
Received January 10, 2018, accepted February 9, 2018, date of publication February 19, 2018, date of current version March 19, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2807761

An Activity Rule Based Approach
to Simulate ADL Sequences
STEIN KRISTIANSEN , THOMAS P. PLAGEMANN, AND VERA GOEBEL
Department of Informatics, University of Oslo, 0316 Oslo, Norway

Corresponding author: Stein Kristiansen (steikr@ifi.uio.no)

This work was supported in part by the Regional Research Fund Oslofjord through the TRIO Project under Grant 217737, and in part by
the Research Council of Norway through the CESAR Project under Grant 250239/O70.

ABSTRACT The concept of activities of daily living (ADL) has for many years successfully been used in a
broad range of health and health care applications. Recent hardware and software developments suggest that
the future use of ADLwill not only benefit from the transition frommanually created ADL logs to automatic
sensor-based activity recognition and logging but also from the transition from manual inspection of ADL
sequences to their automatic software-driven analysis. This ADL sequence analysis software will be core
part in mission critical systems, like ambient assisted living, to detect for example changing health status.
Therefore, proper testing and evaluation of this software is mandatory before its deployment. However,
testing requires data sets that include normal ADL sequences, hazards, and various kinds of long term
behavioral changes; which means it might require weeks or even months to monitor individuals to capture
such ADL sequences. Thus, collecting such data sets is very costly, if feasible at all; and very few data sets
are available on-line. Therefore, we present an approach to create the necessary data sets for testing through
simulation. The simulation of ADL sequences is based on existing ADL sequences and uses probabilistic
activity instigation and durations with a novel concept called activity rules to create data sets for proper
testing. Activity rules are used to model how individuals resolve activity conflicts. We implemented these
concepts as a discrete event simulator, called ADLSim. The evaluation of ADLsim shows that the simulated
ADL sequences are realistic and able to capture the variability and non-predictable behavior found in the
real world, and that activity rules can impact simulation results significantly.

INDEX TERMS Activities of daily living, activity rules, discrete event simulation, evaluation, modelling.

I. INTRODUCTION
The concept of Activities of Daily Living (ADL) plays a
central role in many Health Care services. It refers to the
basic activities required to be performed on a daily basis to
live an independent life. It is particularly relevant in elderly
care. By ranking the adequacy of performing basic tasks like
feeding, bathing, toileting and transferring, one can obtain
objective measures on the health status and independence of
elderly people [14]. ADL are however also important outside
of elderly care, e.g., when assessing the independence of
injured [13], [22] and diseased people [24], or people with
certain disabilities [23]. In many cases, it is desirable to
monitor care receivers, for instance to assess their recov-
ery process, capture indications of health deterioration or to
prevent dangerous situations. With today’s rapid increase
in the elderly population, the human resources to perform
the necessary monitoring and analysis is becoming ever

scarcer. Information and Communication Technology (ICT)
supported home care and elderly care, like Ambient Assisted
Living (AAL), aim to alleviate this problem by automating
the monitoring and the analysis of monitoring results. The
purpose is to enhance the quality of life by improving the
quality of care and enabling individuals an independent life.

There are three key technologies to achieve this goal (see
Figure 1-a): (1) sensor technology [1], (2) activity recogni-
tion [5], [19], [26], [28], [29], and (3) software to analyze
the recognized sequences of activities, because important
developments of health and independence often show up only
as long-term developments in ADL sequences. Thus, it is
necessary to perform longitudinal analysis and mining of
ADL sequences to unveil long-term trends [16], [27]. The
resulting system can be seen as a mission critical system
that can have severe impact on health and even life if they
do not work properly. As such it is very important that all

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12551

https://orcid.org/0000-0002-1434-9524

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 1. (a) Key AAL enabling technologies. (b) The role of ADLSim,
i.e., to test software for ADL sequence analysis.

system components are tested thoroughly before they are
deployed. Sensor testing and evaluation can be done in a
controlled environment, and the range of input signals is
known for the sensor types. However, it is not straightforward
to evaluate the software for activity recognition and ADL
sequence analysis. Both require data sets as input for testing,
but larger data sets are required for ADL sequence analysis
than for activity recognition. Instead of data from individual
activities that are seconds or minutes long, ADL sequences
from periods of weeks or months are needed for longitudinal
studies. Thus, substantially more effort is required to create
data sets to test ADL sequence analysis software. As such it is
not surprising that there exist considerably more data sets for
activity recognition [25]. In fact, there exist very few data sets
with ADL sequences despite the long and prominent history
of ADL in health and Health Care.

We explain the lack of such data sets as follows: First, ICT
assisted home and elderly care is a relatively new research
area, and has not yet been widely adopted in Health Care.
Like any other new technology, it consequently suffers from
an initial lack of adequate real-world data sets. First, there
has been efforts to create facilities where such data can be
obtained [10], [11], [27], but there are currently only very few
open data sets with recordings of ADL sequences available on
the Internet, like [29] and [30]. Second, capturing real-world
ADL sequences is costly, because the required monitoring
needs to be conducted over long time periods, and it is not
easy to recruit human test subjects. Third, an ADL sequence
captured in the real-world only reflects what has happened
and represents only one realistic instance of possible ADL
sequences. Therefore, it is impossible that all possible rep-
resentative ADL sequences of any potential caretaker in any
possible situations are captured in real-world data sets. For
example, hazards are - as seen from the care takers point if
view - hopefully not captured. Yet, software to assist caretak-
ers must be able to properly detect hazards and general trends
combinations of these. In other words, real-world data sets
are (if available) a good choice to test particular cases, but
not sufficient to perform testing in such a way that there is a
rather high probability that the software detects all important
events and provides the correct analysis results. Producing

hand-crafted ADL sequences could be used to create data
sets for stress testing the software, but again these can only
include selected cases since it is cumbersome to create the
ADL sequences and there is the danger of bias when data sets
are crafted by hand to determine if the software analyses the
ADL sequence correctly. The problem of insufficient data sets
is worsened if the ADL sequence analysis software is based
on deep learning technology. Deep learning approaches are
very promising, but their performance strongly depends on
the training data in terms of quantity and quality.

We aim to support development, testing, and evaluation
of ADL sequence analysis software by presenting in this
paper an approach and its implementation as discrete event
simulator (called ADLSim). Figure 1-b illustrates the role
of ADLSim, namely to produce simulated ADL sequences
suitable to test ADL sequence analysis software. During
deployment, the ADL sequence analysis software receives
the input from activity recognition software. The simulated
sequences describe the activities performed in an apartment
by a single person, i.e., the simulation of multiple persons
is reserved for future work. The approach is nevertheless
already very useful for a large class of AAL software,
e.g., to assess the independence of elderly, diseased or hand-
icapped people that live alone. Like most other simulators,
ADLSim is a set of tools to create models, and an execution
environment to execute these models. As such, ADLSim is
agnostic to the ADL that are required for testing. To create
appropriate data sets for testing and evaluation, the developer
of ADL sequence analysis software needs to select a suit-
able set of ADL to model long-term behaviour of the care
taker, and to determine the parametrisation of the resulting
models. The goal is to produce realistic ADL sequences with
enough random behaviour such that a sufficiently large set
of different ADL sequences can be used and that there is no
bias between the tester and the developer (which is often the
same person). To address the challenge of realism we model
the behaviour of caretakers using probability distributions to
determinewhen activities are instigated and for how long they
last. We base the simulator on discrete event simulation to
facilitate flexible simulation, i.e., of real behaviour learned
from a real-world data set, purely hypothetical behaviour, or a
combination of both.

A key contribution in this work is the novel concept called
activity rules to accurately simulate the process of deciding
which activity to perform first when faced with multiple
candidate activities (called activity conflict). This is a well-
known situation from real life, and how conflicts among
different pairs of activities are resolved strongly depends
on the individuals. Therefore, we argue that activity rules
are important for the generation of realistic ADL data sets.
Furthermore, the combination of adjustable activity rules
and distribution parameters enable model individualization,
i.e., they can be adjusted to reflect differences among indi-
viduals in terms of key characteristics of behaviour.

The reminder of this paper is structured as follows.We first
summarize related work in Section II. Section III presents the

12552 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

principles we follow to create models, Section IV describes
how these models are used to perform ADL simulation,
and Section V how we parametrise models using an ADL
sequence captured from a real person. Section VI presents
an evaluation of our simulator, and Section VII concludes the
paper and presents future work.

II. RELATED WORK
There exist already several simulators that in some way
support the evaluation of ADL analysis software. Some of
these simulators use existing ADL sequences as input to
simulate movement [6] or sensor readings over time [7].
The simulators rely on pre-existing data sets, either with
ADL sequences recorded from a real person available on-line
or by creating the traces manually. Manual creation of
data sets implies a certain amount of work, and record-
ings of ADL sequences from the real world contain only
behaviour that has occurred in real life. Such simulators
are therefore not suitable to evaluate ADL analysis software
designed to detect long-term changes in behaviour, i.e., across
months or years, and/or behaviour that occurs seldom in
the real world and might therefore not be captured in data
sets recorded from a real person. In addition, it is not pos-
sible in these simulators to introduce behaviour for specific
hypothetical hazards or anomalies. ADLSim supports effec-
tive, automatic generation of data sets with long-term ADL
sequences to enable the evaluation of such software.

Long-running ADL sequences are most commonly gen-
erated using Markov models [2], [21], [31]. This is
motivated by the observation that human behaviour is proba-
bilistic such that activities are faithfully modelled as states
in a Markov model, which is supported by the successful
application of Markov models in works on activity recog-
nition, e.g., in [29]. The work in [31] and [32] further-
more leverages the circadian and habitual rhythm in human
behaviour to create accurate models. The main drawback of
these approaches is that the models are relatively difficult to
extend, e.g., to explore various types of purely hypothetical
behaviour.

A more flexible approach is to simulate the onset of activ-
ities either based on (1) the need to perform the activity,
e.g., physiological needs like hunger or thirst [3], [8], [15],
or (2) statistics obtained from data sets recorded from real
people [9], [18]. These approaches facilitate the exploration
of hypothetical activities and activity sequences through the
modification, addition or removal of individual statistical
distributions or needmodels. Such approaches however intro-
duce a new problem: since activities are not instantaneous,
i.e., have a duration of more than zero time units, conflicts
can occur where more than one candidate activity is eligible
for execution at any given point in time. Such conflicts are
typically resolved by either interrupting or postponing activ-
ities according to some general scheme, e.g., priorities, that
applies to all simulated activities in the same way. We argue
that resolving all activity conflicts the same way is often not
realistic. In real life, the way activity conflicts are resolved

depend on the activities involved in the conflict, as well as
the concrete individual carrying out these activities.

To the best of our knowledge, our approach and its imple-
mentation in ADLSim are advancing the state-of-the-art in
three aspects: (1) we provide an extensible set of activity rules
that allow to realistically discriminate among activity con-
flicts when determining how to resolve them, (2) we facilitate
the seamless introduction of purely hypothetical behaviour
into otherwise normal behaviour that can be learned from a
data set with a recording of a real-world ADL sequence, and
(3) we integrate ADLSimwith the popular CEP system Esper
to facilitate direct evaluation of state-of-the-art data analysis
software, which is demonstrated in our previous work [16].

III. REQUIREMENTS AND ADL MODELLING PRINCIPLES
This work addresses the challenge of creating a model of the
behaviour of a single human (expressed as ADL sequences)
that enables the simulation of normal behaviour, with the
unpredictable day-to-day variability found in real daily living,
as well as hypothetical behaviour involving anomalies and
hazards. We first look at three fundamental requirements that
must be satisfied for ADL simulation to be useful, and then
look at the principles we follow to satisfy these requirements.

A. REQUIREMENTS FOR ADL MODELLING
For an ADL simulator to be as useful as possible, it should
satisfy the following three fundamental requirements:
(1) it should produce realistic ADL sequences, (2) it should
provide the possibility to simulate purely hypothetical
behaviour, and (3) it should be activity agnostic. We explain
each requirement below.

Requirement 1 - Realism: To perform reliable evaluation
of software for ADL sequence analysis, it is important that
the evaluation is based on realistic ADL sequences, i.e., that
essential characteristics of the simulated sequences corre-
spond to behaviour that can be found in the real world. This
includes realistic day-to-day variations in behaviour which
may yield non-deterministic results that cannot be predicted
before simulation. Since individuals differ in personality, life
style, age, gender, etc., realistic ADL sequences are those
that capture the behaviour that is characteristic for a given
real or imagined individual. This furthermore implies that it
should be feasible to parametrise the models to reflect what
is found in an ADL sequence captured from a real person.

Requirement 2 - Ability to Simulate Hypothetical
Behaviour: ADL sequence analysis software in AAL systems
is commonly designed to analyse long-term trends as well as
to detect high-risk events, e.g., particular hazards or anoma-
lies. These events might occur rather seldom and might not
exist in available data sets with recordings of real-world
ADL sequences. This problem is exacerbated by the fact that
a large number of events are required to be confident that
the ADL sequence analysis software can in fact detect the
event. To enable the evaluation of such systems, it is therefore
necessary that our simulator can simulate purely hypothetical
behaviour, i.e., that is not present in any recorded real-world

VOLUME 6, 2018 12553

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

ADL sequence. In the absence of a suitable data set, it might
even be necessary to construct complete, purely hypothetical
personalities, which was necessary in our previous work [16].
It should furthermore be possible to seamlessly mix hypo-
thetical behaviour into normal behaviour that is, e.g., learned
from a real-world ADL sequence. The reason is that ADL
sequence analysis software is typically evaluated in terms of
how accurately they identify interesting behaviour that may
not be present in any real-world ADL sequence. It should
also be possible to vary the simulated duration as necessary
to, e.g., enable longitudinal studies.

Requirement 3 - Activity Agnosticism: The traditional use
of ADL is focused on a small set of basic and instrumen-
tal activities, which are not necessarily sufficient for future
AAL systems and other applications that use ADL. As such,
ADLSim should not be bound to a particular set of activities
and it must be very easy for developers to introduce new
activities in ADLSim.

B. PRINCIPLES OF MODELLING ADL SEQUENCES
We define activity as a tuple a = 〈id, name〉, where id is a
unique identifier and name is a descriptive string. Activities
are typically performed multiple times over a period of time.
This is captured by the concept Activity Instance (AI), which
is a tuple ai = 〈a, st, et〉, where a is an activity and st and et
its start and end times. The overall goal of ADLSim is to
simulate a realistic sequence of such AI over time, called
Activity Instance Sequence (AIS). AIS is formally defined as
an ordered sequence as = {ai0, . . . , ain−1} of n AI where
∀x, y : x ≤ y ⇒ aix .st ≤ aiy.st , i.e., where AI are
ordered in increasing order of start time. Note that this defi-
nition allows input and output AIS to contain overlapping AI,
e.g., watching TV and answering the phone.

In order to generate within ADLSim useful AIS, we cap-
ture the characteristics of activities and how individuals
manage them in so-called Activity Models (AM). The fun-
damental design principles for realistic AM are based on
the insight that a central task of the simulator is to determine
the start time aix .st and end time aix .et of each AI aix , i.e., the
durations aix .et − aix .st . Therefore, AM are based on the
following assumptions:

1) Within ADLSim only one AI is selected as the current
AI at any point in virtual time, but it is possible to
switch from one AI to another at any time. Since human
multitasking is in most cases rapid task switching we
consider AI switching as a good approximation for
concurrent activities.

2) The time at which activities are performed is based
on factors that motivate their execution. Exam-
ples include physiological or psychological needs like
thirst, hunger, and the need to socialise and sleep,
daily routines like eating dinner at a given Time-of-
Day (ToD) and executing certain activities in sequence,
e.g., exercising and showering.

3) Routines, needs, and the circadian rhythm causes AIS
to exhibit statistical regularities. This can differ from

person to person, and implies probabilistic day-to-day
variations in AIS.

The naive approach where start times aix .st and dura-
tions aix .et − aix .st of AI aix are determined only based on
probability distributions can lead to conflicts. The reason is
that AI have a non-zero duration, i.e., aix .et − aix .st > 0,
which can lead to a situation where two AI aia and aib are
both potential instances for the current activity, i.e., where
aia.st ≤ aib.st and aib.st ≤ aia.et . This corresponds to
a situation in which a person desires to perform multiple
activities simultaneously. Since performing several activities
in parallel violates Assumption 1, we refer to this situation
as an Activity Conflict. We need mechanisms to serialise the
conflicting activities in a realistic way, i.e., that corresponds
to the real-life process of deciding which activity to perform.
This may in turn lead to other activities being postponed,
interrupted or omitted. We handle these challenges using
three core concepts: (1) instigation time, i.e., when a person
wishes to perform an activity, (2) start time, i.e., when the
activity is actually started, and (3) Activity Rules (AR) which
define how to serialise overlapping activities.
AR are invoked upon activity conflicts and guide their

serialization. Examples include terminating or suspending an
ongoing AI aicur to execute a newly instigated activity ainew,
postponing ainew until the completion of aicur , or omitting
ainew and re-scheduling it for later instigation. The appro-
priate AR for any given activity conflict depends mainly
on the involved activities and the personality of the sim-
ulated individual. AR can for example be based on inter-
views or semantics of activity names. The chosen set of AR
should faithfully reflect an important part of daily behaviour
that differs between individuals. Note that such serialization
might result in a discrepancy between when a person wishes
to perform an activity, i.e., the instigation time, and when it
is actually performed, i.e., the start time, which causes non-
deterministic variations during simulation. In the presence of
multiple postponed or suspended activities, a givenAImay be
subjected to a sequence of conflict resolutions per instigation
before it is started, and it may be interrupted multiple times
during execution. Note that the probability and frequency of
activity conflicts increases with the activity density, which is
determined by the duration and frequency of AI. The number
of activity conflicts also tends to increase with the variance of
the chosen distributions, since collections of highly dispersed
probability distributions generally have larger overlapping
regions than those with highly concentrated distributions.
There are two basic approaches to determine instigation

time: (1) use motivation factors and trigger activation based
on threshold values, like in [3], [8], and [15], or (2) use sta-
tistical distributions of instigation time and duration, poten-
tially obtained from an AIS from a real person, like in [9]
and [18]. Approach 1 is well suited to study how changes in
motivation affect human behaviour. However, one important
task in home care is to detect and signal about abnormal or
hazardous situations. Deviations from the normal, and
similarities between the current situation and particular

12554 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

hazards are typically detected based on statistical analysis.
It is thus important that the simulated behaviour exhibits
the statistical properties that characterise the event of inter-
est. We argue that need-based simulation is not well suited
for this, since it is not possible to predict a priori how
the development of needs affect the statistical properties of
the final behaviour. Therefore, we adopt Approach 2 that
(1) facilitates direct specification of the statistical properties
of the behaviour, (2) allows for parametrisation based on
AIS from the real world, and (3) permits the direct statis-
tical comparison of simulated AIS with AIS from the real
world.

Another important aspect of Requirement 1 (realism) is to
capture the type of unpredictable behaviour found in reality
and to create AIS that cannot be foreseen by developers.
This is commonly realised with stochastic, discrete event
simulation. Non-predictable output is produced by combining
two elements: (1) sufficiently complex models that change
over time according to deterministic rules, and (2) pseudo-
random numbers that are used as input to these models.While
the distributions of the random numbers are known a priori,
the output from the models is often non-predictable and can
only be known after executing the simulation. As an example,
consider the case of computer network simulation. These
simulators use models of interconnected nodes with protocols
that follow deterministic rules, and pseudo-random numbers,
e.g., for bit errors, back-off times, and node movements. Both
the protocol rules and the parameters of the random distri-
butions are known a priori, but the results of the simulation,
such as end-to-end delay, throughput, jitter, and packet loss,
are only known after executing the simulation. The same is
true for instigation times and start times in ADLSim. While
instigation times are driven by a priori known statistical
distributions, start times are unknown before simulation and
can vary significantly and non-deterministically between runs
with different random seeds.

IV. SIMULATING AIS
To validate our ADL modelling approach, we implement
ADLSim as a discrete event simulator using an extensible
set of AM based on parametric probability distributions to
determine the instigation and durations of activities, and AR
to resolve activity conflicts among AI. By combining discrete
event simulation with parametric distributions and easily
modifiable AR, it is possible to meet Requirement 1 (realism)
by choosing distribution parameters and AR that reflect the
essential aspects of a given real or personality. Requirement 2
(the ability to introduce hypothetical behaviour) is satisfied
because (1) discrete events can be scheduled to introduce
arbitrary changes to the models at any given point in time,
and (2) parametric distributions and AR can easily be mod-
ified by these events to introduce arbitrary modifications
in behaviour. Finally, the AM and AR are designed from
the beginning to satisfy Requirement 3 (activity agnosti-
cism), by composing AM from only highly generic compo-
nents like probability distributions that describe activity onset

and duration. We thereby make only minimal assumptions
about the type of activities we can model with AM and AR.
They are for instance not restricted to model the activities
found in any particular real-worldAIS, and can, as we demon-
strate in Section VI, be parametrised to model entirely hypo-
thetical activities that are not found in any given real-world
AIS.We perform further evaluation of ADLSim in the context
of these requirements via the experiments and results analysis
in Section VI. Below, we describe the simulation loop in
Figure 2, with emphasis on how the different types of param-
eters (highlighted in red) affect simulations.

FIGURE 2. Simulator design. The main parameters are outlined in red.

A. ACTIVITY MODELS
The instigation times and durations of AI are determined
based on probability distributions and their parametrisations.
Instigation times are determined using an instigation time
distribution (ITD) defined as a tuple ITD = 〈PDF :

f (x, dp), dp : {p1 ∈ R, p2 ∈ R, . . .}〉, where PDF is the
probability density function, and pi is parameter number i.
Similarly, durations are determined using duration distribu-
tion (DD) defined as the tuple DD = 〈PDF : f (x, dp), dp :
{p1 ∈ R, p2 ∈ R, . . .}〉.
The way the ITD is interpreted depends on the type

of the activity. Type 1 activities are typically need-based,
e.g., using the toilet and grocery shopping. The instigation
times of Type 1 activities are best approximated with a given
frequency. Thus, their ITD describe the durations between
subsequent instigations for that activity. Type 2 activities are
typically routine-based and are performed at approximately

VOLUME 6, 2018 12555

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

the same points in time every day, e.g., having lunch, eat-
ing dinner, and taking medicine. Thus, instigation times of
Type 2 AI are best approximated using (1) a set ToD =
{C0, . . . ,Cn−1}, where each Ci is a time of the day defined
in the crontab format,1 and (2) one ITD per ToD to add prob-
abilistic deviations from the ToD. Thus, while the instigation
times for Type 1 AI are based directly on a sample from
their ITD, those for Type 2 AI are determined by adding a
sample from their ITD to the corresponding ToD. Activities
may furthermore be assigned a non-zero omission probability
OP ∈ [0, 1] to model the occasional omission of activities
upon instigation.

An AM for an activity a is a tuple 〈a : A, type ∈
{1, 2},DDList, ITDList,ToDList,OPList〉, where a is the
activity to model, type defines the activity type, and DDList ,
ITDList , ToDList and OPList are lists of DD, ITD, ToD,
and OP, respectively. One element is selected per list to
determine an instigation time. Each list is iterated sequen-
tially, wrapping back to the first element upon encountering
the end of the list. Using such lists adds flexibility by, e.g.,
allowing an activity to be performed multiple times per day
with differing DD, ITD and OP.
Note that the AM above do not explicitly encode any

information about the ordering of AI. The reason follows
from Assumption 2, implying that many activities are moti-
vated mainly by physiological needs and the time of the day
rather than by the activities performed before and after them.
In that sense, our approach differs fundamentally from related
works based onMarkov chains. Instead, AI ordering emerges
indirectly, and non-deterministically, during simulation as
result of a series of probabilistic instigations of individual
activities, coupled with the resolution of activity conflicts
according to AR. As mentioned in Assumption 2, a subset
of the activities may nevertheless commonly be performed
in a given sequence as part of a routine. Examples include
going to the bathroom before and after sleep, followed soon
after by eating breakfast. To improve realism, we therefore
complement the above AM with the possibility to specify
such AI sequences, called AI nexi (plural of nexus), such that
each activity is instigated immediately or some time after the
completion of the preceding one according to its ITD. AI in
such nexi are called dependent variants of the activity they
regard, while the other AI are called independent variants.
A given activity may have AI of both variants. Such nexi can,
like individual activities, be of Type 1 or Type 2. Since an
AI nexi is instigated at the time its first activity is instigated,
the type of a nexus is inherited by its first activity.

B. ACTIVITY RULES
Activity rules for n activities are contained in n-by-n matrices
of the form

M =

 ARA0→A0 . . . ARA0→An−1
...

. . .
...

ARAm−1→A0 . . . ARAn−1→An−1


1Explained in https://en.wikipedia.org/wiki/Cron/

where each element ARAnew→Acur is an activity rule denoting
how to resolve the conflict between two AI, namely for a
new activity Anew and a current activity Acur . The elements of
these are chosen from an extensible set of AR, with associated
semantics and conflict resolution procedures.

We have two versions of the matrix M . The first, MCR,
is used for conflict resolution, i.e., when Anew is instigated
during the execution of Acur . Examples include terminat-
ing Acur (called terminate), suspending Anew (called sus-
pend), postponing Anew (called postpone) or omitting Anew
(called omit). In addition, more complex custom rules and
procedures can be created and invoked before and/or after
consultingMCR for particular activity pairs, e.g., ‘‘omit activ-
ity LeaveHouse when activity GoToBed is scheduled for
instigation less than 30 minutes into the future’’.

As a result of conflict resolution, multiple AI might
have been postponed or suspended during the execution of
an aix . These are stored in the contending list CLaix =
{Cai0, . . .Cain−1} belonging to aix together with any depen-
dent AI following aix in a nexus. Upon the completion of aix ,
all AI in CLaix are subjected to a post-activity contention to
determine which AI aix+1 should follow aix in the simulated
AIS. The matrix MPAC holds the AR that guides the post-
activity contention via the following procedure: A candidate
AI aicand for aix+1 is initially set to aicand = Cai0. For
subsequent Caii in the list, the AR ARCi→Acand in MPAC ,
where Acand = aicand .a and Ci = Caii.a, is consulted to
determine whether or not Caii should replace the current
AI aicand . If so, the AI are swapped, i.e., the current AI
aicand is inserted into the contending list of Caii, and Caii
is chosen as the current candidate by setting aicand = Caii.
If, on the other hand, Caii should not replace the current
aicand , Caii is inserted into in the contending-list of aicand .
When all Caii have been evaluated as potential current can-
didate, the final aicand is chosen as the AI aix+1 that fol-
lows aix in the simulated AIS. The exception is if aix+1
is omitted due to a non-zero omission probability, upon
which the process is repeated with the contending list of the
final aicand .

For a detailed example of MCR and MPAC , consult
Section Bwhere the content of theMCR andMPAC used in one
of the experiments in our evaluation, HypoSim, is presented
and explained.

V. MODEL INSTANTIATION USING REAL-WORLD AIS
In order to create realistic AIS it is important to be able to
parametrise the models to reflect the distinct characteristics
of the behaviour of real individuals. This section presents
an approach to instantiate such models based on an AIS
of a real person, hereafter referred to as a real-world AIS.
We base our approach on the iterative parametrisation process
depicted in Figure 3. We consider four potential sources of
information:

1) Statistics from the real-world AIS can be used
to estimate ITD and DD parameters and nexi of
activities.

12556 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 3. Parametrising ADLSim using a real-world AIS.

2) Semantics implied in the activity names and/or
descriptions can help determine AR and nexi of
activities.

3) Interviews with the monitored person (if available)
can help determine AR and nexi of activities, since
these parameters reflect how the modelled individual
resolves activity conflicts.

4) Simulated AIS can be compared with the input AIS
from the real person to investigate how representa-
tive they are, and may suggest how to improve the
parametrisation.We provide one example in Section VI
where results from a simulation Sim1 help to improve
parametrisation in a second simulation Sim2 via,
e.g., outlier removal.

Parameters of DD can be estimated from the durations of the
AI in the real-world AIS, e.g., using maximum likelihood
estimation. We currently assume that AR are selected based
only on activity semantics or interviews. Estimating AR from
the real-world AIS is left for future work. We explain below
how to estimate ITD and activity nexi from real-world AIS.

A. ESTIMATING ITD PARAMETERS
The real-world AIS denotes only which activities are per-
formed when, i.e., their start time st and end time et , and
lacks explicit information about instigation times. Therefore,
the best we can do is to estimate instigation times based on
the available start times. This is based on the assumption that
AI are started as soon as possible after instigation.

To estimate ITD, we must first determine the type of the
activity. We do this by studying histograms of the AI start
times. Histograms for Type 1 activities exhibit distinct modes
around one or many ToD, while those for Type 2 activities
lack such modes. This is obvious since Type 1 activities are
per definition those that are started around ToD. It should
thus be clear from visual inspection of the histograms, or via
established methods in circular statistic to identify modes,
that Type 1 activities exhibit such modes. In this work,
we achieve good results by visual inspection combined with

the semantics of the activity names, and defer the study
of potentially useful statistical tools for future work. As an
example, consider the top row of histograms in Figure 5
for the seven activities from the real-world AIS used in our
evaluation. The x-axes denote hour of the day, and the y-axes
the frequency of start times within each hour (a mathematical
definition of this metric is found in Section VI-B). We see
that the histograms for Activity 3 (Take Shower), Activity 4
(Go to Bed), Activity 5 (Prepare Breakfast), and Activity 6
(Prepare Dinner) have distinct modes around ToD 10:15h,
9:24h, 19:22h, and 23:54h,2 respectively, and are therefore
likely of Type 2. The same is not true for Activity 2 (Use
Toilet), which is more likely of Type 1. These conclusions
are supported by the semantics of the activity names, i.e., the
string ‘‘Go to Bed’’ denotes an activity that is typically started
around the same ToD every day (Type 2 activity).

Once the activity type is decided, their ITD parameters
are estimated. For Type 2 activities, this is done in the same
way as with DD, i.e., by fitting the ITD to the empirical
distribution of the durations between subsequent start times
of the same activity (called inter-activity duration, IAD),
e.g., with maximum likelihood estimation. For Type 1 activ-
ities, a ToD is estimated first, then the parameters of the
ITD are estimated based on how start times deviate from this
ToD. To estimate the correct ToD, e.g., 10:15h for Activity 3
(Take Shower) in Figure 5, we must take into account that the
24-hour period is cyclic. Simply calculating the average of
the timestamps after performing a modulo operation on the
24-hour period can yield highly inaccurate results, espe-
cially for activities whose distribution of start times cross the
24-hour boundary. A good example is Activity 4 (Go to bed)
with a significant amount of activations right before and right
after midnight. The aforementioned linear average would
result in an average ToD at 13:15h, which is clearly far away
from the correct mode at 23:54h. ToD estimation requires
instead the use of circular statistics [12] as follows. For each
AI aii ∈ {aix ∈ ais : aix .a = act} consisting of the AI
in AIS ais belonging to Activity act , calculate maii = aii.st
mod P, where P is the number of time units in a 24 hour
period. All maii are translated into coordinates (xaii , yaii) on
a unit circle where one revolution corresponds to 24 hours,
i.e., xaii = cos(

2maiiπ
P) and yaii = sin(

2maiiπ
P). The arithmetic

mean of these coordinates denotes a vector (xaix , yaix) whose
angle θToDact = atan2(sin(yaix), cos(xaix)) can be used to
calculate the final ToD estimate ToDact =

θToDact
2πP . ToDact

represents the time-of-day from which the average distance
to all nearby aii.st is as low as possible. Here, the term
nearby is defined by taking into account the fact that, in linear
time, the time-of-day represented by ToDact repeats once
every 24 hours. The instance of ToDact that is nearby is thus
defined to be the one closest to aii in linear time, and is
denoted ToDact,i. The parameters ITDact .dp for an ITD of

2Since the activity Go to bed is usually started around midnight, and
the 24-hour period is presented in a linear way, the mode around midnight
appears as two modes.

VOLUME 6, 2018 12557

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 4. Probabilities of nexi of activities, coloured from grey (P = 0.0)
to white (P = 1.0). (a) P(A->B | A). (b) P(A->B | B).

Activity act is then selected to best predict the distances
|aii.st−ToDact,i|, e.g., usingmaximum likelihood estimation.
During simulation, ITDact can now be sampled and added
to ToDact to produce the final instigation times. ITDact and
ToDact are finally inserted into the lists AMact .ITDList and
AMact .ToDList , respectively, that belong to the final AM
AMact used to model activity act .

B. ESTIMATING AI NEXI
Activities with a large fraction of dependent AI tend to
occur in frequently occurring sub-sequences of AI in an AIS.
To find dependent AI, we therefore search the real-world
AIS for common sequences. These are found by studying
the frequency of AI pairs. Figure 4 presents the outcome of
this process for the AIS used in our evaluation. Each entry
in row A and column B contains the number of occurrences
an AI aix pre-ceding an AI aix+1, such that aix .id = A
and aix+1.id = B (denoted A → B), divided by the total
number of AI |{aii : aii.id = A}| for the activity with ID A
(Figure 4 (a)), and the total number of AI |{aii : aii.id = B}|
for the activity with ID B (Figure 4 (b)). The diagram to
the left (P(A → B|A)) shows the probability of an AI for
Activity B following a given AI for Activity A, and the right
diagram (P(A → B|B)) shows the probability that an AI
for Activity A pre-cedes a given AI for Activity B. Entries
with high probabilities are likely to denote activities with
a significant fraction of dependent AI variants, and thereby
guide the construction of AI nexi.

In the diagram to the left, the two sequences 3 → 1 and
4 → 2 stand out as particularly probable. The semantics of
the activity names confirm their probability. For instance, it is
not unreasonable that the probability is 90% that the activity
immediately following ‘‘Take shower’’ is ‘‘Leave house’’.
Likewise, it is not unreasonable that the probability is 95%
that the activity immediately following ‘‘Go to Bed’’ is ‘‘Use
toilet’’. Furthermore, we find in the right diagram that going
to bed is immediately preceded by using the toilet for 92%
of its instances (2→ 4). The two sequences with Activity 4
can be concatenated, resulting in the final nexi 2 → 4 → 2
and 3→ 1. We re-produce these probabilities using the omit
probability of each activity, e.g., Activity 2 is omitted from
the nexi with probabilities 1− 0.92 = 0.08 and 1− 0.096 =
0.04 before and after Activity 4, respectively.

ITD parameters of complete nexi of activities are esti-
mated as with individual activities. However, some activities
have both dependent and independent AI variants, e.g., only

61.76% of instances of Activity 1 (Leave House) occur in
the above-mentioned nexi. Therefore, special care must be
taken to exclude independent AI when estimating the ITD
of nexi, and vice versa. An additional benefit of modelling
dependent and independent AI variants separately is that their
ITD and DD may be more accurately fitted to the empirical
data. For instance, the two AI variants of Activity 1 are
mostly separated by the two modes in its histogram (to the
top left in Figure 5) and are therefore accurately modelled
with separate uni-modal distributions. The omit probability
of the independent AI variant is finally adjusted to reflect the
ratio by which it occurs in the real-world AIS.

VI. EVALUATION
We have implemented ADLSim as a discrete event simulator
in Java according to the design in Figure 2. The goal of
the evaluation is to show that ADLSim satisfies the three
requirements, i.e., it is realistic, enables the simulation of
hypothetical behaviour and that it is activity agnostic. Since
AR is a new concept in the field of ADL sequence simulation,
we also analyse the impact of AR. Our preliminary exper-
iments show that ADLSim can simulate 1.5 million AI per
second on a 1.6 GHz quad core Intel i5. This means a high-
density AIS across a duration corresponding to a complete
human life can be simulated within a few seconds. Since this
simulation overhead is negligible we exclude further studies
on simulation overhead from this paper.

This section is divided into five sub-sections. Section VI-A
elaborates on the eight simulation experiments performed
as part of our evaluation, with a detailed discussion on the
parametrisation of each experiment. Section VI-B explains
the metrics we use to quantify our results. Section VI-C
presents the experiment results. Section VI-D analyses the
results in the context of the three requirements and the impact
of AR. Section VI-E summarises our findings.

A. EXPERIMENTS
This section presents the design of the eight experiments
performed as part of our evaluation. To enable a steady-
state analysis, we add one simulated day at the beginning
and end of all simulations that is discarded from our results.
In experiments Sim1, Sim2, Rand*, and NonRand, we per-
form the simulation 10 times with varying random seeds to
obtain statistical significance, and present in Section VI-C the
mean and standard deviation (SD) across all 10 runs. In the
experiments HypoSim and HybridSleep we instead perform
only one run with several times more simulated days. The
reason is that these they are designed to demonstrate the
ability ADLSim to simulate behaviour that occurs over very
long periods of time. We explain each experiment in detail
below. Consult Table 1 for the detailed parametrisation of the
AM in each experiment.

1) SIM1 AND SIM2
The goal of Sim1 and Sim2 is to determine whether
ADLSim can simulate realistic behaviour, and to show that

12558 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 5. Overview of activities in first run. ‘‘RW’’ is an abbreviation for Real-World’’.

the models can be parametrised to reflect the behaviour of a
given, real person (Requirement 1). To achieve this, we apply
the parametrisation techniques described in Section V.
ADLSim is activity agnostic by design, and should as such
be capable of simulating individuals with a wide range of
behaviours. It is therefore not important that the utilized
real-world AIS is recorded from an individual with any par-
ticular traits or behaviours. Instead, it is important that we
can show that the models resulting from the parametrisation
process properly capture the behaviour present in the real-
world AIS we decide to use as input. Very few real-world
AIS are publicly available for this purpose. For this reason,
we argue that the best criteria for selecting the real-world
AIS is that it is of acceptable quality, and that it is widely
enough referenced in the literature to facilitate comparable
results. Based on these criteria, we decide to use the Ubicomp

dataset from Van Kasteren et al. [29]3 as the real-world AIS.
The dataset contains the sequence of activities in the home
of a 26 year old man during a period of nearly 28 days.
The recording was performed as non-intrusively as possible
using a bluetooth headset such that when a button on the
headset is pressed, it captures a time-stamped recording of
the voice of the wearer denoting the start and end times of the
execution of one of seven pre-defined activities. The selected
activities are chosen based on the Katz Index of Independence
in ADL [14]. This index is commonly used in Health Care
to assess the cognitive and physical ability of elderly people.
To enable a one-to-one comparison between this real-world
AIS and the simulated AIS from ADLSim, we first truncate
the real-world AIS such that it contains a whole number of

3Available from https://sites.google.com/site/tim0306/datasets

VOLUME 6, 2018 12559

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

TABLE 1. AM parametrisation.

12560 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

24-hour periods lasting from midnight at the beginning of
Day 1 to midnight at the end of Day 25. Then we discard
the first and last days, to account for the above mentioned
shortening of the simulated AIS for a steady state analysis.
The final real-world AIS used in our evaluation contains AI
for 24 entire days.

Due to the non-deterministic outcome of combining prob-
abilistic instigation times and AR, it is not given a priori that
the simulated AIS preserves the key characteristics of the
real-world AIS. We determine how accurately the simulated
AIS reflects the real-world AIS by means of well-defined
metrics introduced in the next section, that capture the sim-
ilarity of the two AIS in terms of (1) per-activity summary
statistics, (2) their day-to-day variability, and (3) the average
difference between days in the real-world AIS and days in the
simulated AIS.

Based on the sequence diagrams for the real-world AIS
in Figure 4, we include two AI nexi in Sim1 and Sim2.
The AI for Activity 4 are always dependent and part of the
nexus 2 → 4 → 2, while Activities 1, 2, and 3 have both
dependent and independent AI variants. In Sim1, instigation
times and durations are estimated without any preliminary
outlier removal, and dependent and independent AI vairants
always use the same DD. In Sim2, we improve the parametri-
sation in both aspects. Outliers are manually removed for
Activities 1 (four abnormally long-lasting AI, i.e., longer
than 23 hours, mostly during weekends), 4 (four abnormally
short AI, i.e., less than 6 hours, mostly during day time),
and 7 (four abnormally early AI, i.e., before 12 am). This
results in significantly changed distribution parameters, and
Activity 7 is more accurately modelled as a Type 1 activity.
We also find that the durations of dependent and independent
AI variants of Activity 1 differ significantly, and therefore
model these with separate DD in Sim2. The AR postpone is
used for all pairs of activities.

2) RandPost, RandTerm, RandSusp AND NonRand
Realistic behaviour (Requirement 1) involves a certain
amount of day-to-day variability. We show that the simulated
AIS from Sim1 and Sim2 exhibit realistic amounts of proba-
bilistic behaviour by comparing their day-to-day variability
with that in the real-world AIS. This comparison requires
first to determine what we mean by large and small day-to-
day variations. We therefore conduct additional experiments
where we maximise and minimise day-to-day variability in
simulations that include the same number of AM and days
as in Sim1 and Sim2. We perform three experiments with
highly random behaviour, called RandPost, RandSusp and
RandTerm, collectively referred to as Rand*, and one experi-
ment with minimized variability, called NonRand. NonRand
is identical to Sim1 except that all SD are set to 1 minute
to minimise variability. In Rand*, we maximise variabil-
ity by using for ITD and DD uniform distributions across
values that range from 0 and 60 minutes. The resulting
AIS exhibit one meaningful notion of maximum and min-
imum variability among all 24 days, forming the basis to

determine whether Sim1 and Sim2 exhibit realistic degrees of
variability.

The real-world AIS used in these studies is relatively
sparse, i.e., there are many periods where no activity is
performed and the activities are selected relatively crudely,
i.e., only seven activities. By comparison, the most recent
activity real-world AIS by Kasteren et al. contains up to
16 activities [30]. For this reason, the number of activity
conflicts in our simulation is limited, preventing a proper
study of the impact of AR. In this context, Rand* and Non-
Rand fulfill a second purpose: they are designed to yield a
very high activity density, i.e., with almost no idle periods.
As explained in Section III-B, this increases the frequency of
activity conflicts, and thus the frequency of AR invocations.
In Sim1 and Sim2, only 64.6% and 57.6% of instigations need
to be resolved with AR, respectively. In contrast, in RandPost,
RandTerm, and RandSusp, 99%, 99%, and 90% of instiga-
tions must be resolved with AR, respectively. Simulations
with random behaviour also involve a significantly higher
number of instigations, further increasing the frequency of
AR invocations. This allows us to properly study the impact
of AR on simulated AIS. We use the same AR for all activity
pairs within each experiment. To investigate the choice of AR
impacts the results, we apply different AR in the three differ-
ent experiments with random behaviour. The AR postpone,
suspend and terminate are used in RandPost, RandSusp and
RandTerm, respectively.

3) HypoSim AND HybridSleep
ADLSim is not limited to simulate behaviour found in real-
world AIS. For instance, in Rand* and NonRand we sim-
ulate behaviour with artificially high and low degrees of
variation. This does however not suffice to properly eval-
uate ADLSim in terms of Requirements 2 and 3, which
requires that we also demonstrate that ADLSim (1) is not
restricted to simulate activities found in any one given real-
world AIS, (2) can simulate the (gradual) onset of realistic,
user-defined, hypothetical behaviour, i.e., specific hazards,
achievements or anomalies, and (3) can seamlessly merge
such behaviours into otherwise normal behaviour that is,
e.g., learned from a real-world AIS.

We have partly addressed Requirement 2 and 3 in ear-
lier work to test AAL software in the Health Care domain
with ADLSim [16]. We constructed a purely hypothetical
personality in terms of 15 daily activities, and introduce
either instantly or gradually two different events that are of
interest in the Health Care domain: (1) the gradual onset of
a sleep anomaly, and (2) instantaneous immobility resulting
in the cessation of all subsequent activity. In the current
work, we conduct two additional experiments, HypoSim and
HybridSleep to further evaluate ADLSim in terms of Require-
ment 2 and 3. HypoSim is based on modified versions of the
models in [16] while HybridSleep is based on the models in
Sim1 and Sim2.

In HypoSim, we simulate two hypothetical, long-term
developments in behaviour that are of special interest in

VOLUME 6, 2018 12561

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

Health Care, i.e., a gradually improving self-medication rou-
tine, and the gradual onset of a sleep anomaly. We sim-
ulate 150 days divided into three 50-day periods P1, P2,
and P3. During P1, we gradually reduce the SD of the ITD of
Activity 15 (TakeMedicines) from 100 minutes to 1 minute.
We thereby simulate an improvement in the precision of
taking medicines at the three designated ToD 10:00h, 15:00h,
and 20:00h. We leave the SD at 1 minute for the remainder
of the simulation to clearly show the resulting improved self-
medication routine. During P2, we gradually introduce the
sleep disorder as a combination of a gradual, but significant
shift in sleeping patterns and a significant increase in overall
amount of sleep. The central activities are Activity 4 (Sleep)
and Activity 14 (AfternoonNap), which are instigated as part
of the nexi 3 → 4 → 5 → 6 and 8 → 14, respectively.
We gradually adjust two parameters, i.e., we shift the ToD of
Sleep by 6 hours from 21:30h to 3:30h, and increase the mean
duration of AfternoonNap from 45 minutes to three hours.
Since Sleep is instigated as part of the nexus beginning with
Activity 3 (EveningRoutine), the 6-hour shift is achieved by
adjusting the ToD of EveningRoutine. In P3, we keep param-
eter values constant to clearly show the resulting adverse
sleeping pattern.

HybridSleep is designed to demonstrate that we can seam-
lessly merge hypothetical events of interest, i.e., a sleep
disorder, into normal behaviour based on a real-world AIS.
We use the same activities and parametrisation as in Sim2, but
gradually shift the ToD of the nexus 2→ 4→ 2 that includes
the activity ‘‘go to bed’’ (with ID 4). We simulate 150 days
divided into three periods P1, P2, and P3, that unfold as in
HypoSleep, i.e., P1 contains normal behaviour, P2 the gradual
shift of the ToD of Activity 4 by +6 hours, and P3 a stable,
but adverse sleeping pattern. In both HypoSim and Hybrid-
Sleep, we perform one simulation run using the random
seed 1.

B. METRICS
We assess the realism of ADLSim by comparing simulated
AIS with the AIS from a real person used for parametrisation.
We perform the comparison based on well-defined metrics.
In order to understand the results, we perform both mathe-
matical and visual analysis.

The challenge of formulating proper metrics to compare
simulated and real AIS is two-fold. First, we must define
metrics that allow the comparison of AIS in terms of individ-
ual activities, i.e., that describe the overall similarity between
the AIS in terms of when, how often, and for how long the
different activities are performed. Second, we must define
metrics that allow to compare the activities within individual
days. The latter is needed for two reasons: (1) we need tomea-
sure how similar the day-to-day variability within a simulated
AIS is to the day-to-day variability within the corresponding
real-world AIS, and (2) we need to determine how similar,
on average, the days in a simulated AIS are to days in the
corresponding real-world AIS.

1) METRICS TO COMPARE INDIVIDUAL ACTIVITIES
The summary statistics presented in Section V-A capture the
essential characteristics of activities within an AIS. These
statistics are used to parametrise simulation models using a
real-world AIS. However, due to the influence of AR, such
statistics obtained from a simulated AIS aissim will deviate
from those obtained from the real-worldAIS aisreal that aissim
is based on. By comparing statistics for aissim with those
for aisreal , we obtain a quantitative measure of the degree to
which aissim resembles aisreal in terms of when, how often
and for how long individual activities are performed. These
statistics are calculated across all n AI {aia,0, . . . , aia,n−1}
for a given activity a. We compute the following six sum-
mary statistics for a: ToDa, ToDDeva, and σ (ToDDeva) to
describe the distribution of start times for Type 1 activities,
IADa and σ (IADa) to describe the distribution of the IAD for
Type 2 activities, and DDa and SD σ (DDa) to describe the
distribution of the duration of activities. These metrics are
defined as follows:

ToDa =
θToDa

2πP

ToDDeva =

∑i<n
i=0 (aia,i.st − ToDa,i)

n

σ (ToDDeva) =

∑i<n
i=0

√
(aia,i.st − ToDa,i)2

n

IADa =

∑i<(n−1)
i=0 (aia,i+1.st − aia,i.st)

n− 1

σ (IADa) =

∑i<(n−1)
i=0

√
(aia,i+1.st − aia,i.st)2

n− 1

DDa =

∑i<n
i=0 (aia,i.et − aia,i.st)

n

σDDa =

∑i<n
i=0

√
(aia,i.et − aia,i.st)2

n

where θToDa , P and ToDa,i are defined as in Section V-A.
Since the above metrics are merely summary statistics,

they leave out important information about the shape of the
distribution of AI throughout the day. We use visual inspec-
tion for this purpose, which is a commonly applied technique
to assess the similarity of two distributions. This requires
proper metrics with values that, once plotted in a histogram,
facilitate this visual inspection. The first metric, #Sais,a,t1,t2,P
(abbreviated as #S), denotes the number of times an activity
a is started during a given time period during the day, or more
precisely, the number of times it is started between two points
in time t1 and t2 (e.g., 9 AM and 10 AM) in a repeating
period P (e.g., 24 hours). Plotting these values in a histogram
with one interval per hour of the day unveils the shape of
the distribution of start times of a given activity. The second
metric, #Pais,a,t1,t2,P (abbreviated as #P), denotes the number
of times some portion of activity a is performed within such
a period. The corresponding histogram for this metric unveils
the shape of the distribution of hours in which some portion

12562 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

of the activity is performed. When visualised, #P provides an
intuitive summary of both the start times and the durations of
the activity. These two metrics are defined as follows:

#Sais,a,t1,t2,P = |{aix ∈ ais : aix .a = a

∧ t1 ≤ stx,P < t2}|

#Pais,a,t1,t2,P = |{aix ∈ ais : aix .a = a

∧ [(t1 ≤ stx,P < t2)

∨ (t1 ≤ etx,P < t2)

∨ (stx,P ≤ t1 ∧ etx,P > t2)

∨ (stx,P < t1 ∧ stx,P > etx,P)

∨ (aix .et − aix .st >= P)]}|

where stx,P = aix .st mod P and etx,P = aix .et mod P are the
start and end times of an AI aix within a repeating time period
consisting of P ∈ N time units, and t1, t2 ∈ {x ∈ N : 0 <
x ≤ P} are two points in time P. #Sais,a,t1,t2,P is the sub-set
of the AI {aix ∈ ais : aix .id = a} that start between t1 and
t2, and #Pais,a,t1,t2,P is the sub-set of AI where at least some
portion of the AI falls between t1 and t2, i.e., where the AI
either (1) starts between t1 and t2, (2) ends between t1 and t2,
(3) starts before t1 and ends after t2, (4) starts before t1, and
wraps around the 24 hour period such that stx,P > etx,P, or
(5) the AI lasts more than P time units, meaning that it must
have been performed between t1 and t2. The data for the
final histograms are obtained by computing these metrics for
t1 and t2 set to the beginning and end of the 24 different hours
of the day, and P set to the number of time units in 24 hours.

2) METRICS TO COMPARE INDIVIDUAL DAYS
We need to measure the difference between days for two
purposes. First, we need to quantify the day-to-day variability
within one AIS. Second, we need to quantify the difference
between a simulated AIS aissim and the corresponding real-
word AIS aisreal .

The difference between days is calculated using the
Levenshtein distance [17]. Since the Levenshtein distance
only applies to sequences of symbols, the days in our AIS
must first be represented as such sequences. To achieve this,
each 24-hour day in an AIS is first divided into a sequence
of T discrete time-intervals of fixed length T/24 hours. Each
day is then represented as a tuple 〈id0, . . . , idT−1〉, called an
ID-map, where idi is the ID of the activity that occupies most
of time interval i. When selecting the duration of the intervals,
one must consider two important factors. First, the longer the
intervals are, the less representative the Levenshtein distance
will be, because activities with a duration shorter than half of
the interval duration T/24 hours will not be accounted for in
the ID-map. Conversely, the shorter the intervals are, themore
time is needed to compute the Levenshtein distance, which
is particularly important given that the algorithm to com-
pute this distance runs in quadratic time [4]. When creating
ID-maps, it is thus important to strike the proper trade-off to
keep the interval length as short as possible without incur-
ring impractically large running times for the computation

of the Levenshtein distance. Experiments show that using
30-second intervals, i.e., T = 24 hours / 30 seconds =
2880, achieves a proper trade-off with the implementation4

and the 1.6 GHz quad core Intel i5 computer used in this
work. The Levenshtein distance la,b between two ID-maps
a = (ida,0, . . . , ida,T−1) and b = (idb,0, . . . , idb,T−1), where
a and b represent two different days, is defined as follows:

la,b = leva,b(|a|, |b|)

where

leva,b(i, j) =


min(i, j) if min(i, j) = 0
otherwise:

min

leva,b(i− 1, j)+ 1
leva,b(i, j− 1)+ 1
leva,b(i− 1, j− 1)+ 1ida,i 6=idb,j

where 1ida,i 6=idb,j is the indicator function

1ida,i 6=idb,j =

{
0 if ida,i.a = idb,j.a
1 otherwise.

We can now use la,b to compute the average difference
between all pairs of days within oneAIS, tomeasure the prob-
abilistic day-to-day variation with that AIS, or between pairs
of days obtained from two separate AIS, tomeasure the differ-
ence between two AIS in terms of individual days. Let {a} =
{daya,0, . . . , daya,n−1} and {b} = {dayb,0, . . . , dayb,m−1}
denote sets of ID-maps for all days in two AIS a and b. The
metrics l{a},{b} and σ (l{a},{b}) denote the mean and SD across
the Levenshtein distances between the pairs of ID-maps
resulting from all possible ways to combine an ID-map from
{a} with an ID-map from {b}. These are defined as follows:

l{a},{b} =

x<n∑
x=0

y<m,y6=x∑
y=0

ldaya,x ,dayb,y

(n− 1)m

σ (l{a},{b}) =

x<n∑
x=0

y<m,y6=x∑
y=0

√
(ldaya,x ,dayb,y − l{a},{b})2

(n− 1)m

These metrics quantify the average and SD of the num-
ber of edit-operations (insertions, deletions or substitutions)
required to make an ID-map daya,x ∈ {a} equal another
ID-map dayb,x ∈ {b}. We quantify the day-to-day variability
within one AIS by computing the mean and SD of the dis-
tance among days taken only from that AIS, i.e., by setting
{a} = {b}. The result can thereafter be compared with
the probabilistic day-to-day variation within a different
AIS, i.e., to compare a simulated AIS aissim with an AIS
aisreal from a real person. In other words, we compare
l{aissim},{aissim} with l{aisreal },{aisreal } and σ (l{aissim},{aissim}) with
σ (l{aisreal },{aisreal }).

We quantify the difference between two AIS by deter-
mining how different, in average, a randomly chosen day

4A version of https://rosettacode.org/wiki/Levenshtein_distance#Java
was modified to work with our ID-maps.

VOLUME 6, 2018 12563

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

from a simulated AIS is to a randomly chosen day from the
corresponding real-world AIS. For this purpose, we introduce
two additional metrics that are defined as follows:

aissim↔aisreal = |l{aissim},{aisreal }−l{aisreal },{aisreal }|

σ (aissim↔aisreal) = |σ (l{aissim},{aisreal })−σ (l{aisreal },{aisreal })|

The first metric denotes the difference between a simulated
and a real AIS in terms of the mean day-to-day variance, and
the latter denotes their differences in terms of the SD of the
day-to-day variance. If both are close to 0, we can conclude
that the overall difference between days in aissim and aisreal
is similar to the difference among days within aisreal . Most
importantly, we design these metrics to enable the evaluation
of the realism of our simulated AIS in one very essential
aspect: the closer aissim ↔ aisreal and σ (aissim ↔ aisreal) are
to 0, the more difficult it is to distinguish a randomly chosen
day from a simulated AIS from a randomly chosen day from
a real-world AIS, in terms of the difference in the location
and duration of activities.

Although la,b provides a quantitative measure on day-to-
day variability, it does not definewhat is a ‘‘small’’ or ‘‘large’’
difference in variability. For this purpose, we use the results
from the Rand* and NonRand experiments. We compute a
minimized and a maximized value for the distance between
the real-world AIS and a simulated AIS by computing
the distances between the real-world AIS and (1) a highly
non-random AIS aisNonRand from the experiment NonRand,
resulting in theminimized value, and (2) a highly randomAIS
aisRand∗ from Rand*, resulting in the maximized value.

C. RESULTS
1) PER-ACTIVITY COMPARISON
The purpose of our first two experiments, Sim1 and Sim2,
is to assess the realism of ADLSim, i.e., the similarity
between simulated AIS and the corresponding real-world
AIS. For ease of comparison, we present the per-activity sum-
mary statistics from a simulated AIS side by side with those
from the real-world AIS used for parametrisation. Figure 5
shows seven columns and six rows of histograms. There is
one column per activity, and two rows per activity in the AIS
aissim1 from Sim1 (Rows 1 and 4), two rows per activity in
the AIS aissim2 from Sim2 (Rows 2 and 5), and two rows
per activity in the real-world AIS aisreal (Rows 3 and 6). The
histograms for aissim1 and aissim2 contain information about
the first of 10 simulation runs. Each bar in the histograms
in Row 1-3 present #Sais,a,t1,t2,P with t1 and t2 set to the
beginning and end of each of hour in the 24 hours period
P (x-axes). The bars in the histograms in Rows 4-6 present
#Pais,a,t1,t2,P with the same t1 and t2. In Rows 1-3, we present
above each histogram for activity a IADa (in minutes) and
σ (IADa) (in minutes) if a is a Type 1 activity and ToDa,
ToDDeva (in minutes), and σ (ToDDeva) (in minutes) if a is
a Type 2 activity. Since Activity 7 is modelled as a Type 2
activity in Sim1 and a Type 1 activity in Sim2, we present both
types of information above its histogram in Row 1 (Type 1

FIGURE 6. Comparison of day-to-day variability between simulated and
real-world AIS.

information in parenthesis). In Rows 4-6, we present above
each histogram themeanDDa and SD σ (DDa) of the duration
of activity a.

2) PER-DAY COMPARISON
We calculate one lais,ais and one σ (lais,ais) for the real-world
AIS as well as for each AIS from 10 simulation runs with dif-
ferent seeds per experiment. For the simulations, we present
in Figure 6 the mean (boxes) and SD (error bars) of lais,ais
(grey boxes) and σ (lais,ais) (white boxes) across the 10 simu-
lation runs, in addition to the corresponding values from the
real-world AIS.

We calculate aissim ↔ aisreal and σ (aissim ↔ aisreal) for
each AIS aissim from the 10 runs per simulated experiment
and for the real-world AIS aisreal . However, instead of using
aissim and aisreal directly, we perform preliminary filtering
of the AIS to extract seven AIS per aissim and aisreal , each
of which only contain the AI for a given activity a. That is,
for each activity a we end up with one aissim,a = {aix ∈
aissim : aix .a = a} per simulation experiment, and one
aisreal,a = {aix ∈ aisreal : aix .a = a} from the real-
world AIS. By comparing these, we achieve a detailed, per-
activity comparison of the day-to-day variability between
simulated and real-world AIS. The results are presented
in Figure 7. The histogram to the left shows mean values for
aissim,a ↔ aisreal,a with sim ∈ {RandPost, Sim1, Sim2} from
the experiments from Sim1, Sim2, and RandPost, and where
a is one of the seven activities in the AIS. The histogram to the
right shows the mean values for σ (aissim,a ↔ aisreal,a) with
sim and a set in the same way. Here, lower values are better,
since values close to 0 indicate a high degree of similarity
between simulated and real AIS. We chose RandPost for
comparison since it uses the same AR as in Sim1 and Sim2,
but in contrast has highly random AIS.

3) VISUAL PRESENTATION OF AIS
Since the important characteristics of the AIS from Sim1,
Sim2, and real-world AIS are extensively captured in
Figures 5, 6, and 7, a visualisation of the raw content in the
AIS from Sim1, Sim2, and the real-world AIS is excluded
from the main text, and instead included in Appendix A.

12564 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 7. Values for aissim ↔ aisreal and σ (aissim ↔ aisreal), where sim = RandPost,Sim1 and Sim2. The lower the values are, the more similar
the respective simulated AIS are to the real-world AIS.

FIGURE 8. Snapshots of experiments with varying probabilistic behaviour.
(a) NonRand, Run 1, 4 days. (b) RandPost, Run 1, 1 day. (c) RandSusp,
Run 1, 1 day. (d) RandTerm, Run 1, 1 day.

For Rand* and NonRand, it is sufficient to present a snap-
shot of the corresponding AIS in order to obtain a proper
understanding of their most important characteristics, since
these characteristics are similar for the remaining simulated
days. Figure 8 presents snapshots for NonRand (Figure 8 (a)),
RandPost (Figure 8 (b)), RandSusp (Figure 8 (c)), and
RandTerm (Figure 8 (d)). The y-axes denote the ID of seven
different activities, and the x-axes represents time across one
complete day for Rand*, and four days for NonRand. The
black boxes show the AI, and the blue arrows their instigation
times.

The results for HypoSim and HybridSleep are presented
in Figures 9 and 10, respectively. We present a complete

AIS for each experiment where the x-axes represent time
and the y-axes the 24 hours within each simulated day. The
boxes across the y-axes show the AI across a given day.
The AI for all activities except the central ones in each
experiment are coloured light grey. The central activities in
HypoSim are TakeMedicine (black circles), Sleep and After-
noonNap (blue), the four activities Breakfast, Lunch, Dinner
and EveningSnack (green), and Exercise (red). The central
activity in HybridSleep is Sleep (blue).

For HypoSim, we also show to the right of the AIS in
Figure 9 a snapshot for Days 50 and 125, to clearly show
the impact of the altered sleep routine. The right-arrows
denote instigation times, and the boxes show the AI.We high-
light three key observations per day, i.e., D50-A, D50-B and
D50-C for Day 50, and D125-A, D125-B and D125-C for day
125, which are analysed in the next section.

D. RESULT ANALYSIS
1) REQUIREMENT 1 (REALISM)
The summary statistics above the histograms in Figure 5 have
similar values for the simulated and real-world AIS, which
indicates that the AM properly capture the mean and SD
of the start times and durations of activities. Such summary
statistics nevertheless leave out information that is essential
to fully assess the realism of the simulated AIS. For instance,
the mean DD4 = 452.54 minutes and SD σ (DD4) =
168.93 minutes of the duration of Activity 4 is significantly
affected by outliers, resulting in values that are closer to the
values for the real-world AIS in Sim1 than in Sim2. A closer
investigation of the histograms, and the values in Figure 7

VOLUME 6, 2018 12565

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 9. Experiment HypoSim. (a) HypoSim, 150 Days Seed: 1. (b) HypoSim, Day: 50, Seed: 1.

FIGURE 10. Experiment HybridSleep, 150 days, seed 1.

(discussed below), is required for a proper evaluation of the
realism of the AIS.

The histograms for Sim1 and Sim2 generally resemble
those in the real-world AIS, indicating that our AM are
realistic. Certain visible differences are however introduced
for two main reasons: (1) we use normal distributions for all
ITD, and (2) we use the same AR, postpone, to resolve all
activity conflicts. In the presence of outliers, normal distribu-
tions become significantly dispersed, resulting in much more
variability in the simulated AIS than in the real-world AIS.
This effect is particularly pronounced for Activities 1 and 4
in Sim1 due to the absence of outlier removal. The effect is
exacerbated in the histograms in the three bottom rows, since
they show the result of combining two normal distributions:
one for the instigation time and one for the duration of the
activity. We see significant improvements for Sim2 after

outlier removal, in both the top three and the bottom three
rows of the histograms, indicating that in Sim2 we have more
accurately captured the overall statistical characteristics of
the activities in the real-world AIS.

Figure 6 shows that AIS from Sim1 (l{aisSim1},{aisSim1} =
1641 ± 71.56 and σ (l{aisSim1},{aisSim1}) = 720 ± 38.31) has
significantly higher day-to-day variability than that for Sim2
(l{aisSim2},{aisSim2} = 1130.96±90.47 and σ (l{aisSim2},{aisSim2}) =
546.85 ± 73.17), and that the one from Sim2 has nearly
the same day-to-day variability as the real-world AIS
(l{aisreal },{aisreal } = 1004.8 and σ (l{aisreal },{aisreal }) = 526.43).
The difference between Sim1 and Sim2 is explained by the
above-mentioned effect of outliers causing a dispersion of
the normal distributions, and the fact that we use the AR
postpone to resolve all activity conflicts. Together, these fac-
tors yield a slightly higher day-to-day variability than what is
introduced by the ITD alone. We expect these inaccuracies
to be reduced by a more elaborate choice of distributions
and AR. We furthermore see that the day-to-day variabil-
ity for NonRand is much lower (l{aisNonRand },{aisNonRand } =
37.81 ± 3.19 and σ (l{aisNonRand },{aisNonRand }) = 15.75 ±
1.6) than in Sim1 and Sim2. The snapshot of NonRand in
Figure 8 shows why it exhibits such a low value for l{ais},{ais},
i.e., all days are nearly identical. In contrast, the variabil-
ity for RandPost (l{aisRandPost },{aisRandPost } = 1955.1 ± 5.66
and σ (l{aisRandPost },{aisRandPost }) = 431.92 ± 1.69) and
RandTerm (l{aisRandTerm},{aisRandTerm} = 2046.42 ± 2.83 and
σ (l{aisRandTerm},{aisRandTerm}) = 438.13 ± 0.56) are significantly
higher than in Sim1 and Sim2. The value for RandSusp,
however, is lower than that for Sim2. This is explained by
the choice of AR in RandSusp, and is discussed further
in Section VI-D3. Compared to the values for NonRand,

12566 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

RandPost, and RandTerm, we see that the AIS from
Sim2 exhibits variability that is close to the real-world AIS.
This shows that (1) we can adjust day-to-day variability at
will, and (2) the simulator can accurately capture the proba-
bilistic behaviour found in the real world as long as outliers
are removed.

The results in Figure 7 quantify the difference between
simulated and real-world AIS. Therefore, lower values are
better. They show clearly that values from RandPost signifi-
cantly differ from Sim2 for all activities, and from Sim1 for
most activities. For Activities 2, 3, 5, and 7, the mean
aissim2 ↔ aisreal and mean σ (aissim ↔ aisreal) never
exceeds 3 and 2, respectively. The corresponding values from
RandPost are almost 400 and above 50, respectively. We see
the equivalent difference between RandPost and Sim1 for
these four activities. For Activities 1 and 4, the values for
Sim2 are slightly higher, but nevertheless significantly lower
than for RandPost. The same is not true for Sim1 where we
see very high values for Activities 1 and 4. These results
reflect what is found by visual inspection of Rows 4-6 in
Figure 5. First, the shapes of the histograms for Activites
1 and 4 for Sim1 are significantly more dispersed than those
for the real-world AIS, resulting in high values in Figure 7.
Second, those for Sim2 are muchmore similar to those for the
real-world AIS, explaining themuch lower values in Figure 7.
As mentioned, these differences between Sim1 and Sim2 are
caused by the presence of outliers in the real-world AIS.
These observations strengthen our conclusion that (1) ADL-
Sim can perform realistic simulation of AIS, also in terms of
day-to-day variability, and (2) outlier removal is important to
obtain such realistic results in ADLSim.

2) REQUIREMENTS 2 (SIMULATING HYPOTHETICAL
BEHAVIOUR) AND 3 (ACTIVITY AGNOSTICISM)
The results from experiments HypoSim and HybridSleep
clearly show that (1) arbitrary activities can be simulated in
ADLSim, and (2) hypothetical events can be introduced in a
highly controlled manner by scheduling simulation events to
change parameters of distribution functions at specific points
in virtual time. In both experiments, the change in behaviour
is introduced gradually to demonstrate that we can simulate
long-term trends, which is often a key challenge for AAL
systems. ADLSim can also simulate the sudden onset of
events, e.g., instantaneous immobility due to a fall or uncon-
sciousness, which is demonstrated in our previous work [16].

There are two key factors that enable flexible simulation
of hypothetical behaviour with arbitrary activities. Activities
can easily be added or removed by (1) adding the proper
AM, and (2) extending MCR amd MPAC with one column
and one row per new AM. Behaviour is modelled using
probability distributions and AR, both of which can easily
be added and modified to model any type of behaviour. The
AM are executed in a discrete event simulator, e.g., allowing
these changes to happen at any user-defined point in virtual
time during simulation. In HypoSim, we demonstrate this in
three ways. At the beginning of the simulation, medicines

are taken at highly variable points in time. As a result of
decreasing the SD of the ITD of TakeMedicines, we see a
gradual reduction during P1 in the day-to-day variability in
the time medicines are taken. By the time P2 starts, this
SD has reached 1 minute, and medicines are taken almost
precisely at 10:00h, 15:00h, and 20:00h (the subsequent dete-
rioration of the self-medication routine in P2 and P3 is caused
by the introduced sleep disorder, as explained in the next
section). During P2, we introduce two additional changes in
parallel, i.e., a gradual but significant shifting of nightly sleep
and an increase in the duration of the afternoon nap. These
results demonstrate one aspect of the flexibility of discrete
event simulation, i.e., that any number of changes can be
introduced in parallel or in series with ease. Furthermore, this
flexibility is not restricted to simulations where all behaviour
is hypothetical. As the results from HybridSleep demon-
strate, we can also introduce purely hypothetical behaviour
seamlessly into behaviour obtained from a real-world AIS.
During P1, we simulate behaviour as obtained from the real-
world AIS without modification. During P2, we introduce
a gradual shift of the sleeping pattern. This is only made
possible by modelling Sleep using parametric probability
distributions that we can modify with simulation events at
arbitrary points in virtual time.

3) THE IMPACT OF AR
AR are particularly influential in HypoSim where the effect
of many different AR impacts several activities in different
ways. Before we analyse HypoSim in detail, we shortly anal-
yse the impact of AR in Sim1, Sim2, Rand*, NonRand, and
HypoMeds in order to more easily understand the details of
HypoSim.

The ITD in Sim1 are more dispersed than in Sim2 due
to the absence of outlier removal. This probability dispersal
results in an increased frequency of overlapping activities,
and thus activity conflicts, in Sim1 compared to Sim2. As a
result, AR are invoked most frequently in Sim1, i.e., in 64.6%
of instigations compared to 57.6% in Sim2. Since we use
the AR postpone for all activity conflicts in Sim1 and Sim2,
we see that the start times in the simulations tend to be
delayed compared to those in the real-world AIS, e.g., for
Activities 3, 5, 6, and 7. Most activities are postponed by
the two long-lasting Activities 1 (Leave House) and 4 (Go to
Bed). For instance, Activities 3 (Take Shower) and 5 (Prepare
Breakfast) are postponed by Activity 4 in average 33.2%
and 40.3% of the times they are instigated, respectively.
This results in up to an hour increase in the average start
times compared to the real-world AIS, and stresses the
importance of selecting appropriate AR for realistic ADL
simulation.

The AIS from Rand* do not correspond to any particular
real-world case, and the high activity density results in a
high number of activity conflicts which in turn result in a
high rate of AR invocations. Rand* are therefore ideal to
study the impact of AR in the general case. The snapshots
in Figure 8 show that RandTerm has a much higher AI

VOLUME 6, 2018 12567

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

frequency than RandSusp. This explains the low values for
l{ais},{ais} and σ (l{ais},{ais}) for RandSusp seen in Figure 6,
since a lower number of AI decreases the variability in the
AIS. Notice how the postpone AR affects both NonRand and
RandPost, frequently separating instigation and start times.
This separation is not found for RandSusp and RandTerm
where the AI is always started upon instigation, potentially
interrupting any ongoing AI. RandSusp and RandTerm dif-
fer in one essential aspect: in RandSusp, interrupted AI are
resumed upon completion of the interrupting AI, while in
RandTerm, interrupted AI are terminated and re-scheduled
for future instigation. This causes some AI to be suspended
for very long periods of time in RandSusp, reducing signifi-
cantly the number of AI alternations per time-unit, which in
turn suppresses the variability in RandSusp. Which and how
frequently AI are affected by this is highly sensitive to initial
conditions, resulting in highly non-deterministic behaviour in
RandSusp. This shows up as a very high SD for RandSusp
in Figure 6. These results clearly demonstrate that the choice
of AR has a significant impact on ADL simulation in general,
especially with high-granular activity sets, i.e., when overall
activities are simulated in detail using shorter, more specific
sub-activities, and/or when the AIS is dense, i.e., with a high
number of AI per time unit.

Our analysis of HypoSim helps to understand the impor-
tance of AR for concrete examples of interest in Home Care.
The choice of AR has at least three severe consequences of
the altered sleep pattern: reduced activity level, a reduced
intake of meals and a deteriorated self-medication routine.
The reduced activity level is seen in the AIS to the left in
Figure 9. Exercise (in red) is performed increasingly seldom
in Period P2, and almost never in Period P3. This is explained
by Observations D50-C and D125-C to the right in Figure 9,
for Days 50 and 125, respectively. D125-C shows that Exer-
cise is instigated, but never started in Day 125 like in the
other days when Exercise is omitted. We see that Exercise is
instigated during the execution of Sleep, which is resolved by
omitting Exercise. If the ARwould have been set to postpone,
the activity level would not have been affected.

The second consequence is a reduction in the number of
meals (in green). The AIS shows that the number of meals is
reduced from four in P1 to an average of two in P3. To under-
stand this effect, consider Observations D50-B (for Day 50)
and D125-B (for Day 125) in the snapshots. During Day 50,
we see that breakfast, lunch, dinner, and the evening snack are
started right after instigation (i.e., after the morning routine,
around ToD 12:00h, around ToD 17:00h, and around three
hours after dinner). During Day 125, only lunch and dinner
are performed. The reason breakfast is omitted is explained
by an interplay between two AR. Breakfast is first postponed
during Sleep. This introduces a significant delay due to the
shifted sleeping pattern. When it is finally scheduled to start,
the activity Lunch is instigated. In this case, the selected AR
causes breakfast to be omitted in favour of eating only one
meal, i.e., Lunch, effectively merging the two meals. The
EveningSnack meal is omitted, because it is instigated during

the significantly extended AfternoonNap. As a result, two of
four meals are omitted.

The final consequence is a deteriorated medication rou-
tine. Although the SD of the ITD of TakeMedication is
minimised in P2 and P3, we clearly see a significant
deviation between its start times (black circles) and the
assigned ToD. TakeMedicines is instigated three times per
day, i.e., 150 times per period. 59, 90, and 113 of these
instigations cause activity conflicts in periods P1, P2, and
P3, respectively. The increased frequency of activity conflicts
is a result of the altered sleep pattern, i.e., the fraction of
conflicts with Sleep and AfternoonNap increases from 13.6%
in P1, to 44.4% in P2, and 76.1% in P3. All these con-
flicts are resolved by postponing TakeMedicines, since we
assume that the person does not take medicines until he/she
wakes up after sleep. Observations D50-A (for Day 50) and
D125-A (for Day 125) show clearly this effect. On day 125,
TakeMedicines is postponed during Sleep andAfternoonNap.
Since Sleep is significantly shifted, and AfternoonNap is
significantly delayed, the first and last AI of TakeMedicines
are significantly delayed, while the second AI is unaffected
and starts immediately upon instigation. This results in an
extremely short duration between the two first AI, and an
extremely long duration between the second and last AI.With
different AR, the results would potentially look very different.
For instance, if the AR suspend was used (e.g., to simulate
the use of an alarm-clock that wakes the person up to take
medicines) the trend of precise self-medication would persist
throughout P2 and P3.

The findings in this section show that the choice of AR
has a significant impact on simulated behaviour, in par-
ticular in aspects of particular interest for AAL systems,
e.g., the activity level, and routines for eating and medication.
Our results demonstrate that AR have a very important role
in ADL simulation. ADLSim is to the best of the authors’
knowledge the only simulator that provides the possibility to
select different AR for different activity conflicts.

E. SUMMARY
We have evaluated ADLSim in terms of the requirements
for ADL simulation discussed in Section III-A, i.e., realism,
hypothetical behaviour, and activity agnosticism, and studied
the impact of AR. The key findings from our experimental
analysis are:
• ADLSim produces realistic AIS, i.e., they exhibit
the necessary key properties like the non-deterministic
day-to-day variations seen in real life. This facilitates
reliable evaluation of ADL analysis software. The mod-
els in ADLSim can be parametrised to realistically
reflect the behaviour in a real-world AIS using the tech-
nique proposed in Section V, as long as outliers are
removed from the real-world AIS before the parameter
values are extracted.

• It is possible to simulate hypothetical behaviour,
including both the simulation of a complete, hypotheti-
cal person as well as introducing hypothetical behaviour

12568 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

FIGURE 11. AIS from the first run in Sim1 (a) and Sim2 (c), and real-world AIS (b).

seamlessly into real behaviour obtained from a real-
world AIS. This allows the evaluation of ADL analysis
software targeting events like anomalies and hypotheti-
cal hazards or achievements that are rare or non-existent
in available data sets with real-world AIS.

• We demonstrate in simulations with only hypothetical
behaviour that ADLSim is activity agnostic, i.e., that
we are not restricted to simulate a set of activities found
in any particular real-world AIS. Activities can easily
be added or removed in ADLSim by (1) adding and
parametrising AM, and (2) extending MCR and MPAC
with one column and one row per new AM.

• The AR to handle the activity conflicts between given
pairs of activities have a significant impact on simula-
tion results. This emphasises the importance of using
different AR for different activity conflicts to enable
realistic ADL simulation. To the best of the authors’
knowledge, ADLSim is the only ADL simulator that
supports this concept of AR.

VII. CONCLUSION
According to [20], approximately 50% of the elapsed time
and more than 50% of the total cost of a programming
project are expended in testing. The process of identifying
and eliminating errors is important especially if the software
is to be used for life critical applications like AAL. It is
the goal of ADLSim to support developers and tester in this
process by simulating ADL sequences to (1) substantially
increase the set of test cases in form of AIS, and (2) simulate
AIS that could not be captured in the real-world. As such
ADLSim can substantially reduce effort and costs of testing
ADL sequence analysis software (as for example experienced
in our previous work [16]). However, the inherent tradeoff
in testing economy between cost and effort and probability
to find most errors in the software cannot be resolved by
ADLSim. It is the decision of the developer and tester how
detailed the test cases respectively AIS are, including the
number and type of the activities considered. Therefore,
ADLSim is designed to be activity agnostic and developers

VOLUME 6, 2018 12569

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

TABLE 2. AR in MCR used in HypoSim.

and testers can choose which activities to use. Adding new
activities to ADLSim is rather easy, in part because our
models are not based on Markov models (as opposed to most
related works).

ADLSim reproduces the behaviour found in the real world
by combining probabilistic activity instigation times and
durations with a novel concept called activity rules that
capture how different individuals resolve activity conflicts.
We provide a methodology to use a real AIS to instan-
tiate models that capture the essential properties of the
behaviour of a person. We can use these models to simu-
late real behaviour into which purely hypothetical behaviour
can be seamlessly introduced. Our evaluation of ADLSim
shows that our simulator is realistic and faithfully reproduces
the behaviour found in real-world AIS, including the cor-
rect amount of variability and non-deterministic behaviour.
We demonstrate that it is possible to simulate purely hypo-
thetical behaviour (e.g., specific hazards or anomalies) and
even introduce such behaviour into behaviour learned from a
real-world AIS. Our experiments also show that activity rules
can have a significant impact on simulation results, stressing
the important role of activity rules in realistic ADL simula-
tion. Possible future work includes evaluation with additional
real-world AIS and automating model instantiation using
data mining techniques like clustering and sequence min-
ing. The simulator can also be improved in several aspects,
e.g., by using more realistic probability distributions, by sup-
porting composite activities and by determining instigation
times based on motivation models.

APPENDIX A
FULL AIS
Figure 11 presents the full content of the real-world AIS (b)
from [29] used in our experiments, and from the first run
from Sim1 (a) Sim2 (c). The y-axes denote activity names
and ID, and the x-axes the time. The black boxes denote the
time periods each activity is executed. The time periods from
00:00 to 12:00 are shown in grey.

APPENDIX B
DETAILED EXPERIMENT PARAMETRISATION
Table 1 presents the AM parametrisation used in the eight
experiments, and Tables 2 and 3 present the MCR and MPAC
used in HypoSim, respectively.

In Table 1, from left to right, the columns present the
experiment name, the ID and names of activities or activity
nexi involved in the experiment, the fraction of independent
activities for activities that have both dependent and inde-
pendent AI vairants, the ToD for Type 2 activities, the ITD
parameter values, and the DD parameters. Since DD deter-
mine activity durations, they only make sense for individual
activities, i.e., not for activity nexi. The DD used for AI
in the activity nexi are the same as those specified for the
individual activities, except for Activity 1 in Sim2 (for the
reasons discussed in V-B). The sequence 8 → (9 and 14)
for HypoSim denotes that Activity 8 (Dinner) is followed
by both Activity 9 (EveningSnack, after an average of
3 hours) and Activity 14 (AfternoonNap, after an average of
30 minutes).

12570 VOLUME 6, 2018

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

TABLE 3. AR in MPAC used in HypoSim.

Table 2 present the AR in MCR used in HypoSim. The
bold numbers in the first row and column denote the activity
ID of a newly instigated activity Anew and a current activ-
ity Acur , respectively. Anew and Acur have the same semantics
as in the explanation of conflict resolution in Section IV-B.
P implies to postpone Anew until the completion of Acur . SU
implies to start Anew and suspend the execution of Acur until
the completion of Anew. Combining SU with E using the
logical and-operator (e.g., SU |E) implies to also postpone
the time of completion of Acur by the amount of time Acur
was suspended. This is often the most realistic choice, since
otherwise Acur will be completed as scheduled before con-
flict resolution, in effect simulating that Acur was merged
with, or executed in true parallel with, Anew. T implies
to terminate Acur and start Anew. O implies to omit Anew
according to its omission probability. In the case Anew was
omitted, it is rescheduled for instigation according to its ITD
if O is combined logically with R (e.g., O|R). If Anew was
not omitted, Anew will be suspended, or postponed if O is
combined logically with P (e.g., O|P). H indicates to halt
the simulation with feedback to the experimenter about the
conflicting activities. This is useful when certain activity
conflicts are either highly improbable, or even impossible,
under certain AM parametrisations, and are thus likely results
ofmistakes in the parametrisation. TheARH can therefore be
used during model verification to signal to the experimenter
about such situations.

Table 3 presents the AR in MPAC used in HypoSim. The
numbers in the first row and column denote the activity ID
of Acand and Ci, respectively, with the same semantics as in
the explanation of post-activity contention in Section IV-B.

The AR H has the same purpose as in MCR, i.e., to signal an
error condition. Since activities are stored in the contending
list in increasing order of activity ID, Acand will always be
lower than Ci. Therefore, AR in the top-right half of MPAC
should never be invoked, and are therefore set to H to indi-
cate an error condition. The remaining AR are composed
of two characters. The first determines whether the activity
Ci should replace (R) the activity Acand as the candidate for
execution, or ifCi should yield (Y) such that Acand remains as
the candidate for execution. The second letter indicates what
to do with the activity that was not selected as a candidate
for execution. P indicates that it should be inserted into
the contention list of the AI aix+1 (see Section IV-B) that
‘‘wins’’ the post activity contention, to be re-considered for
execution upon the completion of AI aix+1. E means that
it is not inserted into the contention list of aix+1, meaning
that it will not be considered for execution during the next
post contention period. This also means that it will never be
executed unless it is re-scheduled for instigation. To solve
this, we include AR with the second letter R which ensures
that the activity is re-scheduling for instigation according
to its AM. The exception is with the activity ‘‘Idle’’, with
activity ID 0, which is always executed whenever no other
activity executes.

REFERENCES
[1] M. R. Alam, M. B. I. Reaz, and M. A. M. Ali, ‘‘A review of smart homes—

Past, present, and future,’’ IEEE Trans. Syst., Man, Cybern. C, Appl. Rev.,
vol. 42, no. 6, pp. 1190–1203, Nov. 2012.

[2] H. Alemdar, T. L. M. van Kasteren, M. E. Niessen, A. Merentitis, and
C. Ersoy, ‘‘A unified model for human behavior modeling using a hier-
archy with a variable number of states,’’ in Proc. 22nd Int. Conf. Pattern
Recognit. (ICPR), Aug. 2014, pp. 3804–3809.

VOLUME 6, 2018 12571

S. Kristiansen et al.: Activity Rule-Based Approach to Simulate ADL Sequences

[3] T. A. Arentze and H. J. Timmermans, ‘‘A need-based model of multi-day,
multi-person activity generation,’’ Transp. Res. B,Methodol., vol. 43, no. 2,
pp. 251–265, 2009.

[4] A. Backurs and P. Indyk. (2014). ‘‘Edit distance cannot be computed in
strongly subquadratic time (unless SETH is false).’’ [Online]. Available:
https://arxiv.org/abs/1412.0348

[5] L. Bao and S. S. Intille, ‘‘Activity recognition from user-annotated accel-
eration data,’’ in Proc. Int. Conf. Pervasive Comput., 2004, pp. 1–17.

[6] T. R. Bennett, H. C. Massey, J. Wu, S. A. Hasnain, and R. Jafari, ‘‘Motion-
synthesis toolset (MoST): An open source tool and data set for human
motion data synthesis and validation,’’ IEEE Sensors J., vol. 16, no. 13,
pp. 5365–5375, Jul. 2016.

[7] K. Bouchard, A. Ajroud, B. Bouchard, and A. A. Bouzouane, ‘‘SIMACT:
A 3D open source smart home simulator for activity recognition,’’ in
Advances in Computer Science and Information Technology. Heidelberg,
Germany: Springer, 2010, pp. 524–533.

[8] F. Cardinaux, S. Brownsell, D. Bradley, and M. S. Hawley, ‘‘A home
daily activity simulation model for the evaluation of lifestyle monitoring
systems,’’ Comput. Biol. Med., vol. 43, no. 10, pp. 1428–1436, 2013.

[9] S. Helal, J. W. Lee, S. Hossain, E. Kim, H. Hagras, and D. Cook, ‘‘Persim-
simulator for human activities in pervasive spaces,’’ in Proc. 7th Int. Conf.
Intell. Environ. (IE), 2011, pp. 192–199.

[10] S. S. Intille, K. Larson, J. Beaudin, J. Nawyn, E. M. Tapia, and P. Kaushik,
‘‘A living laboratory for the design and evaluation of ubiquitous computing
technologies,’’ in Proc. CHI Extended Abstracts Hum. Factors Comput.
Syst., 2005, pp. 1941–1944.

[11] S. S. Intille et al., ‘‘Using a live-in laboratory for ubiquitous computing
research,’’ in Proc. Int. Conf. Pervasive Comput., 2006, pp. 349–365.

[12] S. R. Jammalamadaka andA. Sengupta,Topics in Circular Statistics, vol. 5.
Singapore: World Scientific, 2001.

[13] T. Janssen, C. Van Oers, L. van der Woude, and A. P. Hollander, ‘‘Physical
strain in daily life of wheelchair users with spinal cord injuries,’’Med. Sci.
Sports Exerc., vol. 26, no. 6, pp. 661–670, 1994.

[14] S. Katz, T. D. Downs, H. R. Cash, and R. C. Grotz, ‘‘Progress in devel-
opment of the index of ADL,’’ Gerontologist, vol. 10, no. 1, pp. 20–30,
1970.

[15] B. Kormányos, B. Pataki, ‘‘Multilevel simulation of daily activities: Why
and how?’’ in Proc. IEEE Int. Conf. Comput. Intell. Virtual Environ. Meas.
Syst. Appl. (CIVEMSA), Jul. 2013, pp. 1–6.

[16] S. Kristiansen, T. Plagemann, and V. Goebel, ‘‘Smooth and crispy: Inte-
grating continuous event proximity calculation and discrete event detec-
tion,’’ in Proc. 10th ACM Int. Conf. Distrib. Event-Based Syst., 2016,
pp. 153–160.

[17] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions, inser-
tions, and reversals,’’ Soviet Phys. Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[18] W. Liu, Y. Shoji, and R. Shinkuma, ‘‘An indoor-movement simula-
tor for ambient assisted living systems,’’ in Proc. IEEE Globecom
Workshops (GC Wkshps), Dec. 2015, pp. 1–6.

[19] M. Mubashir, L. Shao, and L. Seed, ‘‘A survey on fall detection: Principles
and approaches,’’ Neurocomputing, vol. 100, pp. 144–152, Jan. 2013.

[20] G. Myers, The Art of Software Testing, vol. 15, 2nd ed. Hoboken, NJ, USA:
Wiley, 2004.

[21] N. Noury and T. Hadidi, ‘‘Computer simulation of the activity of the elderly
person living independently in a health smart home,’’ Comput. Methods
Programs Biomed., vol. 108, no. 3, pp. 1216–1228, 2012.

[22] E. Osnes et al., ‘‘Consequences of hip fracture on activities of daily life and
residential needs,’’ Osteoporosis Int., vol. 15, no. 7, pp. 567–574, 2004.

[23] F. Pitta, T. Troosters, M. A. Spruit, V. S. Probst, M. Decramer, and
R. Gosselink, ‘‘Characteristics of physical activities in daily life in chronic
obstructive pulmonary disease,’’ Amer. J. Respiratory Crit. Care Med.,
vol. 171, no. 9, pp. 972–977, 2005.

[24] T. Plötz, N. Y. Hammerla, A. Rozga, A. Reavis, N. Call, and G. D. Abowd,
‘‘Automatic assessment of problem behavior in individuals with devel-
opmental disabilities,’’ in Proc. ACM Conf. Ubiquitous Comput., 2012,
pp. 391–400.

[25] S. Ranasinghe, F. A.Machot, and H. C.Mayr, ‘‘A review on applications of
activity recognition systems with regard to performance and evaluation,’’
Int. J. Distrib. Sensor Netw., vol. 12, no. 8, pp. 1–21, 2016.

[26] D. Roggen et al., ‘‘Collecting complex activity datasets in highly rich
networked sensor environments,’’ in Proc. 7th Int. Conf. Netw. Sens.
Syst. (INSS), Jun. 2010, pp. 233–240.

[27] M. Skubic, G. Alexander, M. Popescu, M. Rantz, and J. Keller, ‘‘A smart
home application to eldercare: Current status and lessons learned,’’ Tech-
nol. Health Care, vol. 17, no. 3, pp. 183–201, 2009.

[28] E. M. Tapia, S. S. Intille, and K. Larson, ‘‘Activity recognition in the
home using simple and ubiquitous sensors,’’ in Proc. Int. Conf. Pervasive
Comput., 2004, pp. 158–175.

[29] T. Van Kasteren, A. Noulas, G. Englebienne, and B. Kröse, ‘‘Accurate
activity recognition in a home setting,’’ in Proc. 10th Int. Conf. Ubiquitous
Comput., 2008, pp. 1–9.

[30] T. L. van Kasteren, G. Englebienne, and B. J. Kröse, ‘‘Human activity
recognition from wireless sensor network data: Benchmark and software,’’
in Activity Recognition in Pervasive Intelligent Environments. Heidelberg,
Germany: Springer, 2011, pp. 165–186.

[31] G. Virone, B. Lefebvre, N. Noury, and J. Demongeot, ‘‘Modeling and
computer simulation of physiological rhythms and behaviors at home
for data fusion programs in a telecare system,’’ in Proc. 5th Int. Work-
shop Enterprise Netw. Comput. Healthcare Ind. (Healthcom), 2003,
pp. 111–117.

[32] G. Virone, N. Noury, and J. Demongeot, ‘‘A system for automatic mea-
surement of circadian activity deviations in telemedicine,’’ IEEE Trans.
Biomed. Eng., vol. 49, no. 12, pp. 1463–1469, Dec. 2002.

STEIN KRISTIANSEN received the B.E. degree
in computer engineering from the Oslo University
College in 2006 and the M.E. and Ph.D. degrees in
computer science from the Department of Infor-
matics, University of Oslo, in 2008 and 2013,
respectively. Since 2014, he has been with the
Department of Informatics, University of Oslo,
as a Post-Doctoral Researcher and a Researcher.
His research interests include modeling and sim-
ulation, data mining, machine learning, and com-

plex event processing in the context of operating systems, mobile systems,
and e-health.

THOMAS P. PLAGEMANN received the Dr.Sc.
degree in computer science from the Swiss Federal
Institute of Technology (ETH), Zurich, Switzer-
land, in 1994. He has been a Professor with the
University of Oslo, Oslo, Norway, since 1996,
where he currently leads the Research Group in
Distributed Multimedia Systems, Department of
Informatics. He has published over 150 papers in
peer reviewed journals, conferences, and work-
shops in his field. His research interests include

protocol architectures and middleware solutions for multimedia communi-
cation and mobile systems, future Internet, and multimodal sensor systems
and event processing. He is a member of the Association for Computing
Machinery (ACM). He received theMedal of ETH Zurich in 1995. He serves
as an Associate Editor for the ACM Transactions on Multimedia Computing,
Communication, and Applications, as an Area Editor for the Computer
Communications (Elsevier), and as the Editor-in-Chief for the Multimedia
Systems (Springer).

VERA GOEBEL received the M.S. degree in
computer science from the University Erlangen-
Nuremberg, Erlangen, Germany, in 1989, and the
Ph.D. degree in computer science from the Univer-
sity of Zurich, Zurich, Switzerland, in 1994. She
has been a Professor with the Department of Infor-
matics, University of Oslo, Oslo, Norway, since
1997. She has published over 150 papers in peer
reviewed journals, conferences, and workshops in
her field. Her research interests are data manage-

ment, distributed systems, future Internet, multimodal sensor systems, and
complex event processing.

12572 VOLUME 6, 2018

	INTRODUCTION
	RELATED WORK
	REQUIREMENTS AND ADL MODELLING PRINCIPLES
	REQUIREMENTS FOR ADL MODELLING
	PRINCIPLES OF MODELLING ADL SEQUENCES

	SIMULATING AIS
	ACTIVITY MODELS
	ACTIVITY RULES

	MODEL INSTANTIATION USING REAL-WORLD AIS
	ESTIMATING ITD PARAMETERS
	ESTIMATING AI NEXI

	EVALUATION
	EXPERIMENTS
	SIM1 AND SIM2
	RandPost, RandTerm, RandSusp AND NonRand
	HypoSim AND HybridSleep

	METRICS
	METRICS TO COMPARE INDIVIDUAL ACTIVITIES
	METRICS TO COMPARE INDIVIDUAL DAYS

	RESULTS
	PER-ACTIVITY COMPARISON
	PER-DAY COMPARISON
	VISUAL PRESENTATION OF AIS

	RESULT ANALYSIS
	REQUIREMENT 1 (REALISM)
	REQUIREMENTS 2 (SIMULATING HYPOTHETICAL BEHAVIOUR) AND 3 (ACTIVITY AGNOSTICISM)
	THE IMPACT OF AR

	SUMMARY

	CONCLUSION
	REFERENCES
	Biographies
	STEIN KRISTIANSEN
	THOMAS P. PLAGEMANN
	VERA GOEBEL

