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ABSTRACT With the development of artificial intelligence technology, data-driven fault diagnostics and
prognostics in industrial systems have been a hot research area since the large volume of industrial data is
being collected from the industrial process. However, imbalanced distributions exist pervasively between
faulty and normal samples, which leads to imprecise fault diagnostics and prognostics. In this paper, an
effective imbalance learning algorithm Easy-SMT is proposed. Easy-SMT is an integrated ensemble-based
method, which comprises synthetic minority oversampling technique (SMOTE)-based oversampling policy
to augment minority faulty classes and EasyEnsemble to transfer an imbalanced class learning problem
into an ensemble-based balanced learning subproblem. We validate the feasibility and effectiveness of the
proposed method in a real wind turbine failure forecast challenge, and our solution has won the third place
among hundreds of teams. Moreover, we also evaluate the method on prognostics and health management
2015 challenge datasets, and the results show that the model could also achieve good performance on
multiclass imbalance learning task compared with baseline classifiers.

INDEX TERMS Industrial prognostics, class-imbalance learning, machine learning, ensemble learning.

I. INTRODUCTION
Fault diagnostics and prognostics plays a critical role in
industrial system as more and more sensor data are being
collected from the industrial process, and it has attracted
increasing attention in both academic and industrial fields.
A robust and accurate fault diagnostic and prognostic system
helps preventing fatal accident, saves costs and increases
manufacturing efficiency [1]. However, the complexity of
modern industrial systems sets obstacles for devising a prac-
tical model and faults are difficult to be diagnosed without
any expert’s knowledge of how the failures happen. Thus
data-driven methods tend to solve the problem of failure
prognostics in industrial field by learning the failing patterns
of machines from observed data [2].

Several open challenges have been organized to call for
fault diagnostic and prognostic solutions. For instance, wind
turbine’s blade suffers from freezing problem in wind elec-
tricity generation system, which has been a global challenge
in industrial field. Predicting the early stage of the freezing
events precisely is valuable for wind turbine maintenance,
which decrease the failure risks and save the maintaining
cost dramatically. The challenge held by China Academy of
Information and Communication Technology (CAICT) aims

at predicting the freezing durations according to the SCADA
data of a certainwind farmmanagement. The objective is sim-
ilar in 2015 PHM Challenge, which is to predict 6 different
faults at plant level according to a volume of operational data.
The key challenge of analyzing these data is that different
degrees of imbalance exists between failure and normal data
pervasively, which has a serious influence on the performance
of predicting models [3]. The abnormal data of each fault are
extremely imbalanced with high imbalance ratio compared to
normal data. Therefore, it is very difficult for us to correctly
classify the abnormal and normal states of the industrial
system. According to these challenges, there are some notable
work for failure prognostics in industrial system and class-
imbalance learning models.

Isermann [4] uses traditional model-based methods to
detect fault and diagnosis the status by the related experience
and expertise. S. Yin et al. [5] design a data-driven methods
of robust fault detection system for wind turbines. Many
machine learning algorithms used in pattern classification are
now being utilized in fault detection. For example, Bayesian
network [6] and fuzzy-logic [7] are two powerful methods
that have been used to detect faults in railway traction device
and mechanical systems. Fisher’s discriminant analysis [8]
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and artificial neural networks [9] are also widely applied
to detect failure. Meanwhile, random forest and gradient
boosted tree [10] are used to fault prognostics in aircraft sys-
tems. Moreover, several approaches for classification using
imbalanced data have been researched. Undersampling and
oversampling [11] can reduce the level of imbalance and
both sampling methods are helpful in imbalanced data prob-
lems [12], [13]. In addition, Synthetic Minority Oversam-
pling TEchnique (SMOTE) [14] is a synthetic technique,
which can added new minority class examples. Chan and
Stolfo [15] introduce an approach to explore majority class
examples, they split the majority class into several non-
overlapping subsets, and finally ensemble classifiers using
stacking. Liu et al. [16] propose EasyEnsemble and Bal-
anceCascade algorithms to overcome the class-imbalance
learning.

Consequently, this paper proposes an integrated ensemble-
based imbalance learning model for industrial prognostics.
The model is aimed at predicting failure in industrial system,
and using an ensemble algorithm to overcome the classifica-
tion of imbalanced data. The contributions of this paper are
summarized below:
1) We propose the Easy-SMT ensemble algorithm based

on synthesizing SMOTE-based data augmentation policy
and EasyEnsemble algorithm, which can overcome both
binary and multi-class imbalance problems.

2) We evaluate our model in real cases from a wind
turbine freezing failure forecast contest and PHM 15 chal-
lenge. The result shows that the model could predict the
start_time and end_time of wind turbine freezing fail-
ure with a relative high performance and achieve third
place among 830 teams. Meanwhile, the model could also
achieve good performance of both binary and multi-class
imbalance classifications.
The remainder of the paper is organized as follows: In

Section II, we formally define the problem to be solved. And
our integrated method for industrial prognostics is proposed
in Section III. In section IV, we use the real data sets to
validate the feasibility and effectiveness of our model and
algorithm. Finally, conclusions are drawn and future work are
presented in section V.

II. PROBLEM STATEMENT
A. CLASS-IMBALANCE LEARNING FOR TIME SERIES
Many of the industrial processes usually operate in the normal
state. Thus, it is very common for the diagnostic systems to
collect a large number of samples of the normal state in the
batch of data, while only a very few faulty samples could
be collected in practice. Various diagnostic schemes have
been applied to industrial processes, however, detecting faults
under the class-imbalance condition is a challenging taskwith
growing attention from both academia and industry.

An imbalanced dataset can be described as a set of samples,
in which the proportion of the representative samples of one
class is significantly larger than other class. The amount of
this proportion brings up the definition of the ?imbalance

ratio?, which is an important factor in selecting a proper
classification technique. The imbalance ratio indicates the
collected data are highly imbalance, moderate or low. The
major class in an imbalance dataset referred to a class with
more number of samples, while the minor class is often the
class of interest and should be detected with high accuracy.
In industrial process, the faulty samples are usually minor
classes compared with normal samples with different imbal-
ance ratios.

To deal with class-imbalance learning problem, two main
strategies are usually used: data-level and algorithm-level
methods. Data-level method [17], [18] is to change the
class distribution of imbalanced data by sampling policies.
Under-sampling and over-sampling [19] are two common
methods. Mani and Zhang [20] indicate that the random
under-sampling strategy usually outperformed some other
complicated under-sampling strategies. In addition,
SMOTE [18] is a synthetic over-sampling technique, which
can added new minority class examples. Han et al. [21]
proposed the borderline-SMOTE to over-sample the minority
class near the borderline. Xie and Qiu [22] showed that
over-sampling usually perform better than under-sampling.
Estabrooks et al. [23] andBarandela et al. [24] both suggested
that a combination of over-sampling and under-sampling
might be more effective to solve the class imbalance
problem. However, it is argued that sampling method leads to
overfitting or drop some useful features of majority classes.
Algorithm-level method [17] is to adjust the classifier
to imbalance data. Bagging and Boosting ensemble-based
method have been widely used. Seiffert et al. [25] conducted
a comprehensive study comparing sampling methods
with boosting for improving the performance of decision
trees model built for identifying the software defective
modules. Their results showed that sampling methods were
effective in improving the performance of such models
while boosting outperformed even the best data sampling
methods. Chawla et al. [26] proposed a novel approach
SMOTEBoost for learning from imbalanced datasets on
the basis of the SMOTE algorithm and the boosting
procedure. Seiffert et al. [27] presented a different hybrid
ensemble methods named RUSBoost, which combined the
random under-sampling strategywith the boosting procedure.
Liu et al. [16] proposed the EasyEnsemble method which
change the imbalance learning problem into several balance
classification tasks with ensemble strategies. The idea is
based on a two fold of ensembles that under-samples the
majority class without information loss. Adaboost [28] is
used to train the weak classifiers.

Consequently, the fault diagnostic and prognostic task for
industrial system could be modeled as class-imbalance clas-
sification problem. While the raw data are sequential time
series, which are able to be segmented into time windows
by sliding window mechanism, and each time window could
be labeled as normal or different types of faults. Commonly,
the faulty time windows are minor class, while the normal
time windows are major class. Predicting the faults is mainly
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FIGURE 1. Problem formulation: imbalance-class classification for time
windows.

based on classifying the faulty time windows from the nor-
mal ones. The diagram of problem formulation is introduced
in Figure 1, where p1 and p2 are the time windows segmented
by sliding window mechanism.

B. DESIGN CRITERIA
To better understand the data with its features, an initial statis-
tic analysis is supposed to be given. For example, the duration
of the faults tend to be analyzed in training datasets and it will
give a reference to determine the length of the time windows
that covers the features of the faults. Moreover, the imbalance
ratio tend to be calculated as a reference to the determination
of sampling policies and baseline classifiers. To evaluate
the performance on class-imbalance classification, accuracy
is not an appropriate evaluation metric when the datasets
are class imbalance. In this paper, we use Recall, Precision,
F-measure, ROC and AUC as performance evaluation met-
rics. We take the minority class (failure samples) as positive
class and majority class (normal samples) as negative class.

Recall =
TP

TP+ FN

Precision =
TP

TP+ FP

F1 =
2× Precision× Recall
Precision+ Recall

Recall is the percentage of true fault events which are
labelled. Precision is the percentage of predicted fault events
which are correctly labelled. F-measure is the weighted har-
monic mean of recall and precision, which is the function
of confusion matrix. ROC (Receiver operating characteristic
curve) is another tool for measuring the imbalanced data in
classification, which is a comprehensive index reflecting the
continuous variables of sensitively and specificity. One of the
indicators for comparing different ROC curves is the area
under the curve, and AUC shows the average performance
of the classifier for imbalanced and cost-sensitive problems.

Generally speaking, following criteria will guide us to
design the learning framework:
1) Features extracted from raw sensor data should represent

the faulty data as many as possible;
2) Baseline classifier should be suitable for imbalance data

and optimization tend to be designed based on the baseline
model;

FIGURE 2. Imbalance learning framework for fault diagnostics and
prognostics.

FIGURE 3. Feature extraction from multi-dimensional time series.

3) Evaluation criteria of the model should be suitable for
imbalance learning task.

III. METHODOLOGY
The overall learning and prediction pipeline consists of four
parts as Figure 2 shown: 1) Data preprocessing and feature
extraction; 2) Model selection and composition; 3) Model
training and cross-validation; 4) Fault prediction and evalu-
ation.

A. DATA PREPROCESSING AND FEATURE EXTRACTION
Before putting the data into the training model, raw
data should be cleaned and feature be extracted. The
N -dimensional time series are segmented into time windows
by sliding window mechanism. The length of time window is
denoted asK and sliding step as L. Thus, each time window is
a vector E = {x1, x2, . . . , xK } and xtT = {x

(t)
1 , x

(t)
2 , . . . , x

(t)
N }

(1 ≤ t ≤ K ). The feature at time t denotes as ft = xtT

and the feature of the time window E represents as fE =
{f1, f2, . . . , fK }, the detailed description about feature extrac-
tion is shown in Figure 3.
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B. EASY-SMT ALGORITHM
Undersampling is a popular strategy to deal with the class-
imbalance problems, which uses a subset of the majority
class to improve performance. However, it also leads to loss
of some useful features for majority class. Liu et al. [16]
propose EasyEnsemble algorithm to fully exploit features
from majority class by sampling several subsets from the
majority class, training a learner using each of them, and
combining the outputs of those learners. Thus, EasyEnsemble
overcomes the deficiency of undersampling method. While
at the other hand, it is also necessary to generate samples
for minority class artificially to make the training data as
balanced as possible. SMOTE [14] is an efficient method
for class-imbalance problem by adding new synthetic minor-
ity class examples according to original data’s distributions,
which is an effective method to balance the samples before
training. Therefore, we propose the Easy-SMT ensemble
algorithm based on EasyEnsemble and SMOTE to deal with
the class-imbalance problems in industrial system.

Given the minority training set P and the majority train-
ing set N , we use undersampling method randomly sample
several subsets N1, N2, . . . ,NT1 from N . For each subset
Ni (1 < i < T1), SMOTE algorithm is used to add several
new synthetic P ′1, P

′

2, . . . ,P
′
T1

from P , |Ni| = T2 |P|, and∣∣P + P ′
∣∣ = |Ni|. So the number of P ′i is T2 − 1. Then,

a classifier Hi is trained using Ni and P ′′i , P
′′
i = P + P ′i .

All generated classifiers are combined for the final decision.
Ensemble classifier is used to train the classifier Hi. The
pseudocode for Easy-SMT ensemble algorithm is shown in
Algorithm 1.

Algorithm 1 The Easy-SMT Algorithm
Input: A set of minority class examples P , a set of majority

class examples N , |P| < |N |, the number of subsets T1
to sample from N , T2 is the ratio of Ni to P , and si the
number of iterations to train an ensemble Hi

1: i⇐ 0
2: repeat
3: i⇐ i+ 1
4: Randomly sample a subsetNi fromN , |Ni| = T2 |P|
5: N ′ = SMOTE (P, 100(T2 − 1), k)
6: P ′′ = P + P ′
7: Learn Hi using P ′′ and Ni. Hi is an ensemble with

si weak classifiers hi,j and corresponding weights αi,j.
The ensembleąŕs threshold is θi, i.e.,

Hi(x) = sgn(
si∑
j=1

αi,jhi,j(x)− θi)

8: until i = T1
Output: An ensemble

H (x) = sgn(
T1∑
i=1

si∑
j=1

αi,jhi,j(x)−
T1∑
i=1

θi)

Easy-SMT algorithm generate T1 numbers of balanced
subproblems. Classifier Hi for each subproblem is trained,
and each classifier Hi is an ensemble with si weak classi-
fiers hi,j, and corresponding weights is αi,j. Hi is simply a
logistic regression model for classification. Finally, instead
of counting votes from the Hi, we collect all the hi,j and form
an ensemble classifier from them. In our proposed algorithm,
we add the SMOTE after the step 4 of EasyEnsemble algo-
rithm, which increases the number of minority class samples
effectively and solves the problem of imbalanced classifica-
tion. It can not only ensure that each majority class can be
learned, but also generate new samples of minority class so
that the features of the minority class samples are learned.
To improve the generalization of the model, a K -fold cross
validation is used, and the best classifier is chosen as the
final model. Furthermore, according to the design criteria,
the basic classifier Hi for each sub-training task should be
suitable for learning features from class-imbalance data.

IV. EXPERIMENTS AND EVALUATIONS
A. DATA DESCRIPTION
To validate the performance of classifying the fault from
normal data with proposed model, two different datasets are
used. One is wind turbine data which could be modeled as
a binary classification problem, while the other is a plant’s
operational data which could be modeled as a multi-class
classification problem.

1) DATASET #1: WIND TURBINE FREEZING FAULT
The data1 is provided by a wind turbine manufacturer for
PHM competition2 held by Chinese government (Ministry of
Industry and Information Technology, MIIT), which is gen-
erated from SCADA of a wind electricity generation system.
The data contains 28 dimensional continuous time series,
including working conditions, environment parameters and
state parameters.

Two wind turbine’s data (#15 and #21) are available
and labeled with normal and freezing durations (start_time,
end_time). It is noted that the unlabeled data in training
dataset are ineffective data which are not used for training
in our experiment. Each wind turbine contains three files:
1) *_data.csv: original data from SCADA, including time

stamp, 26 sensors&actuator, and group information;
2) *_normalinfo.csv: the labeled normal durations, including

start_time and end_time;
3) *_failureinfo.csv: the labeled freezing durations, includ-

ing start_time and end_time;

2) DATASET #2: INDUSTRIAL PLANT FAULT
(PHM15 CHALLENGE)
The dataset is provided by PHM 2015 Challenge,3 which
records the actual working conditions of several industrial

1https://github.com/minelabwot/Imbalance_Learning
2http://www.industrial-bigdata.com/
3https://www.phmsociety.org/events/conference/phm/15/datachallenge
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FIGURE 4. Accuracy, Recall, Precision and F-measure of RF, GBDT,
XGBoost algorithms.

plants, including six kinds of faults as well as normal events.
The datasets consist of following three parts:
1) time series of sensor measurements and control reference

signals for each of a number of control components of the
plant (e.g. 6 components);

2) time series data representing additional measurements of
a fixed number of plant zones over the same period of time
(e.g. 3 zones), where a zone may cover one or more plant
components;;

3) plant fault events, each characterized by a start time,
an end time, and a failure code.
Only faults of type 1-5 are of interest, while code 6 repre-

sents all other faults not in focus. The frequency of measure-
ments is approximately one sample every 15 minutes, and
the time series data spans a period of approximately three
to four years. The goal is to predict the beginning time and
end time of failure events of types 1-5. The dataset can be
downloaded from NASAAmes Prognostics Data Repository
[(J. Rosca, 2015)].

B. DATA PREPARATION AND EXPERIMENTAL SETTINGS
In this section, we set experiment to evaluate the classifiers.
Two sets of experiments are organized based on dataset #1
and #2 respectively.
Task 1 (Wind Turbine’s Freezing Fault Forecast):We select

data from the 9000th to 149999th timestamp of 21 wind
turbine for testing, while the rest are used as training set.
RF (Random Forest), GBDT (Gradient Boosting Decision
Tree) and XGBoost (eXtreme Gradient Boosting) [29] are
used for baseline classifiers. Accuracy, recall, precision and
F-measure of three algorithms are show in Figure 4. XGBoost
shows competitive performance in recall and accuracy, that
is, XGBoost can identify more fault events than other algo-
rithms, meanwhile, F-measure reflect the XGBoost algorithm
distinguishes fault and normal events well. Consequently,
XGBoost is chosen as baseline classifier to built our model.

According to the initial statistics as figure 5 shown,
the shortest failure event happen in 12 minutes, which gives a
reference to determine the length of the time window. The
shortest failure event lasts for 106 time points, in order to
cover the features of all the freezing features, the maxi-
mum value of K is 106. We try to use different K and L

FIGURE 5. Initial statistics on original sensor data. (a) Freezing failure
durations. (b) Imbalance class ratio.

for the feature extraction, including K = 106,K = 80,
K = 50,L = 20,L = 10,L = 5 and so on. The features
of failure and normal event can not be learned well with a
small K , and the training time will be longer with a smaller
L as well. Consequently, as a compromise, the parameter
configuration with K = 106, and L = 20 is determined.
Then, we perform a 5-fold cross validation based onXGBoost
algorithm to verify the generalization performance of our
model. Each fold of training set is used as a validation dataset,
the whole cross-validation process is repeated for five times,
and final values from this method are the best of these five
cross-validation runs.

We compared the performance of 5 methods in validation
sets and testing sets as follows.

1) XGBoost (abbreviated as XGB): It uses the entire data set
(P andN ) to train an ensemble classifier. The number of
iterations is 100.

2) Undersampling+Oversampling+XGBoost (abbrevi-
ated as UO-XGB): A new minority training set P ′ is sam-
pled randomly from the original minority class, a subset
N ′ is sampled randomly from the original majority class.
The ratio between P ′ and N ′ is 1 : 1.4. Then, XGBoost
is used to train a classifier using P ′ and N ′. The number
of iteration is 100.

3) SMOTE+XGBoost (abbreviated as SMT): In our exper-
iments, we first generate P ′ using SMOTE, a set of syn-
thetic minority class examples with

∣∣P ′∣∣ = 14 |P|. Then,
XGBoost is used to train a classifier usingP+P ′ andN ′.
the number of iteration is 100.
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TABLE 1. The ratio of faults and normal events in plant #1.

TABLE 2. The Precision, Recall, F-measure and AUC of compared methods. XGB, UO-XGB, SMT and Easy are evaluated on test datasets with cross
validations; Easy-SMT is evaluated on validation and test datasets with cross validation, as well as on test datasets without cross validation.

4) EasyEnsemble+XGBoost (abbreviated as Easy): Num-
ber of subsets T1 = 15, The number of iteration is 100.

5) EasyEnsemble+SMOTE+XGBoost (abbreviated as
Easy-SMT): Number of subsets T1 = 5, for each sub-
sets Ni, we generate P ′ using SMOTE, a set of syn-
thetic minority class examples with

∣∣P ′∣∣ = 2 |P|. Then,
XGBoost is used to train a classifier using P+P ′ andNi.
The number of iteration is 100.

Task 2 (Plant’s Fault Prediction): To better evaluate the
results, plant #1’s training datasets with labels are used to val-
idate the performance of our model on multi-class imbalance
classification. The original labeled data are randomly divided
into training dataset and test dataset with 9:1 proportion.
Moreover, the original data are segmented into time windows
with 48 dimensions (6 machines with 8 dimensions for each).
An initial statistics of the imbalance ratio are given in Table 1,
and the results show that each type of fault is at a different
high imbalance ratio. XGBoost is also chosen as baseline
multi-class classifier to evaluate the model.

We compare several baseline methods as follows.

1) XGBoost (abbreviated as XGB): It uses the entire data set
(P andN ) to train an ensemble classifier. The number of
iterations is 5000.

2) SMOTE+XGBoost (abbreviated as SMT): In our exper-
iments, we first generate P ′ using SMOTE, a set of syn-
thetic minority class examples with

∣∣P ′∣∣= |N |-|P|. Then,
XGBoost is used to train a classifier usingP+P ′ andN ′.
the number of iteration is 5000.

3) SMOTE+Undersampling+XGBoost (abbreviated as
SMT-U): A subset N ′ is sampled (without replacement)
from N . Then, we generate P ′ using SMOTE, a set of
synthetic minority class examples with

∣∣P ′∣∣ = ∣∣N ′∣∣-|P|.
Then, XGBoost is used to train a classifier using P + P ′
and N ′, iteration is 5000.

4) EasyEnsemble+XGBoost (abbreviated as Easy): Num-
ber of subsets T1 = 1000, The number of iteration is 500.

5) EasyEnsemble+SMOTE+XGBoost (abbreviated as
Easy-SMT): Number of subsets T1 = 4, for each subsets
Ni, we generate P ′ using SMOTE, a set of synthetic

minority class examples with
∣∣P ′∣∣ = |Ni|-|P|. Then,

XGBoost is used to train a classifier using P + P ′ and
Ni. The number of iteration is 5000.

C. RESULTS AND EVALUATION
Firstly. we evaluate the model on the test data of dataset
#1 with cross validations. The overall results show that
our proposed method outperforms other four methods on
validation sets. As Table 2 shown, Easy-SMT has not only
the highest recall and F-measure, but also a better precision.
Meanwhile, our proposed method has a better classification
effect on imbalanced data according to the AUC value.
Specifically, XGB is not designed for the imbalanced

data, and obviously, this method has a good classification
ability for the majority class samples, but a lot of minority
class samples are not recognized because the features of the
minority class samples are too small to learn. UO-XGB
method use under-sampling to the majority class samples and
oversampling to the minority class samples [30], which solve
the problem of imbalance to some extent. However, oversam-
pling is easy to cause overfitting, and under-sampling may
delete some valuable samples. SMT method is an efficient
method for class-imbalance problem by adding new synthetic
minority class examples, but generally the data is with a
large imbalance level. It can alleviate the overfitting problem
of oversampling by generating large minority class samples.
However, SMT ignores adjacent instance of other classes
when the synthesis of new samples, which results in a large
number of samples overlap in different classes. Easy method
effectively solves the imbalance problem by exploring the
majority class examples ignored by under-sampling. But it
is difficulty to learn the characteristics of minority due to
the scarcity of minority class samples. Easy-SMT method
add a small amount of artificially generated minority class
samples to each classifier in Easy method, which increases
the recall. Recall of Easy-SMT shows that it can predict more
fault events than other methods, meanwhile, F-measure value
indicates that Easy-SMT can distinguish the normal events
and fault events precisely. As Figure 6 shown, we can see that
ROC of Easy-SMT can completely wrap the ROC curve of
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TABLE 3. The Precision, Recall, F-measure and AUC values of SMT, Easy and Easy-SMT compared with corresponding results on validation datasets.

FIGURE 6. The ROC curve comparisons between Easy-SMT and other
baseline methods. (a) The ROC curve of XGB. (b) The ROC curve of
UO-XGB. (c) The ROC curve of SMT. (d) The ROC curve of Easy. (e) The ROC
curve of Easy-SMT.

other methods, and the performance of this method is the best
among the fivemethods.Meanwhile, Easy-SMThas a highest
AUC value, showing it is a good method for imbalanced data
in classification.

Secondly, we compare the generalization performance
of different models by evaluating on the validation data
and test data of dataset #1. The values in Table 3 indicate
the relative improved or deteriorated performance on test
datasets compared with which on validation datasets. The
results illustrate the generalization performance of differ-
ent methods. As Table 3 shown, Easy-SMT performs well
on both validation datasets and test datasets even without

TABLE 4. The score of predicting the freezing failure of wind turbine in
different methods.

cross validation. If cross validation is added to the model,
the performance is improved more from validation to test
datasets than without cross validation. Table 2 shows that
SMT and Easy-SMT with cross validations gain relative
higher improvements than Easy, and the results illustrate that
SMOTE-based oversampling method with cross validation
has a positive influence on the generalization of the classi-
fier; while EasyEnsemble without SMOTE has an obvious
decreased results with cross validation, which illustrates that
EasyEnsemble performs overfitting even with cross valida-
tion. Compared with the results of SMT, Easy and Easy-SMT
without cross validation, it could be found that SMT and
Easy perform not well on recall and AUC, which illustrates
that Easy-SMT gains more generalized performance on the
imbalanced learning problem. Moreover, Easy-SMT with
cross validation improves more than Easy-SMTwithout cross
validation. Consequently, Easy-SMT with cross validation is
the best imbalanced classifier on the failure prediction task.

According to the evaluation standard of wind turbine chal-
lenge, the score metric for fault prediction is defined as:

Score = (1− α ×
FN

Nnormal
− β ×

FP
Nfault

)× 100%

α and β are weight coefficient, given by the number of
positive and negative samples, α+β = 1. FN (false negative)
is the number of normal events which are labelled falsely.
FP (fault positive) is the number of fault events which are
labelled falsely. According to the data set, Nnormal = 52564,
Nfault = 3423.
The scores in Table 4 reflect that the performance of pre-

dicting fault events in the industrial filed, the results of all
methods have been adjusted in noise elimination and fault
merging. We eliminate the failure event which only last a
window time, and we also merge the adjacent failure events
into a failure event when they have a short interval. Easy-SMT
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TABLE 5. The Precision, Recall and F-measure of XGB, SMT, SMT-U, Easy and Easy-SMT compared with corresponding results on test data of dataset #2.

TABLE 6. The Precision, Recall and F-measure of faulty and normal classes of dataset #2 based on Easy-SMT.

has a highest score, which can identify more fault events and
normal events correctly than other methods.

Finally, we compare the performance of different mod-
els on test data of dataset #2 to illustrate the effectiveness
and efficiency on multi-faults imbalance learning prob-
lem. As Table 5 shown, Easy-SMT also performs well on
imbalancedmulti-faults recognition, which illustrates that the
integrated solution with data augmentation, under-sampling
and ensemble learning policies could learn the minor and
major classes’ features better than other solutions with partial
policies. Compared SMT, SMT-U and Easy-SMT with XGB
and Easy, the results illustrate that SMOTE as data augmen-
tation policies enhances the baseline classifier’s performance
significantly. While, compared Easy-SMT and SMT-U with
SMT, the results illustrates that random under-sampling and
EasyEnsemble as a kind of under-sampling policy enhance
the performance. And moreover, EasyEnsemble works better
than random under-sampling since EasyEnsemble has fully
utilized the data of majority class by dividing the imbalance
learning problem into several balance learning subproblems.
Compared Easy with Easy-SMT, the results show that the
recall and F1 have been significantly improved by Easy-SMT,
while the precision is slightly decreased. It could be explained
that Easy-SMT could better recognize the minority faulty
classes since precision and F1 are high though recall is a little
bit lower. The results also illustrate that SMOTE as a data
augmentation policy benefits in improving representations of
the minority classes’ features, and EasyEnsemble as a kind
of under-sampling policy does not abandon useful features of
majority classes.

In addition, the classification performances on each type of
faulty and normal classes are shown In Table 6. The results
indicate that the performance on different faulty classes with
different imbalance ratios are similar except for PF4, which
illustrate that Easy-SMT performs quite well on relative
low imbalance ratio fault class (PF6) and also achieves a
good performance on medium imbalance ratio fault classes
(PF1-PF3). However, the performance fluctuates a lot on
extremely imbalanced fault classes, where PF4 achieves
relatively good results and PF5 achieves unsatisfactory
results. The phenomenon illustrates that there still exists

improvement spaces for Easy-SMT on extremely imbalanced
fault diagnosis.

V. CONCLUSION AND FUTURE WORK
In this paper, we presented a framework for failure prognos-
tics of industrial systems, which can transform the prediction
issue into a classification problem and predict the failure by
real-time data without any prior knowledge. In our model,
we propose Easy-SMT ensemble algorithm to overcome the
challenge about imbalance learning. Furthermore, this model
can be used to predict the freezing failure of wind turbine
and machine’s faults at plant levels based on two represen-
tative PHM competitions. The experiments show that the
Easy-SMT achieve better performance than other baseline
models on binary and multi-faults classifications. To improve
the effectiveness and efficiency of the prognostic model
for industrial area, a feature selection mechanism with data
augmentation policies could be further studied. In addition,
a hybrid new method based on data-level and algorithm-level
model could be studied in the future.
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