
SPECIAL SECTION ON CYBER-THREATS AND COUNTERMEASURES
IN THE HEALTHCARE SECTOR

Received December 6, 2017, accepted January 26, 2018, date of publication February 19, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2802841

End-to-End Loss Based TCP Congestion Control
Mechanism as a Secured Communication
Technology for Smart Healthcare Enterprises
MUDASSAR AHMAD 1, MAJID HUSSAIN2, BEENISH ABBAS3, OMAR ALDABBAS4,
UZMA JAMIL5, (Member, IEEE), REHAN ASHRAF1, AND SHAHLA ASADI3
1Department of Computer Science, National Textile University, Faisalabad 37610, Pakistan
2Department of Computer Science, COMSATS Institute of Information Technology at Sahiwal, Sahiwal 57000, Pakistan
3Department of Computing, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
4Faculty of Engineering, Al-Balqa’ Applied University, As-Salt 11947, Jordan
5Department of Computer Science, Government College University, Faisalabad 38000, Pakistan

Corresponding author: Uzma Jamil (uzma.jamil@gcuf.edu.pk)

ABSTRACT Many smart healthcare centers are deploying long distance, high bandwidth networks in their
computer network infrastructure and operation. Transmission control protocol (TCP) is responsible for
reliable and secure communication of data in these medial infrastructure networks. TCP is reliable and
secure due to its congestion control mechanism, which is responsible for detecting and reacting to the
congestion in the network. Many TCP congestion control mechanisms have been developed previously for
different operating systems. TCP CUBIC, TCP Compound, and TCP Fusion are the default congestion
control mechanism in Linux, Microsoft Windows, and Sun Solaris operating systems, respectively. The
earliest congestion control mechanism Standard TCP acts as the trademark congestion control mechanism.
The exponential growth of congestion window (cwnd) in slow start phase of the TCP CUBIC causes burst
losses of packets, and TCP flows did not share available link bandwidth fairly. The prime aim of this
paper is to enhance the performance of TCP CUBIC for long distance, high bandwidth secured networks
to achieve better performance in medical infrastructure, concerning packet loss rate, protocol fairness,
and convergence time. In this paper, congestion control module for slow start is proposed, which reduces
the effect of the exponential growth of cwnd by designing the new limits of cwnd size in slow start
phase, which in turn decreases the packet loss rate in healthcare networks. NS-2 is used to simulate the
experiments of enhanced TCP CUBIC and state-of-the-art congestion control mechanisms. Results show
that the performance of enhanced TCP CUBIC outperforms by 18% as compared with the state-of-the-art
congestion control mechanisms.

INDEX TERMS Congestion control, smart healthcare enterprises, TCP.

I. INTRODUCTION
Smart healthcare centers are developing their networks all
over the world. TCP is a de facto standard transport pro-
tocol for all Internet applications. By using the Internet of
Things (IoT), many smart healthcare centers deploy long
distance, high bandwidth secured networks to centralize their
data centers that are spread across multiple geographic loca-
tions, referred to as medical infrastructure. Congestion con-
trol mechanisms work with TCP to control the congestion
and to provide the security of data in these networks. During
last two decades, researchers are continuously embracing
and improving the performance of TCP congestion control

mechanisms, both inwired andwireless networks by focusing
on its four components, i.e., slow start, congestion avoid-
ance, fast retransmit and fast recovery. TCP Compound and
TCP Fusion are the default congestion control mechanisms
of TCP in Microsoft Windows and Sun Solaris operating
systems, whereas TCP CUBIC is the default congestion con-
trol mechanism in Linux, Android, and Free-BSD operating
systems. Moreover, nowadays, about 50% of Internet traffic
is controlled by TCP CUBIC instead of trademark congestion
control mechanism, i.e., Standard TCP. Thus, the focus area
of this research work is to enhance the performance and
efficiency of TCP CUBIC for long distance, high bandwidth

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

11641

https://orcid.org/0000-0002-6366-8230


M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 1. Packet conversation principle [14].

secured communication networks being used by smart health-
care enterprises.

TCP [1] was officially adopted as a standard in Requests
for Comments (RFC-793) to deal with message flow control
and error correction. TCP is reliable and secured because
of its congestion control mechanism which is responsible
for detecting and reacting to the congestion in the network
of healthcare centers. Congestion occurs when there is too
much data traffic in the network routers, and multiple users
from remote healthcare centers contend for access to the
same network resources [2]. Congestion control mechanism
consists of four phases: slow start, congestion avoidance, fast
retransmit and fast recovery [2]–[9].

First two phases of congestion control mechanism
(slow start and congestion avoidance) are responsible for the
detection of congestion, whereas other two components (fast
retransmit and fast recovery) are reacting to overcome the
congestion. In this research, a new module related to the first
phase is proposed. TCP follows a packet conversation princi-
ple as proposed by [3], which confirms the transmitted packet
delivery by using an Acknowledgment (ACK). This packet
conversation principle is depicted in Figure 1, which shows
that source node breaks the data messages into many packets
and sends to the destination node over the network [3], [7],
[10]–[13].

The source host controls the data transmission rate by using
a built-in variable called Congestion Window (cwnd), which
determines the maximum number of data packets that the
source node is allowed to send [13]. Data communication on
the Internet is using this similar concept of cwnd . Previously,
Internet traffic was controlled by Standard TCP, which is
also known as TCP Reno, however, according to the report
of [15], Internet traffic is now controlled by multiple conges-
tion control mechanisms, such as, TCP Compound [16] and
TCP CUBIC [17]. About 30,000 Internet web servers, only
3.31% to 14.4% of web servers are still using TCP Reno,
whereas, 14.5% to 25.66% are using TCP Compound and
46.92% are using TCP CUBIC. Thus, a majority of TCP
flows on the Internet are now controlled by TCP CUBIC
instead of TCP Reno [15]. Now TCP CUBIC is also the
default congestion control mechanism in Android and Free-
BSD operating systems [18]–[20]. In 2008, Ha and Rhee
enhanced the slow start module of TCP CUBIC and proposed
Hybrid Start (HyStart), which improved the performance of
TCP CUBIC in slow start phase.

FIGURE 2. Exponential growth of congestion window during slow start
phase [7].

During the start stage of connection, TCP slow start mod-
ules of TCP Reno, TCP Compound and TCP CUBIC are
used to find the time varying, unknown available bandwidth
of the network path. After estimated measure of available
link bandwidth, slow start phase of TCP begins the trans-
mission with one packet i.e., cwnd = 1 and on receiving
of each successful ACK, the size of cwnd is increased by
1 extra packet as described in Equation 1 [7], [21], which
doubles the size of cwnd at the end of each Round Trip Time
(RTT) as described in Equation 2 [7]. This kind of growth
of cwnd is called exponential growth. Figure 2 schemati-
cally illustrates the exponential growth of cwnd size during
slow start phase [7]. Due to exponential growth of cwnd ,
the size of cwnd becomes twice at the end of each RTT, thus,
in long distance, high bandwidth networks, when RTTs are
very long, it may cause very large size of cwnd even during
the very start stage of the connection in slow start phase.
Thus, exponential growth of cwnd size in long distance,
high bandwidth, causes congestion in the network, which,
in turn, causes large number of packets losses, which is also
known as burst losses of packets. TCP CUBIC also suffers
from burst losses of packets in slow start phase [22], [23].
[23]–[25] worked on long distance, high bandwidth scenarios
to improve the performance of congestion control mecha-
nisms.

ACK : cwndnew = cwndPrevious + 1 (1)

RTT : cwndnew = cwndPrevious × 2 (2)

Slow Start Threshold (ssthresh) is an a measure of avail-
able bandwidth in the current network path to switch the
connection to next phase, which is known as conditional
variable [26]. Congestion control mechanisms use different
equations and formulas to calculate the ssthresh variable,
which, in turn, effect the exit-point for slow start phase. Exit-
point is referred to as termination point, when the size of
cwnd becomes equal to or larger than ssthresh, connection
exits slow start phase and enters into congestion avoidance
phase [22]. TCP CUBIC increases the size of cwnd expo-
nentially instead of linearly, thus, TCP CUBIC occupy the

11642 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

available bandwidth very quickly. Thus, the exponential
growth of cwnd of TCP CUBIC in the congestion avoidance
phase also causes congestion in the network, which, in turn,
causes the high rate of packet loss. Equation 3 shows the
difference of cwnd growth in congestion avoidance phase of
TCP Reno, TCP Compound and TCP CUBIC [1], [16], [17].

ACK :


cwnd = cwnd +

1
cwnd

Linear Reno

cwnd = cwnd +
1

cwnd
Linear Compound

cwnd = cwnd + 1 Exponential CUBIC


(3)

TCP uses ssthresh variable to determine, which mod-
ule: slow start or congestion avoidance should be used for
communication. If the amount of cwnd is less than ssthresh,
then slow start module is used for communication and if cwnd
is greater than or equal to ssthresh, then congestion avoidance
module is used as expressed in Equation 4 [3].

CongestionControl :
{
cwnd<ssthresh Slow Start
cwnd≥ssthresh Cong.Avoidance

}
(4)

II. RESEARCH GAP
The increase in the size of cwnd in slow start and the con-
gestion avoidance phase is very important. Growth of cwnd
should not be so slow that TCP flows cannot use the available
link bandwidth properly and it should not be so fast that it can
create congestion in the network. As the size of cwnd depends
upon the availability of link bandwidth, each slow start mod-
ule of congestion control mechanism has a rule or function
to estimate the available link bandwidth by using differ-
ent techniques and sets the size of cwnd accordingly. The
performance of any congestion control mechanism can be
enhanced by setting the size of cwnd wisely in slow start
phase [22], [23], [27]–[32]. In order to prevent congestion
in the network, many TCP congestion control mechanisms
manage congestion window size and control its growth [33].
Therefore, in this research, cwnd size of TCP CUBIC is
changed in slow start phase by changing the boundary limit of
cwnd size. New cwnd boundary limit affects the exponential
growth of cwnd of TCP CUBIC in slow start phase and termi-
nation point of slow start phase, which causes the decrease in
packet loss rate of the network. In this research, new boundary
limit for the size of cwnd in slow start phase is proposed by
using the theory of Alternative slow start [8] and practical
implementation of HyStart [29].

The above research gap leads this research to address the
problems of exponential growth of cwnd size in slow start
phase. This statement leads to a research question; how to
reduce the effect of the exponential growth of cwnd in slow
start phase, such that burst losses of packets can be decreased.
Thus the aim of this research is to enhance the performance of
TCP CUBIC congestion control mechanism for smart smart
healthcare enterprises configured with long distance, high
bandwidth secured networks.

The objective of this research is to design and develop a
new congestion control module for slow start phase to reduce
the effect of exponential growth of cwnd , such that packet
loss can be decreased, as well as to evaluate the performance
of enhanced TCPCUBIC regarding packet loss rate, goodput,
protocol fairness and convergence time.

The remaining of the paper is organized as follows:
Section III provides the extensive literature review of slow
start module. Section V presents the research methodology,
including the operational framework for the design, develop-
ment, and implementation of enhanced TCP CUBIC by using
CCM-SS. Section VI explains the design, development, and
implementation of the CCM-SS module of enhanced TCP
CUBIC. Section VII is dedicated to the results discussion and
future work.

III. LITERATURE REVIEW
This literature review reveals a comprehensive study of var-
ious TCP congestion control mechanisms available in TCP
literature. In the first step, the focus of this review is mainly
for the problem history, behavior and techniques that have
been used during slow start phase of communication. In the
final step, the review provides a brief description of the selec-
tion of performance metrics used in this research to evaluate
the performance of the enhanced TCP CUBIC with state-
of-the-art congestion control mechanism, regarding packet
loss rate, goodput, protocol fairness and convergence time.
Thus, the extensive literature review provides a roadmap
to reveal the shortcomings of the existing version of TCP
CUBIC mechanism and leads to the design and development
of an enhanced congestion control mechanism for secured
networks configured on smart healthcare enterprises.

A. TCP SLOW START PHASE
The congestion control mechanism consists of slow start,
congestion avoidance, fast retransmit and fast recovery
phases, that are also referred to as modules [2], [7], [8], [34],
[35]. A slow start and congestion avoidance modules control
the data transmission, whereas fast retransmit and fast recov-
ery modules retransmit the lost data. TCP slow start phase
is the first phase of TCP congestion control mechanisms.
After the completion of three-way handshake process, TCP
bursts out the extra packets that are not allowed by the agreed
window size (cwnd). This was not a large problem in the
small networking, however, as the networks grew and then
the a number of connected hosts increased, these large bursts
turned out to be a cause of problems. Congestion started
to occur in network bottlenecks, data adding up faster than
it could be forwarded or received. Therefore, a module to
prevent immediate bursts was introduced. With the incorpo-
ration of a slow start, two new variables were introduced: the
Slow Start Threshold (ssthresh) and the cwnd [26], [36]–[38].
In this phase, slow start modules use different techniques to
estimate the available link bandwidth and increase the size
of cwnd up a limit, which is called ssthresh. When starting
a transmission, cwnd is set to 1 MSS (Maximum Segment

VOLUME 6, 2018 11643



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

Size) and ssthresh is set to an arbitrary size, depending on
the congestion control mechanism of the operating system
being used. The amount of data the sender is allowed to send
is determined by min[cwnd,wnd] and since cwnd = 1 at
start-up only one packet is allowed. cwnd will then increase
by 1 MSS for every ACK received. This exponential growth
will continue until loss detection or cwnd = ssthresh when
this happens, the congestion avoidance algorithm will take
over. This is referred to as termination point of slow start
phase, which is also known as the exit point of slow start
phase [39].

1) ANALYSIS OF TCP SLOW START MODULES
At the beginning of transmission, the available link band-
width of the network is unknown. Hence, the purpose of the
slow start modules is to estimate roughly the available link
bandwidth. The exponential growth of the Standard slow start
module is a fast way to fill up the network. Since Standard
slow start cannot estimate the available link bandwidth until a
packet loss occurs, Standard slow start module overshoots the
size of cwnd to use the available link bandwidth and results
in a huge increase in RTT and burst losses of packets [40].

The problem of estimation of available link bandwidth
of Standard slow start was solved by [41], who proposed
a modified slow start module, named as Vegas approach,
to estimate the available bandwidth without packet losses.
It exponentially grows the size of cwnd alternatively (not
at the end of each RTT). However, Vegas approach termi-
nates the slow start phase prematurely and enters into the
congestion avoidance phase while the BDP of the network
is high [40]. Later on, Vegas problem was solved by Hoe’s
approach [42], which avoids the source from premature ter-
mination of slow start phase. Hoe’s approach enhanced the
TCP slow start performance by setting a better initial value of
ssthresh to be the estimated value of BDP, which is measured
by using packet pair method. It has been reported in the
literature that other cross traffic may hinder proper estimation
of the available link bandwidth by the packet pair method
because multiple flows get the same estimate of the available
link bandwidth. Later on, Additive Start [43] was proposed
to estimate the available link bandwidth by using a technique
of TCP Westwood called Eligible Rate Estimation (ERE).
By using ERE, Additive Start can reset ssthresh repeatedly
to a more appropriate value. Additive Start is slower than
Standard slow start and it can overshoot the size of cwnd
as it happens in Hoe’s approach because multiple flows
calculate the same ERE value. In 2003, Paced Start [44]
was proposed to estimate the available link bandwidth by
using packet spacing and ACK spacing gap techniques. Paced
Starts incorporates bandwidth estimation mechanism into the
Standard slow start. However, later on, this gap measurement
was tough for long distance, high bandwidth networks.

Paced Start [44] which uses packet trains technique to
estimate the available link bandwidth, avoids TCP source
from premature termination of slow start phase (prematurely
switching from slow start phase to congestion avoidance

phase). Limited Slow Start [28] also avoids TCP source
from the early termination of slow start phase by using a
new Maximum Slow Start Threshold (mas_ssthresh) vari-
able. In 2005 Early Slow Start Exit [45] uses packet spacing
and ACK spacing techniques to estimate the available link
bandwidth. Table 1 summarized the techniques of different
slow start modules.

TABLE 1. Analysis of TCP slow start modules.

So for in all slow start modules, the size of cwnd increases
exponentially, which causes burst losses of packets. [46] first
time introduced linear and stable growth of cwnd . By using
linear and stable growth of cwnd , packet losses are decreased.
Gallop Vegas is efficient than Vegas approach. Gallop Vegas
is also suitable for long distance, high bandwidth network
environments. Later on, a few slow start modules are pro-
posed who used router feedback information for the better
estimation of the available link bandwidth. Such as, Quick
Start used Explicit Router Feedback (ERF), and Additive
Limited Slow Start used Simple Internet Resource Notifica-
tion Scheme (SIRENS) techniques for the estimation of the
available link bandwidth. Quick Start cannot control mul-
ticast congestion control. However, Additive Limited Slow
Start can control multicast congestion control. Cap Start
combined Standard slow start and Limited slow start tech-
niques and developed a new path estimation mechanism.
HyStart introduced a new safe exit point to terminate the
slow start phase. AFTCP and Alternative Slow Start, upgrade
the Standard slow start. AFTCP used an inline available
link bandwidth mechanism with Standard slow start, whereas
Alternative slow start, changed the initial congestion window
size of Standard slow start.

In today’s, the most commonly used operating systems,
such as Microsoft Windows, Linux, Solaris, and Android,
are still using exponential growth of cwnd during slow start
phase. Many studies observe that TCP performance suffers

11644 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

TABLE 2. Strength and weakness of TCP slow start modules.

from the TCP slow start module in long distance, high band-
width networks [32]. However, the performance of TCP dur-
ing Slow start phase can be enhanced by setting ssthresh
intelligently [42]–[44], [47] and adjusting the cwnd size
wisely [27]–[29]. As the switching point between the slow
start and congestion avoidance, the ssthresh is critical to
TCP performance. If ssthresh is set too low, TCP switches
from slow start to congestion avoidance prematurely that
may cause TCP to experience a very long time to reach a
proper congestion window size. However, a high ssthresh
may lead to multiple packet losses and more seriously may
cause TCP timeouts [32]. Several works focused on improv-
ing the estimate of ssthresh with an estimation of BDP as
in Hoe’s approach. Table 2 summarized a relation between
the strength and weakness of different slow start modules.
It described, how the weakness of one slow start module is
solved by new or enhanced slow start modules. Similarly,
in this research, an enhanced slow start module is proposed
by using the idea of Alternative slow start and practical imple-
mentation of HyStart. Enhanced slow start module changed
the size of cwnd in slow start phase of HyStart.

IV. PERFORMANCE METRICS
Performance metrics for the evaluation of enhanced con-
gestion control mechanism with state-of-the-art congestion
control mechanism are described as follows:

FIGURE 3. Protocol fairness, showing flows, Flow 1 and Flow 2 are
configured with TCP CUBIC.

A. PROTOCOL FAIRNESS
Protocol fairness represents a ratio of link bandwidth share
between the two TCP flows configured with same congestion
control mechanism (TCP CUBIC) as shown in Figure 3.
During protocol fairness analysis, both flows must be config-
ured with same congestion control mechanism. It is defined
as the equality of the link bandwidth sharing among com-
peting flows of same congestion control mechanism (TCP
CUBIC) in a network. Protocol fairness is calculated by
using Jain’s fairness index formula [48] which is defined in
Equation 5. Protocol fairness by using Jain’s index formula
is also used by [49]–[58]. For a given set of throughputs
(x1, x2, x3, x4, x5..xn, ), this formula calculates the fairness
index.

f (x1, x2, x3..xn) =

(∑n
1 xi
)2

n×
∑n

1 x
2
i

(5)

Fairness index is a value between 0 and 1, with 1 showing
the most equal sharing of available link bandwidth among
competing flows in a network and 0 showing unfair sharing
of available link bandwidth.

B. CONVERGENCE TIME
Refers to Figure 3, the convergence time of congestion
control mechanism is the time taken by flow 2 to gain 80% of
bandwidth of flow 1 [58], [59]. Convergence time of conges-
tion control mechanisms is calculated by using Equations 6
and 7 [58], [59]. Where Cf 1 represents the cwnd size of
flow 1, Cf 2 represents the cwnd size of flow 2, T1 is the
starting transmission time of flow 1 which is set to 1 second,
whereas T2 is the starting transmission time of flow 2 and T3
is the time in seconds when the size of cwnd of Cf 2 reaches
80% of size of Cf 1 cwnd for the first time. For calculating
convergence time, Tsim represents the total simulation time.
By subtracting, starting time of flow 2 from T3, convergence
time T is calculated [58].

T3 ⇐

for (i = 1; i <= Tsim; i++)

if Cf 2 >=
80× Cf 1

100

(6)

T = T3 − T2 (7)

VOLUME 6, 2018 11645



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

C. GOODPUT
Goodput is a measure of the amount of data transferred
(actual amount of data without dropped packets). According
to [60], definition of goodput is equivalent to the definition
of effective throughput as present in [3]. Goodput is the
application layer throughput measured at the TCP data source
node. In all simulations, goodput is calculated by using the
Equation 8 [57]. Goodput is presented in the form of bar
graphs as presented in [56].

Goodput =
(
SentData− RetransmittedData

TransferTime

)
(8)

D. PACKET LOSS RATE
Packet loss is the failure of more than one transmitted pack-
ets to arrive at their specified destination. Packet loss rate
depends upon the level of congestion in the network. Packet
loss rate is calculated by a number of packets dropped in unit
time [29], [58], [61].

V. METHODOLOGY
This section describes the methodology used to design and
develop an enhanced TCP congestion control mechanism for
long distance, high bandwidth secured networks configured
on smart healthcare enterprises. It provides the complete steps
of the operational framework to achieve the objectives of this
research. Research work is divided into three main phases.
Based on the comprehensive analysis of literature review,
background and formulation of the problem are discussed
in the first phase. The design and development of enhanced
congestion control mechanism are furnished in the second
phase. The third phase presents the evaluation methodol-
ogy to examine the performance of enhanced congestion
control mechanism with state-of-the-art congestion control
mechanism.

The background and problem formulation are conducted
after a systematic literature review of existing slow start
modules of congestion control mechanisms. The focus area
of the research is to find out the workflow and the issues
in the default version of TCP CUBIC mechanism. Different
approaches to the growth of cwnd size during slow start phase
have been studied in detail.

TCP is a protocol which is responsible for the connection-
oriented reliable and secured communication of the data
over the Internet by using its a very important component
called congestion control mechanism. Congestion control
mechanism consists of four components; slow start, conges-
tion avoidance, fast retransmit and fast recovery modules.
It follows a legacy packet conversation principle, which con-
firms the data packet delivery by using an Acknowledgment
(ACK). Source node breaks the data messages into the pack-
ets and transmits to a destination node over the network. For
each packet sent by a source node, an ACK is generated to be
transmitted back from the destination node. The source node
controls the packet sending rate by using a very important
variable called Congestion Window (cwnd), which defines

the number of packets that the source node is allowed to
send to the destination node. During the start state of the
TCP connection, slow start module of congestion control
mechanism is used to find the time-varying available link
bandwidth of the current network path between sending and
receiving node. Slow start module increases the size of cwnd
exponentially, to find the unknown equilibrium state of the
network, which twice it’s cwnd size at the end of each RTT.
TCP Compound. TCP CUBIC and TCP Reno use the same
method of exponential growth of cwnd during the slow start
phase of the connection.

During the slow start phase, when the size of cwnd
becomes larger than a variable called Slow Start Threshold
(ssthresh), then the source node exits slow start phase and
enters into the congestion avoidance phase. ssthresh is a
measure of available link bandwidth between sending and
receiving nodes in the network path.Many congestion control
mechanisms use different formulas to calculate the value of
the ssthresh variable, which, in turn, affect the switch point
of slow start phase. Thus, the size of cwnd in slow start phase
has very importance. During slow start phase, if the size of
cwnd is very small, the connection switches to the congestion
avoidance phase very late. If the size of cwnd in slow start
phase is very large, the connection will terminate the slow
start phase prematurely and will switch to the congestion
avoidance phase prematurely. To handle this problem, TCP
CUBIC uses lower boundary limit and upper boundary limit
for the size of cwnd in slow start phase, which defines the
minimum and maximum range of cwnd size in slow start
phase.

Once the connection switches from a slow start to conges-
tion avoidance phase, congestion avoidance phase controls
the exponential growth of cwnd , because the source node has
already reached the equilibrium state of the network. During
the congestion avoidance phase, Compound TCP and TCP
Reno increase the size of cwnd by using formula; (1/cwnd)
for each incoming ACK. This makes the source gradually
increase it’s cwnd size by only one packet per each RTT
(instead of per each ACK as in slow start phase) because the
source node has already achieved the equilibrium state of the
network. This type of growth is called the linear growth of
cwnd . However, TCP CUBIC increases the size of cwnd by 1
for each incoming ACK instead of round trip time and occupy
the all available link bandwidth very quickly. This type of
growth is called the exponential growth of cwnd . Thus, this
exponential growth of cwnd of TCP CUBIC mechanism in
congestion avoidance phase causes congestion in the net-
work, which, in turn, causes a high rate of packet loss during
communication.

A. DESIGN AND DEVELOPMENT OF CCM-SS
This section focuses on the design theory of a slow start mod-
ule by enhancing the lower limit of cwnd size in the TCP slow
start phase. The lower and upper boundary limits of cwnd size
in slow start phase effects its exponential growth (both in slow
start and congestion avoidance phases) and the switching

11646 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

point of the connection from slow start phase to congestion
avoidance phase, which in turn affect the packet loss rate by
reducing the burst losses of packets. TCPCUBIC uses Hybrid
Start (HyStart) as its default slow start module. HyStart sets
the lower and the upper boundary limit for the growth of cwnd
size in slow start phase. The idea of CCM-SS is based on the
boundary limits of the cwnd size of HyStart. Thus, packet
loss rate can be reduced by using a new boundary limit for
cwnd size in slow start phase. So that, TCP connection can
switch from slow start phase to congestion avoidance phase
without losing many packets. CCM-SS detects a congestion
control exit point for cwnd , to switch the connection from
slow start to congestion avoidance phase. The exit point is
less than a conditional variable, whose value is calculated
run-time during communication. Packet loss will occur if the
size of cwnd is greater than the conditional variable. CCM-SS
increases the lower boundary limit of cwnd size in slow start
phase, which increases the possibility of sets of values of
cwnd size. By using this idea, effect of the exponential growth
of cwnd is decreased, which in turn decrease the burst losses
of packets.

B. TESTING AND PERFORMANCE EVALUATION
Testing and performance evaluation of CCM-SS is the final
phase of the operational framework. The first step of this
phase consists of the configuration of the simulation setup.
In the second step, several most widely used performance
metrics are described. Packet loss rate, protocol fairness,
convergence time and goodput performance metrics are used
to evaluate the performance of proposed modules. These
performance metrics are described in detail in Section IV.
Finally, in the third step, simulation results are statistically
analyzed and performance evaluation of proposed modules is
discussed.

1) SIMULATION SETUP
Simulation based evaluation of CCM-SS is done by using
a Network Simulator-2 (NS-2) version 2.35, as used
by [6], [20], [25], [50]–[52], [57], and [62]–[68]. In all
simulation experiments, Hamilton benchmark test suite
(www.hamilton.ie) is used which is the most common and
widely used NS-2 benchmark for performance analysis of
congestion control mechanisms. [38], [59], [69]–[74] also
used Hamilton benchmark suite for the evaluation of con-
gestion control mechanisms. The simulation setup comprises
simulation parameters, network topology, TCP flows, band-
width sharing among TCP flows and traffic model, which are
described as follows:

1) Simulation Parameters
In all experiments, simulation parameters are used as
defined by [22], [33], [49]–[51], [57], [63], and [70].
Table 3 shows the complete set of simulation param-
eters used in all simulation experiments for long RTT
and short RTT networks. By using values of different
parameters from the table, simulation experiments are

TABLE 3. Parameters used in testbed.

performed for each TCP congestion control mechanism.
For the accurate results, the simulation experiments for
each parameters configuration are repeated for three
times. The start time of flow 1 is one second, whereas
flow 2 is started at two second for fairness simulations
and at 150 second for convergence time simulations. All
TCP connections are attached with File Transfer Proto-
col (FTP) agents and the simulations are run for 600 and
300 seconds. Same simulation process is repeated with
the same start and end time in order to establish the
legitimacy of the evaluation. For short RTT network
simulations, flow 1 RTT is fixed which is equal to 50 ms
and flow 2 RTT varies at 2 ms, 4 ms, 6 ms, 8 ms, 10 ms,
12 ms, 14 ms and 16 ms. This is because, 2 ms to 16 ms
networks are considered to be short distance networks,
deployed within a building. For long RTT networks sim-
ulations, flow 1 RTT is fixed which is equal to 100 ms
and flow 2 RTT range is 50 ms, 70 ms, 90 ms, 110 ms,
130 ms, 150 ms, 170 ms and 190 ms. This is because,
50 ms to 200 ms networks are considered to be long
distance networks, deployed within a city or country.

2) Network Topology
A dumbbell network topology of six nodes is used in all
simulation experiments as used by [17], [22], [23], [29],
[49], [52], [64]–[66], [70], and [75]–[78]. The dumbbell
network topology, which is shown in Figure 4, connects
a group of sender nodes S1 and S2 to a single router R1,
the R1 is serially connected to another router R2, which
in turn, is connected to another group of receiver nodes
D1 and D2. The straight line showed the connection link
between sender and receiver nodes with the link capacity
of 100 Mbps, 200 Mbps, 300 Mbps, 400 Mbps and
500 Mbps. The bandwidth of this link could be varied
from 100Mbps to 500Mbps for different configurations
and different network scenarios. The bandwidth of the
serial link between the two routers also varies from
50 Mbps to 250 Mbps for different simulations.
For all the simulation experiments, the buffer queue size
of both routers is set to [0.01, 0.02, 0.05, 0.1, 0.2, 0.4,

VOLUME 6, 2018 11647



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 4. Testbed design for simulations.

0.5, 1.0, 1.5, 2.0] percent of Bandwidth Delay Product
(BDP) by using a DropTail algorithm as used by [25],
[49], [66], [70], [79]. Router’s buffer queue is used to
hold data packets temporally. If size of buffer queue is
very low, packet loss rate will increase and if the size of
buffer queue is very large, then it will difficult to test the
behavior of congestion control mechanisms. However,
most of researchers use moderate range of queue size,
not very high and not very low. Link delay among source
and destination nodes and bottleneck delay between
routers are varied depending on network scenario. 2 ms
to 16 ms and 50 ms to 190 ms range is used for short
RTT and long RTT networks respectively. As 2 ms is
used by [63], 10 m to 200 ms is used by [51], 30 ms
to 240 ms is used by [49] and 16 ms, 40 ms, 80 ms,
160 ms, 200 ms are used by [70]. Thus, very precise and
moderate ranges of queue size and link delay are used in
all simulations.

3) TCP Flows
Source node S1 sends data segments to destination
node D1 by using a cwnd as a logical bucket. The
data segments pass through the link bandwidth between
routers R1 and R2 and reach to the destination node D1.
After successfully receiving the data segment, destina-
tion node D1 sends an ACK to source node S1. ACK
signal from destination node D1 also passes through the
link bandwidth between router R1 and R2. This data
sending and receiving conversation between source node
S1 and destination nodeD1makes a data stream between
source and destination, which is named as TCP flow as
described by [9], [56], [75]. As this is first TCP flow
on the link, thus it called TCP flow 1. Source node
S1 is configured with TCP CUBIC congestion control
mechanism during simulation configuration, thus, TCP
flow 1 is also called TCP CUBIC flow 1. Each con-
gestion control mechanism has a bandwidth estimation
mechanism to estimate the available link bandwidth and
they increase the size of cwnd exponentially or linearly
up to a maximum limit of cwnd size according to the
availability of the link bandwidth. So, if there is no
other flows are present on the link bandwidth, then TCP
CUBIC flow 1 can fully utilize the link bandwidth.
Similarly, if source node S2 also sends data segments
to destination node D2 by using cwnd and same link

FIGURE 5. Dumbbell topology showing flows [75].

FIGURE 6. Sharing of link bandwidth between flows [75].

bandwidth between routers R1 and R2. This second
conversation also makes a new TCP flow name as TCP
flow 2. If source node S2 is also configured with TCP
CUBIC, thus flow 2 is also called TCP CUBIC flow
2 as shown in Figure 5. Now, there are only two TCP
flows of data that are using a common link bandwidth
between routers R1 and R2 for transmission. Now, for
transmission, these two flows are sharing a common link
bandwidth with each other.

4) Bandwidth Sharing Among TCP Flows
As previously discussed, both TCP CUBIC flows are
sharing a common link bandwidth for the transmission.
Figure 6 shows a rectangle between two routers to high-
light the common link bandwidth between two TCP
CUBIC flows. At this time this bandwidth is configured
with 250 Mbps. If there is only one TCP CUBIC flow
on the network, it can use full 250 Mbps bandwidth,
however with the presence of other TCP CUBIC flows,
they must share this bandwidth with each other.
As the discussion earlier, when two TCP CUBIC flows
are sharing a common link bandwidth with each other
and if the throughput of both TCP CUBIC flows are
equal (or nearly equal) to each other, or in other words,
if the protocol fairness of both flows is equal (or nearly
equal) to 1, it means that both TCP CUBIC flows are
sharing common link bandwidth fairlywith each other as
shown in Figure 7(a). However, if both the TCP CUBIC
flows did not share bandwidth fairly with each other
even for a single moment, then protocol fairness will be
equal to 0 as shown in Figure 7(b).

5) Traffic Model
During the simulation, the data packet size is fixed
which is set to 1460 bytes and it cannot be changed

11648 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 7. Protocol fairness sample graphs. (a) Protocol fairness = 0.9.
(b) Protocol fairness = 0.

during simulation. As this is the default configuration
of packet size in Hamilton benchmark suit. The traffic
source of the simulation is set to File Transfer Protocol
(FTP). During simulation experiments, FTP agents use
TCP to send and receive the data packets and conges-
tion control mechanisms are attached with TCP. The
sender nodes transmit the FTP data packets to destina-
tion nodes.

2) EVALUATION METRICS
To evaluate the performance of CCM-SS, packet loss rate,
protocol fairness, convergence time and goodput metrics are
used. Statistical significance test, namely t-test is also cal-
culated to evaluate the merits of the improvements gained
from the enhanced congestion control mechanism. The t-test
results of this research satisfied the level of significance,
i.e., less than 0.05. All experiments are repeated three times
to have more accurate results, and final results are averaged
to have 95% confidence interval of the mean as used by [50].

3) PERFORMANCE EVALUATION
To evaluate the performance of CCM-SS, several
simulation experiments are conducted, and their results are
compared with the most relevant state-of-the-art congestion
control mechanisms (TCP Reno, HighSpeed TCP, TCP BIC,
TCP CUBIC and TCP Compound). These congestion control

TABLE 4. Sets of experiments for the evaluation of CCM-SS.

mechanisms have been the subject of consideration and
experimentation in recent years. In all simulations, Hamilton
Benchmark Test Suite is used. Awk tool [80] is used for
manipulating the useful data from NS-2 trace files. Finally,
all empirical data is analyzed in SPSS to get useful results in
the form of graphs. For every simulation test, two TCP data
flows of each TCP congestion control mechanism are run on
short RTT and long RTT networks.

Four sets of experiments are performed to evaluate and
measure the performance of CCM-SS. The first set of experi-
ments investigates the packet loss rate of TCP CUBIC config-
ured with its default slow start module Hybrid Start (HyStart).
In the second set of experiments, HyStart module is replaced
by CCM-SS and again packet loss of TCP CUBIC in investi-
gated and at this time TCP CUBIC is configured with CCM-
SS as its default slow start module instead of HyStart. In the
third and fourth sets of experiments, the above two sets of
experiments are repeated to investigate the goodput behavior
of HyStart and CCM-SS modules. The detail of four sets of
experiments is described in Table 4. Thus, TCP CUBIC is
investigated with respect to packet loss rate and goodput by
using HyStart and CCM-SS as its default slow start modules.

C. ASSUMPTIONS AND LIMITATIONS
Assumptions and limitations are required to facilitate the
CCM-SS, to focus on minimizing the interference of any
background traffic, which, in turns, decreases packet loss
rate and improves protocol fairness, convergence time and
goodput of TCP flows. Following is a list of assumptions and
precise limitations that are absorbed during the final design
of testbed topology and simulation setup:

i. Once the bottleneck bandwidth between routers are con-
figured; they are not changed during simulation.

ii. All routers use the same DropTail [81] buffer algorithm
throughout all the simulations as used by [66] and [49].

iii. All the individual links among nodes are configured with
a specified bandwidth and propagation time and not be
changed during simulation.

iv. All the links of a given testbed topology are set in a
saturated mode. Hence, no user data traffic is considered
in the background.

v. Buffer queue size of routers is fixed during simulation.
vi. All simulations are performed on a single machine with

the same version of a network simulator.

VI. DESIGN AND IMPLEMENTATION OF CCM-SS
This section provides the design, development, and imple-
mentation of Congestion Control Module for Slow Start

VOLUME 6, 2018 11649



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

(CCM-SS) which is the core module of enhanced conges-
tion control mechanism proposed in this research. CCM-SS
decreases the burst losses of packets by increasing the lower
boundary limit of Congestion Control (cwnd) size in slow
start phase and by defining a secure exit point for the ter-
mination of slow start phase. As CCM-SS is the module of
enhanced TCP CUBIC and its design is based on the design
of default TCP CUBIC; therefore, in the development of this
module, many parameters of default TCP CUBIC are also
be used. B, representing the available link bandwidth of the
current network path, minD representing the forward path
one-way delay, S representing the available buffer size and
β representing the cwnd reduction parameter; are used in the
design of CCM-SS.

CCM-SS focuses on the exponential growth of Conges-
tion Control (cwnd) size in slow start phase to avoid the
packet loss rate. In slow start phase, cwnd size increases
exponentially. The connection sets the size of cwnd within
lower and upper limits of size. These limits of size are also
known as lower boundary and upper boundary limits of cwnd
size. When the size of cwnd becomes larger than a run-time
defined a conditional variable, which is also known as Slow
Start Threshold (ssthresh), the connections terminates the
slow start phase and switches to congestion avoidance phase.

The boundary limits of cwnd size effect the exponential
growth of cwnd , which in turn effect the termination point
of slow start phase. If the connection does not terminate the
slow start phase in time, packet loss occurred due to the
exponential growth of cwnd . Thus, packet loss rate can be
reduced by using an enhanced lower boundary limit for cwnd
size in slow start phase. By using an enhanced lower boundary
limit of cwnd size, connection terminates the slow start phase
in time and enters into congestion avoidance phase without
losing too many packets. Figure 8 schematically shows the
termination point of slow start phase and conditional variable.
Congestion Control Module for Slow Start (CCM-SS) is
proposed to control the packet loss rate in slow start phase
by limiting the initial size of cwnd in the slow start phase as
follows:

A. DESIGN OF CCM-SS
In this section, CCM-SS is designed, which controls the
packet loss rate in slow start phase. CCM-SS reduces packet
loss rate by increasing the lower boundary limit of cwnd size
in slow start phase. CCM-SS detects a congestion control
exit point for cwnd , to switch the connection from slow start
to congestion avoidance phase. This exit point must be less
than a conditional variable called SCCP, whose value is cal-
culated run-time by using Equation 9, where B̄ is the amount
of available link bandwidth, minD̄ represents the minimum
forward path one way delay (RTT/2) and S̄ represents the
available buffer size, which depends upon the Bandwidth
Delay Product (BDP) queue size. Packet loss will occur if
the size of cwnd is greater than the value of SCCP. The idea
of SCCP is taken from the Safe exit point of HyStart module,

FIGURE 8. Slow start phase termination point.

FIGURE 9. Packet train concept.

which is the default slow start module in TCP CUBIC.

SCCP = (B̄× minD̄+ S̄)

if (cwnd > SCCP), Packet loss will occur (9)

B. BANDWIDTH AND DELAY ESTIMATIONS
In this section available link bandwidth (B̄) and minimum
forward one way delay (minD̄) estimation techniques of
CCM-SS are described. There are two types of bandwidth
estimation techniques: packet-pair and packet-train [44]. For
available link bandwidth estimation, CCM-SS uses a concept
similar to packet-train. Suppose a source transmits N̄ back to
back packets of size L̄ to the destination. For (N̄ > 2), these
back-to-back packets are called a packet-train. The length
of this packet-train is denoted by 1(N̄ ), which is equal to∑k=N̄−1

k=1 δk as denoted in Equation 10. Where N̄ is the num-
ber of packets in train, δk is the inter interval time between
packets k and k+1 as shown in Figure 9. By using the packet-
train length, a destination can measure the bandwidth b(N̄ ) of
the link as denoted in Equation 12.

1(N̄ ) =
k=N̄−1∑
k=1

δk (10)

b(N̄ ) =
(N̄ − 1)× L̄

1(N̄ )
(11)

11650 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

b(N̄ ) =
(N̄ − 1)× L̄∑k=N̄−1

k=1 δk

(12)

By using packet-train concept and an approach of [22], avail-
able link bandwidth on the link is calculated. According to
this approach, if B̄ represents the available link bandwidth for
the forward path and minD̄ represents the minimum forward
one way delay, which is equal to half of RTT, then the Band-
width Delay Product (BDP) of the link path can be denoted
as (B̄× minD̄), which is denoted in Equation 13.

BDP = B̄× minD̄ = b(N̄ )× minD̄ (13)

Solving Equations 11 and 13, (B̄ × minD̄) is updated and is
shown in Equation 14.

BDP = B̄× minD̄ =
(N̄ − 1)× L̄

1(N̄ )
× minD̄ (14)

Based on [22], if1(N̄ ) is equal tomin ¯̄D, then (B̄×minD̄) will
equal to (N̄ − 1)× L̄ as described in Equation 15.

BDP = B̄× minD̄ = (N̄ − 1)× L̄ (15)

Since b(N̄ ) = (N̄−1)×L̄
1(N̄ )

, then (N̄−1)×L̄ represents the size of

cwnd , means when1(N̄ ) is equal tominD̄, the cwnd becomes
equal to (B̄× minD̄) as described in Equation 16.

BDP = B̄× minD̄ = cwnd (16)

By solving Equation 16, available link bandwidth B̄ can be
calculated as described in Equation 17.

B̄ =
minD̄
cwnd

(17)

By using train of acknowledgements, 1(N̄ ) is estimated,
which is equal to the sum of inter arrival times of packets in
train as shown in Figure 9. 3(N̄ ) represents the time period
between the receipt of first and last ACK in an ACK train.
minD̄ is calculated by dividing the minimum observed RTT
by 2 as defined in Equation 18 [22].

minD̄ =
minRTT

2
(18)

The purpose of CCM-SS is to adjust the lower boundary
limit (B̄ × minD̄ × µβ) of cwnd size in slow start phase
to have more lower initial values of cwnd size to use the
available link bandwidth slowly. Thus, CCM-SS increases the
possibility of cwnd values which, in turn, causes a low rate
of packet loss. A comparison between HyStart and CCM-SS
lower and upper limits for the initial size of (cwnd) during
slow start phase is schematically drawn in Figure 10. In this
figure, the first rectangle represents the cwnd boundary limits
of HyStart, whereas the second square shows the boundary
limits of the cwnd size of CCM-SS in slow start phase. CCM-
SS enhanced the lower boundary limit of the cwnd size of
HyStart in slow start phase.

HyStart uses formula (B × minD × β) to calculate the
lower boundary limit of cwnd size, where B is available link
bandwidth, minD is the minimum one way delay and β is

FIGURE 10. Boundary limit of congestion window size in HyStart and
CCM-SS.

the cwnd reduction parameter. B and minD are calculated
run-time by using packet train techniques and these values
changes according to the condition of network, whereas β
has fixed value, which is equal to 0.2. To change the lower
boundary limit of cwnd size, the value of β must be changed.
For this purpose, µ is multiplied with β, whose experimental
and statistical value is equal to 1.5. Thus after multiplication
(µ×β), value of β changes from 0.2 to 0.3. This change in β
value, updates the lower boundary of cwnd size in slow start
phase, which also updated the exit point or termination point
of slow start phase and conditional variable. Thus, CCM-SS
uses a new formula (B̄ × minD̄ × µβ) for the calculation of
lower boundary for cwnd size in slow start phase. µ variable
helps the cwnd lower limit to have more sets of values for
cwnd . This change in lower boundary limit of cwnd , causes
the flexibility for cwnd size which results in low rate of packet
loss during slow start phase.

Flowchart of CCM-SS is shown in Figure 11. When the
communication starts, connection estimates the available link
bandwidth and minimum RTT. To start communication, con-
nection sets the initial size of cwnd and increases the size of
cwnd exponentially to occupy the available link bandwidth.
Once the size of cwnd becomes equal to or grater than
ssthresh, the connection terminates the slow start phase and
enters into congestion avoidance phase. If the size of cwnd
get larger than SCCP, packet loss will occur.

The pseudo code of CCM-SS regarding exponen-
tial growth at each ACK is described in Algorithm 1.

VOLUME 6, 2018 11651



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 11. Flowchart of congestion control module for slow start.

cwnd ← cwnd + 1 refers as exponential growth of cwnd
in slow start phase.

Design of CCM-SS is based on following key assumptions:
i. The estimated bandwidth capacity of the link is defined

by the sum of available link bandwidth B̄ on the link and
size of buffers S̄ at the bottleneck routers.

ii. The size of cwnd in slow start phase should increase to
a maximum upper limit, so that it can achieve the max-
imum utilization of the link by avoiding the maximum
possible loss events.

iii. Available link bandwidth, minimum forward path one
way delay and buffer size of bottleneck routers are
denoted by B̄,minD̄ and S̄ respectively and can be calcu-
lated by using techniques being used by HyStart.

iv. The Safe Congestion Control Point (SCCP) can be com-
puted by using the Equation 9.

v. In slow start phase, if the size of cwnd gets larger than
SCCP, congestion will occur.

vi. The lower boundary limit of cwnd size of CCM-SS is
set to (B̄×minD̄× β̄), where β̄ is equal to (µ× β). β is
a multiplicative decrease parameter of cwnd and µ is a
variable of CCM-SS having experimental and statistical
value 1.5. However, it can say that the size of cwnd is
bounded between (B̄×minD̄×µ×β) and (B̄×minD̄+S̄).

vii. The lower and upper boundary of cwnd size of CCM-SS
in slow start phase is given in Equations 19 and 20.

(B̄× minD̄× µ× β) < cwnd < (B̄× minD̄+ S̄)

(19)

Algorithm 1 Exponential Growth of cwnd at Each ACK in
CCM-SS

Growth of cwnd at each ACK
if dMin then
dMin← min(dMin,RTT )

else
dMin← RTT
if cwnd ≤ ssthresh then
cwnd ← cwnd + 1

else
cnt ← cwnd + 1
if cwnd_cnt > cnt then
cwnd ← cwnd + 1
cwnd_cnt ← 0

else
cwnd_cnt ← cwnd_cnt + 1

end if
end if

end if

For µ = 1.5 and β = 0.2,

(B̄× minD̄× 0.3) < cwnd < (B̄× minD̄+ S̄) (20)

The findings of CCM-SS is described as follows:
i. HyStart limits the size of cwnd within a lower and

upper boundary and the limit of boundary causes less
utilization of available link bandwidth, which in turn
causes burst losses of packets in slow start phase. The
loss of packets is mitigated by using more flexible limit
of boundary of cwnd size in slow start phase, which also
updated the exit point of slow start phase and conditional
variable. This change in boundary limit of cwnd size also
reduced the effect of exponential growth of cwnd in slow
start phase.

ii. CCM-SS provides better lower boundary limit for cwnd
size during slow start phase which not only reduces the
packet loss rate but as an additional findings, it also
improves the goodput, protocol fairness and convergence
time (fair and quick distribution of available link band-
width) of the flows.

VII. RESULTS AND DISCUSSION
In this section, the performance comparison of TCP CUBIC
by using slow start modules HyStart and CCM-SS is con-
ducted. For this purpose, CCM-SS is implemented in TCP
CUBIC. Thus, TCP CUBIC with HyStart and CCM-SS is
evaluated with respect to packet loss rate. In the following
section, packet loss analysis of TCP CUBICwith HyStart and
CCM-SS is graphically presented with the explanation.

Figure 12 shows the performance comparison of CCM-SS
and HyStart modules in terms of packet loss rate in long
RTT and short RTT networks. Figure 12(a) shows the packet
loss rate of CCM-SS and HyStart flows configured with long
RTT, refers to as long distance, high bandwidth networks.
Figure 12(a) illustrates that line of CCM-SS module is lower

11652 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 12. Packet loss rate comparison of HyStart and CCM-SS. (a) For
long RTT networks. (b) For short RTT networks.

than HyStart from 200 seconds until 800 seconds. There is
a big gap between the line of packet loss rate of CCM-SS
and HyStart flows. Thus, packet loss rate of CCM-SS flows
is lower than HyStart flows throughout all the simulations.
CCM-SS improves the performance in terms of packet loss
rate in long RTT networks. In Figure 12(b), comparison of
CCM-SS andHyStart flows, configured in short RTT network
is shown. The line of CCM-SS and HyStart are very close
to each other, thus in short RTT networks, there is a minor
difference between the packet loss rate of CCM-SS and HyS-
tart. However, CCM-SS improved its performance both in
long and short RTT networks. Thus, it is concluded that flows
of CCM-SS have lower packet loss rate in long and short
RTT networks as compared to HyStart flows. Improvement
in terms of packet loss rate validates the performance of
CCM-SS module over HyStart.

Packet loss rate also affects the goodput of the flows, thus,
the decrease in packet loss rate increases the goodput of the
flows. Thus, flows configured with CCM-SS achieve higher
goodput as compared to HyStart flows. Figure 13 shows the
goodput comparison of flows of HyStart and CCM-SS mod-
ules. Results show that TCP CUBIC shows better goodput by
using CCM-SS as compared to HyStart module. Figure 13(a)
shows goodput of CCM-SS and HyStart with respect to link

FIGURE 13. Goodput comparison of CCM-SS and HyStart. (a) Link
bandwidth wise comparison. (b) Flow’s RTT wise comparison.

bandwidth inMbps between the source and destination nodes.
Figure 13(b) shows goodput with respect to RTT of the flows.
In Figures, 13, TCP CUBIC by using CCM-SS as default
slow start module, achieve higher goodput performance as
compared to HyStart, which validates the performance of
CCM-SS over HyStart as one of the additional findings of
this contribution.

Figure 14 indicates that convergence time and protocol
fairness of flows is also improved by using CCM-SS module.
Figure 14(a) shows that both flows of CCM-SS converge into
each other in less time as compared to the flow of HyStart
flows as shown in Figure 14(b). Thus, CCM-SS flows share
available link bandwidth very fast and fairly to each other
as compared to HyStart flows. CCM-SS flows have shorter
convergence time as compared to HyStart flows. Improve-
ment in convergence time also improves the fairness behavior
of CCM-SS as compared to HyStart, as shown in Figure 14.
The required results and additional findings are described as
follows:

i. Average packet loss rate of CCM-SS flows less than
HyStart flows in both long and short RTT networks.
Flows configured with CCM-SS, reduced 10% packet
loss rate as compared to HyStart.

ii. Flows set with CCM-SS module can achieve higher
goodput as compared to HyStart.

VOLUME 6, 2018 11653



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

FIGURE 14. Convergence time and protocol fairness comparison of
CCM-SS and HyStart. (a) TCP CUBIC configured with CCM-SS. (b) TCP
CUBIC configured with HyStart.

iii. The decrease in packet loss rate of CCM-SS flows also
improves the convergence time and protocol fairness of
CCM-SS flows.

iv. CCM-SS flows converge very fast with each other to
share available link bandwidth as compared to HyStart
flows.

VIII. CONCLUSION AND FUTURE WORK
The focus of this research is to maximize the performance
of enhanced TCP CUBIC in long distance, high bandwidth
secured networks configured on centralized smart healthcare
enterprises. This is done by allocating the available link band-
width, fairly and fast among the flows transmitting health-
related data from different healthcare centers over the same
network link. The enhanced TCP CUBIC uses enhanced slow
start module to achieve the maximum possible performance
regarding packet loss rate, protocol fairness and convergence
time. As part of future work, this research can be further
extended to develop RTT dependent cwnd reduction mech-
anisms and RTT based congestion indication functions for
smart healthcare enterprises configured with secured net-
works.

REFERENCES
[1] M. Allman and A. Falk, ‘‘On the effective evaluation of TCP,’’ ACM

SIGCOMM Comput. Commun. Rev., vol. 29, no. 5, pp. 59–70, 1999.

[2] S.-U. Lar and X. Liao, ‘‘An initiative for a classified bibliography on
TCP/ip congestion control,’’ J. Netw. Comput. Appl., vol. 36, no. 1,
pp. 126–133, 2013.

[3] V. Jacobson, ‘‘Congestion avoidance and control,’’ in Proc. ACM SIG-
COMM Comput. Commun. Rev., vol. 18. 1988, pp. 314–329.

[4] M. Ahmad, S. Taj, T. Mustafa, and M. Asri, ‘‘Performance analysis of
wireless network with the impact of security mechanisms,’’ in Proc. Int.
Conf. Emerg. Technol. (ICET), 2012, pp. 1–6.

[5] V. Jacobson, ‘‘Modified TCP congestion avoidance algorithm,’’ End-to-
End-Interest Mailing List, vol. 5, no. 1, pp. 556–589, 1990.

[6] W. Lv and J. Zhang, ‘‘Research of TCP optimization technology for long-
distance and high bandwidth-delay private network,’’ in Proc. Int. Conf.
Comput. Sci. Inf. Process. (CSIP), 2012, pp. 381–384.

[7] G. A. Abed, M. Ismail, and K. Jumari, ‘‘Exploration and evaluation of tra-
ditional TCP congestion control techniques,’’ J. King Saud Univ.-Comput.
Inf. Sci., vol. 24, no. 2, pp. 145–155, 2012.

[8] T. O. Barayyan, ‘‘Alternative slow start algorithm for high bandwidth,’’ in
Proc. Int. Conf. Comput. Appl. Technol. (ICCAT), 2013, pp. 1–4.

[9] L. C. Kho, X. Defago, A. O. Lim, and Y. Tan, ‘‘A taxonomy of congestion
control techniques for TCP in wired and wireless networks,’’ in Proc. IEEE
Symp. Wireless Technol. Appl. (ISWTA), Sep. 2013, pp. 147–152.

[10] A. Paul, A. Ahmad,M.M. Rathore, and S. Jabbar, ‘‘SmartBuddy: Defining
human behaviors using big data analytics in social Internet of Things,’’
IEEE Wireless Commun., vol. 23, no. 5, pp. 68–74, May 2016.

[11] P. Sarolahti and A. Kuznetsov, ‘‘Congestion control in Linux TCP,’’ in
Proc. USENIX Annu. Tech. Conf., FREENIX Track, 2002, pp. 49–62.

[12] M. Ahmad and I. Cheema, ‘‘Prognostic load balancing strategy for latency
reduction in mobile cloud computing,’’ Middle-East J. Sci. Res., vol. 16,
no. 6, pp. 805–813, 2013.

[13] I. Petrov and T. Janevski, ‘‘Improved TCP slow start algorithm,’’ in Proc.
21st Telecommun. Forum (TELFOR), 2013, pp. 121–124.

[14] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, ‘‘TCP selective
acknowledgment options,’’ Network Working Group, Tech. Rep. RFC-
3245, 1996, pp. 213–245.

[15] P. Yang, J. Shao, W. Luo, L. Xu, J. Deogun, and Y. Lu, ‘‘TCP congestion
avoidance algorithm identification,’’ IEEE/ACM Trans. Netw., vol. 22,
no. 4, pp. 1311–1324, Aug. 2014.

[16] K. Song, Q. Zhang, and M. Sridharan, ‘‘Compound TCP: A scalable and
TCP- friendly congestion control for high-speed networks,’’ in Proc. 6th
Int. Workshop Protocols Fast Long-Distance Netw. (PFLDnet), vol. 2.
2006, pp. 345–390.

[17] S. Ha, I. Rhee, and L. Xu, ‘‘TCP CUBIC: A new TCP-friendly high-speed
TCP variant,’’ ACM SIGOPS Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74,
2008.

[18] Y. Gwak, Y. Y. Kim, and R. Y. Kim, ‘‘WiCUBIC: Enhanced CUBIC TCP
for mobile devices,’’ in Proc. IEEE Int. Conf. Consum. Electron. (ICCE),
Jan. 2013, pp. 96–97.

[19] G. Usman, U. Ahmad, and M. Ahmad, ‘‘Improved k-means clustering
algorithm by getting initial cenroids,’’ World Appl. Sci. J., vol. 27, no. 4,
pp. 543–551, 2013.

[20] D. Kumari, M. P. Tahiliani, and U. K. K. Shenoy, ‘‘Experimental analysis
of CUBIC TCP in error prone MANETs,’’ in Proc. 15th Int. Conf. Appl.
Digit. Inf. Web Technol. (ICADIWT), Feb. 2014, pp. 256–261.

[21] G. A. Abed, M. Ismail, and K. Jumari, ‘‘A survey on performance of
congestion control mechanisms for standard TCP versions,’’ Austral. J.
Basic Appl. Sci., vol. 5, no. 12, pp. 1345–1352, 2011.

[22] S. Ha and I. Rhee, ‘‘Taming the elephants: New TCP slow start,’’ Comput.
Netw., vol. 55, no. 9, pp. 2092–2110, 2011.

[23] M. A. Alrshah, M. Othman, B. Ali, and Z. M. Hanapi, ‘‘Comparative study
of high-speed Linux TCP variants over high-BDP networks,’’ J. Netw.
Comput. Appl., vol. 43, pp. 66–75, Aug. 2014.

[24] R. Dangi and N. Shukla, ‘‘A new congestion control algorithm for high
speed networks,’’ Int. J. Comput. Technol. Electron. Eng., vol. 2, no. 1,
pp. 218–221, 2012.

[25] R. I. L. Goyzueta and Y. Chen, ‘‘A deterministic loss model based analysis
of CUBIC,’’ in Proc. Int. Conf. Comput., Netw. Commun. (ICNC), 2013,
pp. 944–949.

[26] D. Cavendish, K. Kumazoe,M. Tsuru, Y. Oie, andM.Gerla, ‘‘CapStart: An
adaptive TCP slow start for high speed networks,’’ in Proc. 1st Int. Conf.
Evolving Internet, 2009, pp. 15–20.

[27] H. Wang and C. Williamson, ‘‘A new scheme for TCP congestion control:
Smooth-start and dynamic recovery,’’ in Proc. 6th Int. Symp. Modeling,
Anal. Simulation Comput. Telecommun. Syst., 1998, pp. 69–76.

11654 VOLUME 6, 2018



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

[28] S. Floyd, ‘‘Limited slow-start for TCP with large congestion window,’’
Larger Proposal High Speed TCP TCP Connections Large Congestion
Windows, vol. 6, no. 3, pp. 221–232, 2004.

[29] S. Ha and I. Rhee, ‘‘Hybrid slow start for high-bandwidth and long-
distance networks,’’ in Proc. 9th Int. Workshop Protocols Fast Long-
Distance Netw. (PFLDnet), vol. 2. 2008, pp. 1–6.

[30] M. Gohar, J.-G. Choi, S.-J. Koh, K. Naseer, and S. Jabbar, ‘‘Distributed
mobility management in 6lowpan-based wireless sensor networks,’’ Int. J.
Distrib. Sensor Netw., vol. 11, no. 10, p. 620240, 2015.

[31] M. Ahmad, M. A. Ngadi, and M. M. Mohamad, ‘‘Experimental evalua-
tion of TCP congestion contorl mechanisms in short and long distance
networks,’’ J. Theor. Appl. Inf. Technol., vol. 71, no. 2, 2015.

[32] Y. Zhang, N. Ansari, M. Wu, and H. Yu, ‘‘AFStart: An adaptive fast
TCP slow start for wide area networks,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2012, pp. 1260–1264.

[33] T. Kozu, Y. Akiyama, and S. Yamaguchi, ‘‘Improving RTT fairness on
CUBIC TCP,’’ in Proc. 1st Int. Symp. Comput. Netw. (CANDAR), 2013,
pp. 162–167.

[34] M. Ahmad, J. A. Chaudhry, andM. A. Ngadi, ‘‘Congestion control in multi
channel 802.11 b and 802.11 g wireless networks,’’ Sci. Technol., vol. 15,
no. 2, pp. 146–154, 2012.

[35] S. Jabbar, A. Ahmad, A. A. Ikram, and M. Khan, ‘‘TSEEC-TS/TDMA
based energy efficient congestion control in mobile wireless sensor net-
work,’’ in Proc. World Congr. Eng. Comput. Sci., vol. 2. 2011, pp. 19–21.

[36] C. Wanxiang, S. Peixin, and L. Zhenming, ‘‘Network-assisted conges-
tion control,’’ in Proc. Int. Conf. Info-Tech Info-Net (ICII), vol. 2. 2001,
pp. 28–32.

[37] S. Jabbar, K. Naseer, M. Gohar, S. Rho, and H. Chang, ‘‘Trust model at ser-
vice layer of cloud computing for educational institutes,’’ J. Supercomput.,
vol. 72, no. 1, pp. 58–83, 2016.

[38] S. Jabbar, F. Ullah, S. Khalid, M. Khan, and K. Han, ‘‘Semantic inter-
operability in heterogeneous IoT infrastructure for healthcare,’’ Wireless
Commun. Mobile Comput., vol. 2017, Mar. 2017, Art. no. 9731806.

[39] S. Hagag and A. El-Sayed, ‘‘Enhanced TCP westwood congestion avoid-
ance mechanism (TCP WestwoodNew),’’ Int. J. Comput. Appl., vol. 45,
no. 5, pp. 21–29, 2012.

[40] T. Koyama and K. Aoki, ‘‘Slow start algorithm for mobile broadband
networks including delay unrelated to network congestion,’’ in Proc. Int.
Conf. Comput., Netw., Commun. (ICNC), 2015, pp. 148–152.

[41] L. S. Brakmo and L. L. Peterson, ‘‘TCP Vegas: End to end congestion
avoidance on a global Internet,’’ IEEE J. Sel. Areas Commun., vol. 13,
no. 8, pp. 1465–1480, Oct. 1995.

[42] J. Hoe, ‘‘Improving the start-up behavior of a congestion control scheme
for TCP,’’ ACM SIGCOMM Comput. Commun. Rev., vol. 26, no. 4,
pp. 270–280, 1996.

[43] R. Wang, G. Pau, K. Yamada, M. Sanadidi, and M. Gerla, ‘‘TCP startup
performance in large bandwidth networks,’’ in Proc. 23rd Annu. Joint
Conf. IEEE Comput. Commun. Soc. (INFOCOM), vol. 2. Mar. 2004,
pp. 796–805.

[44] N. Hu and P. Steenkiste, ‘‘Improving TCP startup performance using active
measurements: Algorithm and evaluation,’’ in Proc. 11th IEEE Int. Conf.
Netw. Protocols, Nov. 2003, pp. 107–118.

[45] S. Giordano, G. Procissi, F. Russo, and R. Secchi, ‘‘On the use of pipe size
estimators to improve TCP transient behavior,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), Jun. 2005, pp. 16–20.

[46] C. Ho, Y. Chan, and Y. Chen, ‘‘Gallop-Vegas: An enhanced slow-start
mechanism for TCP Vegas,’’ J. Commun. Netw., vol. 8, no. 3, pp. 351–422,
2006.

[47] M. Aron and P. Druschel, ‘‘TCP: Improving start-up dynamics by adaptive
timers and congestion control,’’ Dept. Comput. Sci., Rice Univ., Houston,
TX, USA, Tech. Rep. TR98-318, 1998.

[48] R. Jain, D.-M. Chiu, and W. Hawe, ‘‘A quantitative measure of fairness
and discrimination for resource allocation in shared computer systems,’’
in Proc. Conf. Eastern Res. Lab., Digit. Equip. Corp. Hudson, 1998,
pp. 141–167.

[49] L. Xue, S. Kumar, C. Cui, and S.-J. Park, ‘‘A study of fairness among
heterogeneous TCP variants over 10 Gbps high-speed optical networks,’’
Opt. Switching Netw., vol. 13, pp. 124–134, Jul. 2014.

[50] B. Qureshi, M. Othman, S. Subramaniam, and N. A. Wati, ‘‘QTCP:
Improving throughput performance evaluation with high-speed networks,’’
Arabian J. Sci. Eng., vol. 38, no. 10, pp. 2663–2691, 2013.

[51] J. Wang, J. Wen, Y. Han, J. Zhang, C. Li, and Z. Xiong, ‘‘CUBIC-FIT: A
high performance and TCPCUBIC friendly congestion control algorithm,’’
IEEE Commun. Lett., vol. 17, no. 8, pp. 1664–1667, 2013.

[52] C. A. Froldi and N. L. S. Fonseca, ‘‘A DCCP variant for high speed
networks,’’ IEEE Trans. Latin America, vol. 10, no. 4, pp. 1947–1953,
Jun. 2012.

[53] C. Callegari, S. Giordano, M. Pagano, and T. Pepe, ‘‘Behavior analysis of
TCP Linux variants,’’ Comput. Netw., vol. 56, no. 1, pp. 462–476, 2012.

[54] Y. Zhou and J. Yan, ‘‘Experimental evaluation of TCP implementations
on Linux/windows platforms,’’ in Proc. 21st Int. Conf. Comput. Commun.
Netw. (ICCCN), 2012, pp. 1–5.

[55] H. Yamamoto, G. Komada, K. Nakamura, T. Takahashi, and K. Yamazaki,
‘‘Performance comparison of enhanced TCPs over high-speed internet-
working satellite (winds),’’ in Proc. 11th Int. Symp. Appl. Internet (SAINT-
IPSJ), 2011, pp. 274–278.

[56] G. Marfia, C. E. Palazzi, G. Pau, M. Gerla, and M. Roccetti, ‘‘TCP libra:
Derivation, analysis, and comparison with other rtt-fair TCPs,’’ Comput.
Netw., vol. 54, no. 14, pp. 2327–2344, 2010.

[57] I. Abdeljaouad, H. Rachidi, S. Fernandes, and A. Karmouch, ‘‘Perfor-
mance analysis of modern TCP variants: A comparison of TCP CUBICc,
TCP compound and TCP newreno,’’ in Proc. 25th Biennial Symp.
Commun. (QBSC), 2010, pp. 80–83.

[58] S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu, ‘‘A step toward realistic
performance evaluation of high-speed TCP variants,’’ in Proc. 4th Int.
Workshop Protocols Fast Long-Distance Netw. (PFLDnet), vol. 35. 2006,
pp. 331–343.

[59] Y. T. Li, D. Leith, and R. N. Shorten, ‘‘Experimental evaluation of TCP
protocols for high-speed networks,’’ IEEE/ACM Trans. Netw., vol. 15,
no. 5, pp. 1109–1122, Oct. 2007.

[60] S. Utsumi, S. M. S. Zabir, and N. Shiratori, ‘‘TCP-cherry: A new approach
for TCP congestion control over satellite ip networks,’’Comput. Commun.,
vol. 31, no. 10, pp. 2541–2561, 2008.

[61] J. Olsén, ‘‘On packet loss rates used for TCP network modeling,’’ Request
RFC, vol. 42, no. 4, pp. 332–350, 2003.

[62] S. Poojary and V. Sharma, ‘‘Analytical model for congestion control and
throughput with TCP CUBIC connections,’’ in Proc. ISSC Bangalore,
GLOBECOM, vol. 4. Dec. 2011, pp. 1–6.

[63] G. A. Abed, M. Ismail, and K. Jumari, ‘‘A comparison and analysis
of congestion window for HS-TCP, full-TCP, and TCP-Linux in long
term evolution system model,’’ in Proc. Conf. Open Syst. (ICOS), 2011,
pp. 358–362.

[64] W. Xu, Z. Zhou, D. Pham, C. Ji, M. Yang, and Q. Liu, ‘‘Hybrid congestion
control for high-speed networks,’’ J. Netw. Comput. Appl., vol. 34, no. 4,
pp. 1416–1428, 2011.

[65] C.-Y. Ho, C.-Y. Ho, and J.-T. Wang, ‘‘Performance improvement of delay-
based TCPs in asymmetric networks,’’ IEEE Commun. Lett., vol. 15, no. 3,
pp. 355–357, Mar. 2011.

[66] A. Eshete, Y. Jiang, and L. Landmark, ‘‘Fairness among high speed and
traditional TCP under different queue management mechanisms,’’ in Proc.
Asian Internet Eng. Conf., 2012, pp. 39–46.

[67] R. Oura and S. Yamaguchi, ‘‘Fairness comparisons among modern TCP
implementations,’’ in Proc. 26th Int. Conf. Adv. Inf. Netw. Appl. Work-
shops (WAINA), 2012, pp. 909–914.

[68] H. Torkey, G. Attiya, and A. A. Nabi, ‘‘An efficient congestion control
protocol for wired/wireless networks,’’ Int. J. Electron. Commun. Comput.
Eng., vol. 5, no. 1, pp. 77–81, 2014.

[69] D. Leith and R. Shorten, ‘‘H-TCP: TCP for high-speed and long-distance
networks,’’ inProc. 2nd Int. Workshop Protocols Fast Long-Distance Netw.
(PFLDnet, 2004, pp. 111–131.

[70] D. Leith, R. Shorten, and G. McCullagh, ‘‘Experimental evaluation of
CUBIC-TCP,’’ J. Hamilton Inst. Ireland, vol. 44, no. 3, pp. 212–232, 2008.

[71] A. Ahmad, S. Jabbar, A. Paul, and S. Rho, ‘‘Mobility aware energy efficient
congestion control in mobile wireless sensor network,’’ Int. J. Distrib.
Sensor Netw., vol. 10, no. 3, p. 530416, Jan. 2014.

[72] M. S. Faridi, Z. Javed, M. H. Abid, M. Ahmed, and M. A. B. Ngadi,
‘‘IROTS: A proposed cots evaluation & selection methodology for compo-
nent based software engineering in under-development countries,’’ in Proc.
2nd Int. Conf. Adv. Comput. Sci. Eng. (CSE), 2013.

[73] D. J. Leith, L. L. H. Andrew, T. Quetchenbach, and R. N. Shorten,
‘‘Experimental evaluation of delay/loss-based TCP congestion control
algorithms,’’ in Proc. 6th Int. Workshop Protocols Fast Long-Distance
Netw. (PFLDnet), vol. 2. 2008, pp. 221–271.

[74] D. J. Leith and R. N. Shorten, ‘‘Next generation TCP,’’ in Proc. 6th Int.
Workshop Protocols Fast Long-Distance Netw. (PFLDnet), vol. 61. 2008,
pp. 407–420.

VOLUME 6, 2018 11655



M. Ahmad et al.: End-to-End Loss-Based TCP Congestion Control Mechanism as a Secured Communication Technology

[75] J. Masaki, G. Nishantha, and Y. Hayashida, ‘‘Development of a high-speed
transport protocol with TCP-reno friendliness,’’ in Proc. 12th Int. Conf.
Adv. Commun. Technol. (ICACT), vol. 1. 2010, pp. 174–179.

[76] W. Yasin, H. Ibrahim, N. A. W. A. Hamid, and N. I. Udzir, ‘‘Performance
analysis of transport control protocol flavours in the existence of packet
reordering phenomena,’’ in Digital Enterprise and Information Systems.
Springer, 2011.

[77] L. Xue, S. Kumary, C. Cui, and S.-J. Park, ‘‘An evaluation of fairness
among heterogeneous TCP variants over 10gbps high-speed networks,’’
in Proc. 37th Conf. Local Comput. Netw. (LCN), 2012, pp. 344–347.

[78] N. Cao and W. Zhang, ‘‘TCP CUBIC with faster convergence: An
improved TCP CUBIC fast convergence mechanism,’’ in Proc. 2nd Int.
Conf. Comput. Sci. Electron. Eng., 2013, pp. 521–542.

[79] T. A. Le, C. S. Hong, and S. Lee, ‘‘MpCUBIC: An extended CUBIC TCP
formultiple paths over high bandwidth-delay networks,’’ inProc. Int. Conf.
ICT Converg. (ICTC), 2011, pp. 34–39.

[80] A. U. Salleh, Z. Ishak, N. M. Din, and M. Z. Jamaludin, ‘‘Trace analyzer
for ns-2,’’ in Proc. 4th Student Conf. Res. Develop. (SCORed), 2006,
pp. 29–32.

[81] R. Stanojevic, R. N. Shorten, and C. M. Kellett, ‘‘Adaptive tuning of drop-
tail buffers for reducing queuing delays,’’ IEEE Commun. Lett., vol. 10,
no. 7, pp. 570–572, Jul. 2006.

MUDASSAR AHMAD has 17 years’ experience
as a Network Manager at Textile Industry. He is
currently serving as an Assistant Professor with
the Department of Computer Science, National
Textile University, Pakistan. His research work is
published in many conferences and journals. His
research interests include the Internet of Things,
bid data, and healthcare. He is an Associate Editor
in the IEEE NEWSLETTERS.

MAJID HUSSAIN received the Ph.D. degree in
computer science from the University of Engineer-
ing and Technology, Lahore, Pakistan, in 2016.
From 2003 to 2007, he served in well-reputed
institutions of the country as a Lecturer. He served
as an Assistant Professor with the Department of
Computer Science, Government College Univer-
sity at Faisalabad, Pakistan, from 2007 to 2009.
He has been serving as an Assistant Professor with
the Department of Computer Science, COMSATS

Institute of Information Technology at Sahiwal, since 2010. He has published
his research work in well-reputed journals of Springer, Elsevier, and Hin-
dawi. His areas of interests include but are not limited to wireless sensor
networks, visual sensor networks, network security, IoT, and IP. He has been
the reviewer for leading international and national journals.

BEENISH ABBAS received the M.Sc. degree in
computer engineering from UET, Taxila, Pakistan,
in 2008, and the Ph.D. degree from Universiti
Teknologi Malaysia in 2017. She is a member
of the Pervasive Computing Research Group. Her
research interests include mobile and wireless
computing, ad hoc and sensor networks, and wire-
less body area networks.

OMAR ALDABBAS received the B.E. degree
from Philadelphia University, Jordan, in 2003,
and the M.Sc. and Ph.D. degrees from De Mont-
fort University, Leicester, U.K., in 2006 and
2008, respectively, all in computer engineering.
In 2008, he joined the Department of Computer
Engineering, Faculty of Engineering, Al-Balqa’
Applied University, Al-Salt, Jordan, as a Lecturer.
In 2009, he was promoted to an Assistant Profes-
sor. In 2016, he became an Associate Professor.

From 2013 to 2015, he was the Vice Dean of the Faculty of Engineering,
Al-Balqa’ Applied University. Since 2016, he has been the Director of the
Consultations, Studies and Training Center, Al-Balqa’ Applied University.

UZMA JAMIL (M’17) received the master’s
degree from the University of Agriculture at
Faisalabad, Faisalabad, Pakistan. She is currently
pursuing the Ph.D. degree in computer engineering
with Bahria University, Islamabad, Pakistan. She
has 12 years of teaching and research experience
and is a Research Member with the Computer
Vision and Machine Learning Research Group,
Bahria University. She was a Business Plan Exe-
cution Manager at BIC, Government College Uni-

versity at Faisalabad (GCUF), Faisalabad. She gives professional training
on business ideas and how to be an entrepreneur. She was with the Quality
Enhancement Cell, Computer Science Department, GCUF. She was the
President BS (CS) of the Admission Committee. She served as the HOD
with the Computer Science Department. She is also a Senior Lecturer with
the Computer Science and Engineering Department, Government College
University at Faisalabad, Faisalabad, Pakistan, where she has been doing
other administrating tasks since 2005. Her research interests lie in the broad
area of biomedical imaging, image processing, computer vision, pattern
recognition, digital image processing, machine learning, and digital image
analysis. She is a member of the IEEE Women in Engineering. She received
the HEC Scholarship under HEC Indigenous Scholarships Phase II and
the Best Female Faculty Membership of the Division of Engineering and
Computer Sciences, GCUF. She received the Ph.D. Scholarship from the
Higher Education Commission of Pakistan. She presented her Ph.D. work
at the International ISOCC Soc Design Conference, Jeju, South Korea, and
GCUF at the International Workshop on Working with Industries, NUST,
Islamabad. She presented GCUF at the Lecturer Orientation at International
Islamic University, Islamabad.

REHAN ASHRAF received the M.S. degree
in computer engineering from the Center for
Advanced Studies in Engineering, Islamabad,
Pakistan, in 2011, and the Ph.D. degree in com-
puter engineering from the University of Engineer-
ing and Technology at Taxila, Taxila, Pakistan.
He is currently serving as an Assistant Profes-
sor with the Department of Computer Science,
National Textile University, Faisalabad, Pakistan.
He has published a number of research papers in

reputed journals and conferences. His areas of interests are content-base
image retrieval, digital image processing, machine learning techniques, and
computer vision.

SHAHLA ASADI received the Ph.D. degree in
information systems with the Faculty of Comput-
ing, Universiti Teknologi Malaysia, in 2017. She
is the author of two books. Her research inter-
ests include green information technology, green
information systems, big data, wireless sensor
network, and cloud computing. Her journal and
conference research articles have been published
in ISI-indexed and Scopus-indexed Information
Systems.

11656 VOLUME 6, 2018


	INTRODUCTION
	RESEARCH GAP
	LITERATURE REVIEW
	TCP SLOW START PHASE
	ANALYSIS OF TCP SLOW START MODULES


	PERFORMANCE METRICS
	PROTOCOL FAIRNESS
	CONVERGENCE TIME
	GOODPUT
	PACKET LOSS RATE

	METHODOLOGY
	DESIGN AND DEVELOPMENT OF CCM-SS
	TESTING AND PERFORMANCE EVALUATION
	SIMULATION SETUP
	EVALUATION METRICS
	PERFORMANCE EVALUATION

	ASSUMPTIONS AND LIMITATIONS

	DESIGN AND IMPLEMENTATION OF CCM-SS
	DESIGN OF CCM-SS
	BANDWIDTH AND DELAY ESTIMATIONS

	RESULTS AND DISCUSSION
	CONCLUSION AND FUTURE WORK
	REFERENCES
	Biographies
	MUDASSAR AHMAD
	MAJID HUSSAIN
	BEENISH ABBAS
	OMAR ALDABBAS
	UZMA JAMIL
	REHAN ASHRAF
	SHAHLA ASADI


