjunct to the above. This is a developing and exciting area
of research for ultrasound imaging.

The current algorithm requires further development in
order to provide amplitude, phase and noise estimation. For
example, the inclusion of amplitude may remove the ambi-
guity regarding the definition of fundamental and harmonic
frequencies noted here by increasing the degrees of freedom
of the comparison and thus resulting in improved signal clas-
sification. Further, the capability for pulse localization and
separation will be thoroughly characterized and the depen-
dence of the robustness of the technique to the pulse energy,
bandwidth and SNR will be understood. The optimization
of the algorithm needs to be performed using real diagnos-
tic ultrasound imaging conditions, where the transmit pulse
might not available and only the image/signal data can inform
this process. Also, conventionally ultrasound transmissions
utilize pulses that are as short as possible in order to ensure
maximization of spatial resolution. This reduces the available
energy and widens the bandwidth in the received signals.
Single MB imaging that deploys highly sensitive spectral
analysis may afford longer pulse transmission without loss of
spatial resolution as localization methods are more dependant
on the SNR and less in the pulse duration.

VI. CONCLUSION
This paper presented a novel estimation system for echo
signals from linear (solid copper spheres) and non-linear
(contrast microbubbles) ultrasound scatter. The parametric
model system provided the spectral and temporal parame-
ter estimation simultaneously and automatically within the
Bayesian framework. As the posterior density function can-
not be solved in a closed form and the dimension of
the parameters changes, a reversible jump MCMC algo-
rithm was adopted to give the accurate estimation auto-
matically. To speed up the convergence, a non-parametric
coarse estimation for both time and frequency domains was
incorporated. The results displayed precise pulse localization
compared to that achieved using non-parametric methods
that may provide a miscalculation of the change-points of a
pulse. In addition, the parametric estimationmethod provided
super-resolved frequency spectra that resulted in increased
number of detected frequencies compared to the number of
peaks detected by Fourier Transform based methods. Further,
the spectra of echo signals from linear and non-linear scatter
provided different characteristics, which may be deployed to
advance UCI signal processing in the future.
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