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ABSTRACT This paper addresses the problem of global state feedback stabilization for a class of genuinely
nonlinear systems with a time-varying power. By revamping the so-called adding a power integrator
technique and the homogeneous domination approach, a new design method called interval homogeneous
domination approach is proposed to delicately design a state feedback control law that renders the nonlinear
systems globally asymptotically stable. The novelty of the proposed scheme owes to the systematic fashion
that provides a distinct perspective to solve the stabilization problem for the nonlinear systems with a
time-varying power.

INDEX TERMS High-order nonlinear systems, adding a power integrator, homogeneous domination, global
stabilization.

I. INTRODUCTION
The past decades have witnessed a rapid advance on research
of efforts aimed at the development of systematic analy-
sis and design approaches for nonlinear control systems.
A large number of works published in the literature have been
dedicated to the problem of global stabilization for various
nonlinear systems (see, e.g., [1]–[14], and the references
therein). In this paper, the primary objective is to investigate
the problem of global state feedback stabilization for a class
of genuinely nonlinear systems described by

ẋ1 = dx2cp(t) + φ1(x, t, u)
...

ẋn−1 = dxncp(t) + φn−1(x, t, u)

ẋn = ducp(t) + φn(x, t, u) (1)

where x = (x1, . . . , xn)T ∈ Rn and u ∈ R are the system
states and control input, respectively. For i = 1, . . . , n, the
nonlinearity φi : Rn

× R+ × R → R is a continuous
function. The time-varying function p : R+ → [p, p] ⊂ R
with 1 ≤ p ≤ p, which is called the power of the sys-
tem (1), is a continuous bounded function, and the power sign
function d·cα(t) is defined as d·cα(t) := | · |α(t)sign(·) for a
continuous function α : R+→ R+.

When the power p(t) is a fixed constant, the system (1) is
called a high-order nonlinear system (i.e., nonlinear systems
in p-normal form) in the literature [15]. Due to the existence
of uncontrollable/unobservable linearization around the ori-
gin, the stabilization problem of high-order nonlinear systems
has been recognized as a challenging problem in the field
of nonlinear control. Fortunately, with the aid of the tech-
niques of adding a power integrator [16] and homogeneous
domination [17], many approaches have been proposed in
the past two decades (see, e.g., [16]–[26]) to overcome the
topological obstruction to the stabilization problem of high-
order nonlinear systems, in which the power is assumed to
be a fixed constant. However, in practice, the power p(t)
might vary for different operation conditions. For instance,
the reduced-order dynamical model of a boiler-turbine unit
in [27] can be expressed as

ẋ1 = a1dx2cp(t) + φ1(x1, u)

ẋ2 = a2x2 + φ2(u) (2)

where a1 and a2 are constant parameters, φ1(·) and φ2(·) are
continuous nonlinear functions, and the power p(t) is varying
in time since this power is usually estimated/identified from
operational data obtained from a power plant; two typical
values of p(t) are p(t) = 1.072 [27] and p(t) = 1.031 [28].
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Another example can be found in [29], in which an under-
actuated weakly coupled mechanical system was considered
and it may involve time-varying powers because of potential
performance deterioration of a hardening spring.

Due to the existence of the time-varying power p(t), it is
not surprising that most of the existing results [16]–[26]
dealing with the stabilization problem for systems with fixed
(constant) powers are inapplicable to the system (1). Specif-
ically, the main obstacles in constructing stabilizers for the
system (1) lie in two aspects: (i) Based on the adding a power
integrator technique [16]–[22] and/or homogeneous domi-
nation approach [23]–[26], the selected Lyapunov functions
inevitably include the (time-varying) power of the system (1);
thus, the associated design method is no longer workable
for constructing stabilizing control laws, and the claimed
stability conclusion is in general not satisfied. (ii) Because
the power p(t) is time-varying, the system (1) is intrinsically
time-varying (non-autonomous) and more complicated. New
perspectives and/ormathematical techniques should be devel-
oped for the control law design, as well as stability analysis.
For these critical reasons, the global stabilization problem for
the system (1) is exceptionally challenging and much more
difficult than the case when the power p(t) is fixed.
In this paper, we aim to tackle the obstacles mentioned

above and shall provide a solution to the problem of global
state feedback stabilization for the system (1). By extending
our previous results [30], which considered the power p(t)
with p = 1, we develop a new design strategy called interval
homogeneous domination approach so that a state feedback
globally stabilizing control law can be constructed for the
system (1) with the power satisfying p ≤ p(t) ≤ p. Thus,
the proposed scheme is applicable to a more general class
of nonlinear systems. It should be pointed that the extension
is nontrivial because in the case of p > 1 the system (1)
is a pure high-order system [16] and the design procedure
together with stability analysis becomes more complicated
and difficult. To overcome this difficulty, a change of coor-
dinates with tunable parameters will be firstly constructed
to acquire a transformed system. Based on the transformed
system, a state feedback globally stabilizer will be organized
for the transformed nominal system by revamping the tech-
nique of adding a power integrator [19]. Finally, the newly
developed technique, i.e., the interval homogeneous domi-
nation approach, will be fulfilled by an exquisite selection
of the parameters equipped in the coordinate transformation
to construct a state feedback stabilizing control law for the
transformed system; equivalently, in the original coordinate,
the resultant control lawwill globally stabilize the system (1).
Notations: For easy reference, the notations used through-

out this paper are summarized as follows.R denotes the set of
all real numbers, R+ the set of all nonnegative real numbers,
and Rn represents the Euclidean space with dimension n. For

a real vector x = (x1, . . . , xn)T ∈ Rn, ‖x‖ :=
√∑n

i=1 x
2
i .

For a scalar continuous function α : R+ → R+, dycα(t) :=
|y|α(t)sign(y) where sign(y) = 1 if y > 0, sign(y) = 0 if y = 0

and sign(y) = −1 if y < 0. Finally, p(t) is the time-varying
power of the system (1), where p(t) satisfies p ≤ p(t) ≤ p
with 1 ≤ p ≤ p.

II. PRELIMINARIES AND TECHNICAL LEMMAS
To begin with, we recall the definition of interval homogene-
ity which is initially proposed in [30] by generalizing the idea
of traditional weighting homogeneity [31]–[33].
Definition 1 [30]: A continuous vector-valued function

f : Rn
× R+ × R → Rn denoted by f(x, t, u) =

(f1(x, t, u), . . . , fn(x, t, u))T with x = (x1, . . . , xn)T ∈ Rn

is said to be interval homogeneous of interval homogeneity
degree [τ , τ ] with respect to the weights (r1, . . . , rn, rn+1)
and ri > 0 for all i = 1, . . . , n+1 if there exists a continuous
real-valued function τ : R→ [τ , τ ] such that

fi(εr1x1, . . . , εrnxn, t, εrn+1u) = εri+τ (t)fi(x, t, u)

for all x ∈ Rn, t ∈ R+, u ∈ R, ε > 0 and i = 1, . . . , n.
Definition 2 [30]: A nonlinear system ẋ = f(x, t, u) with

f : Rn
× R+ × R → Rn is said to be interval homogeneous

of degree [τ , τ ] if f(x, t, u) is continuous and interval homo-
geneous of interval homogeneity degree [τ , τ ].

Next, we list some useful lemmas that will be used fre-
quently throughout this paper. The detailed proofs of the
first three lemmas can be found in the literature, such
as [34]–[36].
Lemma 1 [34]: Let k(t) be a continuous real-valued func-

tion satisfying k(t) ≥ 1 for all t ∈ R. The following
inequality holds for any t, x1, x2 ∈ R:∣∣∣dx1ck(t)−dx2ck(t)∣∣∣ ≤ k(t)

(
2k(t)−2+2

)
×

(
|x1−x2|k(t) + |x1−x2||x2|k(t)−1

)
where |x2|k(t)−1 := 0 if x2 = 0 and k(t) = 1.
Lemma 2 [35]: Let k1, k2 and g be continuous real-

valued functions. The following inequality holds for any
t, x1, x2 ∈ R:

|x1|k1(t)|x2|k2(t) ≤
k1(t)g(x1, x2)
k1(t)+ k2(t)

|x1|k1(t)+k2(t)

+
k2(t)g

−
k1(t)
k2(t) (x1, x2)

k1(t)+ k2(t)
|x2|k1(t)+k2(t).

Lemma 3 [36]: Let k be a continuous real-valued func-
tion. The following inequality holds for all t ∈ R and xi ∈ R
with i = 1, . . . , n:

(|x1| + · · · + |xn|)k(t) ≤ max
(
1, nk(t)−1

)
×

(
|x1|k(t) + · · · + |xn|k(t)

)
.

The lemma listed below contributes to a powerful tool for
the stability analysis in this paper.
Lemma 4: Let g and k be real-valued functions. If the

function k(·) satisfies that k ≤ k(t) ≤ k , then the following
inequality holds for all x ∈ Rn and t ∈ R:

gk(t)(x) ≥
gk (x)

1+ g2k−k (x)
.
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Proof: Indeed, we only need to prove the case of
g(x) > 0. By direct calculation, one has

k(t)+ k ≤ k + k ≤ 2k + k(t).

With this inequality in mind, one can verify that

γ k+k (x) ≤ γ k(t)+k (x)+ γ 2k+k(t)(x).

This completes the proof.
Remark 1: Lemma 4 is crucial in the subsequent stability

analysis due to the following two aspects. (i) It provides an
effective lower bound of a power function, which is exploited
to dominate time-varying properties of the power function.
(ii) It gives an insight into the satisfactory solution for multi-
ple nonidentical time-varying powers.

III. MAIN RESULTS
Without doubt the global stabilization problem of the sys-
tem (1) is achievable only under certain conditions on the
power p(t) and nonlinearities φi(x, t, u)’s. Thus, we impose
the following assumptions:
Assumption 1: For the bounds p and p in the system (1),

the following inequality is satisfied:

(p− p) ≤
(1− κ)(

1+ p+ p2 + · · · + pn−2
)

for a constant 0 < κ < 1.
Assumption 2: There is a real constant c ≥ 0 such that

|φi(x, t, u)| ≤ c×
n∑
i=1

|xi|p(t)

for all x ∈ Rn, t ∈ R+, u ∈ R and i = 1, . . . , n, where p(t) is
the power of the system (1).

It is worth noting that Assumption 1 presents a restriction
on the magnitude of the power p(t) (i.e., the distance between
p and p) so that the existence of a stabilizing control law for
the system (1) can be guaranteed; that is, we only consider the
system (1) with a bounded time-varying power. Assumption 2
gives a growth condition of φi(x, t, u) (i.e., the upper bounds
of φi(x, t, u)) that is frequently used in the literature [16], [37]
with a fixed power p(t).

In the case when φi(x, t, u) = 0 for all i = 1, . . . , n, one
can find from Definition 2 that the system (1) is interval
homogeneous of degree [p − 1, p − 1] with respect to the
weights

(r1, r2, . . . , rn, rn+1) = (1, . . . , 1, 1) .

In addition, Assumption 2 implies that φi(x, t, u)’s are
bounded by the interval homogeneous functions with inter-
val homogeneity degree [τ , τ ] with respect to the weights
(1, . . . , 1). Thus, in the case when φi(x, t, u) 6= 0 for some
i ∈ {1, . . . , n}, the nature of interval homogeneity of the
system (1) can be appropriately utilized so that the influence
of the nonlinearities φi(x, t, u)’s is dominated delicately by
interval homogeneous parts of the system (1); this process

is called interval homogeneous domination. To this end,
consider the following change of coordinates:

zi =
xi

Li−1
, i = 1, . . . , n, and v =

u
Ln

(3)

where

Lj = L
α(j)
1 , L0 , 1

α(j) =

∑j−1
m=0 p

m

pj−1
, α(0) , 0, j = 1, . . . , n (4)

and L1 ≥ 1 is a gain parameter to be determined later. Note
that, the coordinate transformation together with the gain
L1 ≥ 1 given by (3)–(4) plays a key role in constructing a
global state feedback stabilizer for the system (1). From the
relation (4), the following is easy to verify:

Li−1L
p(t)
i+1

L
p(t)+1
i

=
L

∑i−2
l=0 p

l/pi−2

1 L
p(t)×

∑i
l=0 p

l/pi

1

L
(p(t)+1)×

∑i−1
l=0 p

l/pi−1

1

= L
(p(t)−p)/pi

1

≥ 1 (5)

and

L
p(t)
i

Li−1
≥

L
p
i

Li−1

=
L

∑i−1
l=0 p

l/pi−2

1

L

∑i−2
l=0 p

lpi−2

1

= L
p
1 (6)

for i = 1, . . . , n − 1. Under the new coordinate (3)–(4),
the system (1) can be equivalently described as

ż1 = L
p(t)
1 dz2c

p(t)
+φ1 (t, z1, . . . , znLn−1, vLn)

...

żn−1 =
L
p(t)
n−1

Ln−2
dzncp(t)+

φn−1 (t, z1, . . . , znLn−1, vLn)
Ln−2

żn =
L
p(t)
n

Ln−1
dvcp(t)+

φn (t, z1, . . . , znLn−1, vLn)
Ln−1

. (7)

With the transformed system (7) in mind, in what follows
we first show that there is a state feedback control law that
globally renders the nominal system of (7), i.e., the system (7)
with φi(x, t, u) = 0 for all i = 1, . . . , n, globally (uniformly)
asymptotically stable. Then, by delicately choosing Li for
i = 1, . . . , n, a scaled globally stabilizing control law will
be constructed for the system (7); that is, equivalently, in the
original coordinate, a globally stabilizing control law can be
obtained accordingly for the (original) system (1).
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A. STABILIZING CONTROL LAW FOR THE
NOMINAL SYSTEM
In this subsection, we consider the nominal system of (7)
which takes the form of

ż1 = L
p(t)
1 dz2c

p(t)

...

żn−1 =
L
p(t)
n−1

Ln−2
dzncp(t)

żn =
L
p(t)
n

Ln−1
dvcp(t). (8)

Clearly, (8) is interval homogeneous of degree
[p − 1, p − 1] with respect to the weights (1, 1, . . . , 1).
The following theorem claims that the global stabilization
problem of (8) is solvable by a state feedback control law.
Theorem 1: There always exists a state feedback control

law that renders the nominal system (8) globally (uniformly)
asymptotically stable.

Proof: This proof is based on an inductive argument
that simultaneously constructs a positive definite and proper
Lyapunov function and a globally stabilizing control law for
the nominal system (8).
First Step: Select the following positive definite and

proper1 Lyapunov function

V1(z1) =
1
2
z21

which is smooth. Then, denoting ξ1 := z1, we derive

V̇1(z1) = L
p(t)
1 ξ1dz∗2c

p(t)
+ L

p(t)
1 ξ1

(
dz2cp(t) − dz∗2c

p(t)
)

where z∗2 is a virtual control law. Clearly, the virtual control
law

z∗2 = −β1z1 with β1 = n ≥ 1

yields

V̇1(z1) ≤ L
p(t)
1 ξ1d−β1z1cp(t) + L

p(t)
1 ξ1

(
dz2cp(t) − dz∗2c

p(t)
)

≤ −L
p(t)
1 n|ξ1|p(t)+1 + L

p(t)
1 ξ1

(
dz2cp(t) − dz∗2c

p(t)
)
.

(9)

Inductive Step: Suppose that at step k with
k ∈ {1, . . . , n − 1}, there exist a smooth positive definite
and proper Lyapunov function Vk (z1, . . . , zk ) and the virtual
control laws z∗1, . . . , z

∗
k , z
∗

k+1, denoted by

z∗1 = 0 ξ1 = z1 − z∗1
z∗2 = −ξ1β1 ξ2 = z2 − z∗2

...
...

z∗k = −ξk−1βk−1 ξk = zk − z∗k
z∗k+1 = −ξkβk ξk+1 = zk+1 − z∗k+1 (10)

1A nonnegative function V : Rn → R is said to be proper if for any b > 0
the set V−1([0, b]) ⊂ Rn is compact in Rn.

with constants β1 ≥ 1, . . . , βk ≥ 1, such that

V̇k (z1, . . . , zk ) ≤ −(n− k + 1)×
k∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
k

Lk−1
ξk

(
dzk+1cp(t) − dz∗k+1c

p(t)
)
.

(11)

Clearly, (11) reduces to (9) when k = 1. We claim that (11)
also holds at step k + 1. To verify this, we set

Vk+1(z1, . . . , zk+1) = Vk (z1, . . . , zk )+
ξ2k+1

2
(12)

which is smooth, positive definite, and proper. Then, it fol-
lows from (8) and (11) that

V̇k+1(z1, . . . , zk+1)

≤ −(n− k + 1)×
k∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
k

Lk−1
ξk

(
dzk+1cp(t) − dz∗k+1c

p(t)
)

+

k∑
j=1

β̄kj L
p(t)
j

Lj−1
ξk+1dzj+1cp(t) +

L
p(t)
k+1

Lk
ξk+1dz∗k+2c

p(t)

+
L
p(t)
k+1

Lk
ξk+1

(
dzk+2cp(t) − dz∗k+2c

p(t)
)

(13)

where β̄kj = βkβk−1 · · ·βj and z∗k+2 is a virtual control law.
In order to proceed further, an estimate for each term in the
right-hand side of (13) is necessary.

First, by Lemma 1, we have

ξk

(
dzk+1cp(t) − dz∗k+1c

p(t)
)

≤ |ξk | ×

∣∣∣dzk+1cp(t) − dz∗k+1cp(t)∣∣∣
≤ p(t)

(
2p(t)−2 + 2

)
|ξk |

×

(
|ξk+1|

p(t)
+ |ξk+1|β

p(t)−1
k |ξk |

p(t)−1
)

≤ ck+1
(
|ξk | |ξk+1|

p(t)
+ |ξk |

p(t)
|ξk+1|

)
(14)

for a constant ck+1 > 0. Using Lemma 2, one can further find
from (14) that

ξk

(
dzk+1cp(t) − dz∗k+1c

p(t)
)

≤
1
4
|ξk |

p(t)+1
+

4
1
p(t) c

p(t)+1
p(t)

k+1 p(t)

p(t)+ 1

(
1

p(t)+ 1

) 1
p(t)

|ξk+1|
p(t)

+
1
4
|ξk |

p(t)+1
+

4p(t)cp(t)+1k+1

p(t)+ 1

(
p(t)

p(t)+ 1

)p(t)
|ξk+1|

p(t)

≤
1
2
|ξk |

p(t)+1
+ c̃k+1 |ξk+1|p(t)+1 (15)

for a constant c̃k+1 ≥ 1.
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Next, from (5) and (10), it is easy to verify

k∑
j=1

β̄kj L
p(t)
j

Lj−1
ξk+1dzj+1cp(t)

≤

k∑
j=1

∣∣∣∣∣∣ β̄
k
j L

p(t)
j

Lj−1
ξk+1dzj+1cp(t)

∣∣∣∣∣∣
≤

k∑
j=1

b̄k+1L
p(t)
j

Lj−1
|ξk+1|

(∣∣ξj∣∣p(t) + ∣∣ξj+1∣∣p(t))
for a constant b̄k+1 ≥ 1. Using Lemma 2 and the fact
described in (5), it is not difficult to find that

k∑
j=1

β̄kj L
p(t)
j

Lj−1
ξk+1

[
zj+1

]p(t)
≤

1
2
×

k∑
j=1

L
p(t)
j

Lj−1
|ξj|

p(t)+1
+
b̃k+1L

p(t)
k

Lk−1
|ξk+1|

p(t)+1 (16)

for a constant b̃k+1 ≥ 1.
Substituting the above estimates into (13) and using the

relation of (5), one has

V̇k+1(z1, . . . , zk+1) ≤ −(n− k)×
k∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
k+1

Lk

(
c̃k+1 + b̃k+1

)
|ξk+1|

p(t)+1

+
L
p(t)
k+1

Lk
ξk+1dz∗k+2c

p(t)

+
L
p(t)
k+1

Lk
ξk+1

(
dzk+2cp(t)−dz∗k+2c

p(t)
)
.

(17)

Thus, the virtual control law of the form

z∗k+2 = −βk+1ξk+1
with βk+1 = (c̃k+1 + b̃k+1 + n− k) ≥ 1

renders that

V̇k+1(z1, . . . , zk+1)

≤ −(n− k)×
k∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
k+1

Lk

(
c̃k+1 + b̃k+1

)
|ξk+1|

p(t)+1

+
L
p(t)
k+1

Lk
ξk+1d−βk+1ξk+1c

p(t)

+
L
p(t)
k+1

Lk
ξk+1

(
dzk+2cp(t) − dz∗k+2c

p(t)
)

≤ −(n− k)×
k+1∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
k+1

Lk
ξk+1

(
dzk+2cp(t) − dz∗k+2c

p(t)
)

(18)

in which we have used the fact of βp(t)k+1 ≥ βk+1 ≥ 1. As a
result, (18) completes the inductive proof and (11) holds at
step k + 1. From Inductive Step, one can conclude that (18)
holds for all k = 1, . . . , n − 1, with a set of virtual control
laws (10).
Last Step: At step k = n with dzn+1cp(t) := v, one can find

that there exist a virtual control law

z∗n+1 = −βnξn with βn ≥ 1

and a smooth positive definite and proper Lyapunov function

Vn(z) = Vn−1(z1, . . . , zn−1)+
ξ2n

2
(19)

such that

V̇n(z) ≤ −
n∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

+
L
p(t)
n

Ln−1
ξn

(
v− dz∗n+1c

p(t)
)

(20)

where z = (z1, . . . , zn)T ∈ Rn. Simply choosing

v = z∗n+1
= −βnξn

= −βn

(
zn + βn−1zn−1 + βn−1βn−2zn−2 + · · ·

+βn−1βn−2 · · ·β1z1
)

(21)

it is easy to deduce from (6) and (20) that

V̇n(z) ≤ −
n∑
i=1

L
p(t)
i

Li−1
|ξi|

p(t)+1

≤ −L
p
1

(
|ξ1|

p(t)+1
+ |ξ2|

p(t)+1
+ · · · + |ξn|

p(t)+1
)
.

(22)

Now, applying Lemmas 3 and 4 to the inequality (22) yields

V̇n(z) ≤ −
L
p
1

np

(
(|ξ1| + |ξ2| + · · · + |ξn|)

p+1

1+ (|ξ1| + |ξ2| + · · · + |ξn|)2p−1

)
.

It is obvious that the right-hand side of the above inequality
is continuous and positive definite (with respect to x ∈ Rn).
Therefore, one can conclude that the control law (21) is a
globally (uniformly) stabilizing control law for the nominal
system (8).

B. INTERVAL HOMOGENEOUS DOMINATION APPROACH
In this section, we shall show that under Assumptions 1 and 2,
the problem of global state feedback stabilization for the
system (7) is solvable. Specifically, by fulfilling the interval
homogeneous domination, i.e., the process of suitably scaling
the gainL1, a state feedback control lawwill be constructed to
globally stabilize the perturbed system (7). To see this, we set

f(z, t) = (f1(z, t), f2(z, t), . . . , fn(z, t))T

:=

(
L
p(t)
1 dz2c

p(t),
L
p(t)
2

L1
dz3cp(t), . . . ,

L
p(t)
n

Ln−1
v

)T
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and

8(z, t, v) = (81(z, t, v),82(z, t, v), . . . , 8n(z, t, v))T

:=

(
φ1(·)

L
p
1

,
φ2(·)

L
p
2

, . . . ,
φn(·)

L
p
n

)T
.

It is straightforward to verify that the closed-loop system (7)
and (21) can be expressed in the following compact form

ż = f(z, t)+ L
p
18(z, t, v). (23)

In addition, from Assumption 1, it is not difficult to show that

pα(j− 1)− pα(i) = p

∑j−2
m=0 p

m

pj−2
− p

∑i−1
m=0 p

m

pi−1

≤

pi−2
(
p−p

)
+

(
p−p

) (∑i−3
m=0 p

m
)
−1

pi−2

≤

(
p− p

) (∑i−2
m=0 p

m
)
− 1

pi−2

≤ −
κ

pn
(24)

for all j = 2, . . . , i and i = 2, . . . , n. Before proceeding,
we first introduce a proposition whose proof is included in
the Appendix.
Proposition 1: For any j = 2, . . . , k, k + 1 with k ∈
{1, . . . , n}, there exists a constant πj ≥ 1, which is indepen-
dent of p(t), such that

|z1|p(t) + · · · + |zj|p(t) ≤ πj ×
(
|ξ1|

p(t)
+ · · · + |ξj|

p(t)
)
.

Now, by Assumption 2, Proposition 1, (6), (10) and (24),
one can verify that∣∣∣∣∣φi(·)L

p
i

∣∣∣∣∣ ≤ γ
 1

L
p
i

|z1|p(t) +
1

L
p
i

×

i∑
j=2

|Lj−1zj|p(t)


≤

γ

L
κ
pn

1

(
|z1|p(t) + · · · + |zi|p(t)

)
≤

γ̃

L
κ
pn

1

(
|ξ1|

p(t)
+ · · · + |ξi|

p(t)
)

(25)

for all i = 1, . . . , n and for a constant γ̃ ≥ 0.
With the aid of (23) and (25), we are now ready to present

our main results.
Theorem 2: Suppose that Assumptions 1 and 2 are satis-

fied. There exists a state feedback control law that renders
the system (7) globally (uniformly) asymptotically stable.

Proof: Choose the same Lyapunov function Vn(z) given
by (19). One can deduce from (22) and (23) that

V̇n(z) =
∂Vn(z)
∂z

f(z, t)+ L
p
1
∂Vn(z)
∂z

8(z, t, v)

≤ −L
p
1

(
|ξ1|

p(t)+1
+ · · · + |ξn|

p(t)+1
)

+L
p
1
∂Vn(z)
∂z

8(z, t, v). (26)

We further analyze the right-hand side of the inequality (26).
By a straightforward calculation, one has∥∥∥∥∂Vn(z)∂z

∥∥∥∥ ≤ |ξ1| + β1 |ξ2| + · · · + (βn−1βn−2 · · ·β1) |ξn|
+ |ξ2| + β2 |ξ3| + · · · + (βn−1βn−2 · · ·β2) |ξn|

+ · · · + |ξn−1| + βn−1 |ξn| + |ξn|

≤ σ (|ξ1| + · · · + |ξn|) (27)

for a constant σ > 0. Besides, it is also easy to deduce
from (25) that

‖8(z, t, v)‖ ≤

∣∣∣∣∣φ1(·)L
p
1

∣∣∣∣∣+
∣∣∣∣∣φ2(·)L

p
2

∣∣∣∣∣+ · · · +
∣∣∣∣∣φn(·)L

p
n

∣∣∣∣∣
≤

γ̃

L
κ
pn

1

|ξ1|
p(t)
+

γ̃

L
κ
pn

1

(
|ξ1|

p(t)
+ |ξ2|

p(t)
)
+ · · ·

+
γ̃

L
κ
pn

1

(
|ξ1|

p(t)
+ |ξ2|

p(t)
+ · · · + |ξn|

p(t)
)

≤
γ̄

L
κ
pn

1

(
|ξ1|

p(t)
+ · · · + |ξn|

p(t)
)

(28)

for a constant γ̄ ≥ 0. With the facts from (27) and (28) in
mind, it follows from (26) and Lemma 2 that

V̇n(z) ≤ −L
p
1

(
|ξ1|

p(t)+1
+ · · · + |ξn|

p(t)+1
)

+L
p
1

∥∥∥∥∂Vn(z)∂z

∥∥∥∥× ‖8(z, t, v)‖

≤ −L
p
1

1−
ρ

L
κ
pn

1

(|ξ1|p(t)+1 + · · · + |ξn|p(t)+1)
(29)

for a constant ρ ≥ 0 (noting that ρ > 0 when γ > 0). Now,
by choosing

L1 ≥ max


(

ρ

1− λ

) pn

κ

, 1

 (30)

with an arbitrary real constant 0 < λ < 1, we have

V̇n(z) ≤ −λL
p
1

(
|ξ1|

p(t)+1
+ |ξ2|

p(t)+1
+ · · · + |ξn|

p(t)+1
)
.

(31)

Using Lemmas 3 and 4, it can be deduced from (31) that

V̇n(z) ≤ −
λL

p
1

np

(
(|ξ1| + |ξ2| + · · · + |ξn|)

p+1

1+ (|ξ1| + |ξ2| + · · · + |ξn|)2p−1

)
where the right-hand side of the above inequality is contin-
uous and positive definite (with respect to x ∈ Rn). On the
basis of the derivations given above, one can conclude that
the closed-loop system (7) and (21) is globally (uniformly)
asymptotically stable if L1 and Li for all i = 2, . . . , n are
selected according to the relations (4) and (30).
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Remark 2: It is worth pointing out that, in the existing
results [16]–[26], a common strategy for global stabilization
design is to select a Lyapunov function that involves the
power; however, such a design is inapplicable to the sys-
tem (1) since the resultant Lyapunov function including the
time-varying power p(t) will produce obstacles preventing
us from constructing a global stabilizer. Instead of using
Lyapunov functions with the power p(t), the interval homo-
geneous domination approach developed in this paper guides
us to adopt a Lyapunov function, as shown in (19), which is
independent of the time-varying power. Besides, by the inter-
val homogeneous domination approach, the tedious process
in estimating the nonlinearities during the stabilizing control
law design can be avoided skillfully. Compared to [16]–[26],
our approach not only avoids the usage of Lyapunov functions
with the power p(t) but also provides an innovative way to
achieve the global stabilization for the systems with a time-
vary power.
Remark 3: It should be also emphasized that the design

parameters βi and Li can be determined by a systematic
manner. With the recursively selected βi and Li, the resultant
control lawwill globally stabilize the system (1). Specifically,
the gain (parameter) L1, which leads to a recursive selection
of Li for all i = 2, . . . , n, is intentionally introduced to
enlarge the influence of the interval homogeneous parts
of the system (1) and reduce the effects of nonlinearities.
By suitably selecting the gain L1 ≥ 1 (i.e., performing
interval homogeneous domination), system nonlinearities
can be dominated/compensated perfectly by the interval
homogeneous parts.

IV. EXTENSION
In this section, we will show that the technique presented
previously can be further extended to fulfill the global state
feedback stabilization problem for a more general class of
nonlinear systems. To be more specific, the presented scheme
can be used to cope with the system (1) whose nonlinearities
are not necessarily bounded in the sense of Assumption 2;
i.e., the upper bounds the nonlinearities need not be trian-
gular functions. To this end, the following assumption is
imposed.
Assumption 3: There are two real constants γ ≥ 0 and

0 < ω < 1 such that∣∣∣∣φi(x, t, u)
Lα(i)p

∣∣∣∣ ≤ γ

L
ω
pn
×

n∑
i=1

|zi|p(t)

for all x ∈ Rn, t ∈ R+, u ∈ R and i = 1, . . . , n, where
L ≥ 1 is an arbitrary real number, zj = xj/Lα(j−1) for all
j = 1, . . . , n, and α(i) is given by (4).
Note that, by the relation (25), one can find that

Assumption 2 is a special case of Assumption 3. In addi-
tion, since Assumption 3 also includes the information of
the power p(t) (i.e., the lower bound p), Assumption 1 is
also unnecessary for control law design. In fact, using only

Assumption 3, one can verify that

‖8(z, t, v)‖

≤

∣∣∣∣∣φ1(·)L
p
1

∣∣∣∣∣+
∣∣∣∣∣φ2(·)L

p
2

∣∣∣∣∣+ · · · +
∣∣∣∣∣φn(·)L

p
n

∣∣∣∣∣
≤

τ

L
ω
pn

1

|ξ1|
p(t)
+

τ

L
ω
pn

1

(
|ξ1|

p(t)
+ · · · + |ξn|

p(t)
)
+ · · ·

+
τ

L
ω
pn

1

(
|ξ1|

p(t)
+ · · · + |ξn|

p(t)
)

≤
τ̃

L
ω
pn

1

(
|ξ1|

p(t)
+ · · · + |ξn|

p(t)
)

(32)

for a constant τ̃ ≥ 0, which is similar to (28) and is crucial for
achieving interval homogeneous domination.With this fact in
mind, we are ready to present the following theorem claiming
a more general result on the problem of global stabilization
for the system (1).
Theorem 3: Under Assumption 3, there exists a state

feedback control law that renders the system (7) globally
(uniformly) asymptotically stable.

Proof: Consider exactly the exactly same Lyapunov
function Vn(z) and control law given by (19) and (21). By a
fashion similar to the arguments in (27)–(31), it can be
deduced from (32) that

V̇n(z) ≤ −
λ̃L

p
1

np

(
(|ξ1| + |ξ2| + · · · + |ξn|)

p+1

1+ (|ξ1| + |ξ2| + · · · + |ξn|)2p−1

)

for a constant 0 < λ̃ < 1. As a result, the control law (21)
with L1 and Li for all i = 2, . . . , n being chosen according to
(4) and (30) can globally (uniformly) asymptotically stabilize
the system (7)

V. ILLUSTRATIVE EXAMPLE
Here, we present an example to illustrate how ourmain results
can be applied.

Consider a planar system of the form

ẋ1 = [x2]2+cos(0.5t) + x
1
3
2 sin(5x2)[x1]cos(0.5t)+

5
3

ẋ2 = [u]2+cos(0.5t) (33)

which has the same structure as (1) with p(t) = 2+cos(0.5t),
p = 1, p = 3, φ1(x, t, u) = x1/32 sin(5x2)[x1]cos(0.5t)+5/3

and φ2(x, t, u) = 0. It is worth pointing out that the global
stabilization problem of the system (33) cannot be solved by
the approaches in existing works, such as [16]–[26], because
the schemes developed in [16]–[26] are only applicable to the
systems with fixed powers. By Lemma 2, one has∣∣∣∣φ1(x, t, u)L1

∣∣∣∣ ≤ 1

L
2
3
1

(
|z1|p(t) + |z2|p(t)

)
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which implies that Assumption 3 is satisfied with γ = 1 and
ω = 2/3. Following the proofs given previously, the globally
(uniformly) stabilizing control law can be constructed as

u = −L2
1β2

(
β1x1 +

1
L1
x2

)
(34)

with the gains β1 ≥ 0, β2 ≥ 0 and L1 ≥ 1. The simulation
results depicted in Figs. 1 and 2 are conducted for the case
when (x1(0), x2(0))T = (−0.5, 2.5)T , β1 = 2, β2 = 3, and
L1 = 2.8. The responses of the system (33) with no control
(i.e., open-loop system) are also shown in Figs. 3 and 4
with the same initial condition. Clearly, the control law (34)
renders the system (33) globally (uniformly) asymptotically
stable but the open-loop system of (33) exhibits unstable
behavior; this reveals the effectiveness of the proposed
scheme.

FIGURE 1. Trajectories of x1(t) of the system (33)–(34) with
(x1(0), x2(0)) = (0.5,−2.5).

FIGURE 2. Trajectories of x2(t) of the system (33)–(34) with
(x1(0), x2(0)) = (0.5,−2.5).

FIGURE 3. Trajectories of x1(t) of the system (33) with u = 0 and
(x1(0), x2(0)) = (0.5,−2.5).

FIGURE 4. Trajectories of x2(t) of the system (33) with u = 0 and
(x1(0), x2(0)) = (0.5,−2.5).

VI. CONCLUSION
This paper has presented a new systematic scheme for
designing a state feedback globally (uniformly) stabilizing
control law for a class of nonlinear systems with a time-
varying power. The proposed scheme is accomplished by
combining the revamped adding a power integrator technique
and the newly developed interval homogeneous domination
approach. A distinctive feature of the presented technique
is the ability to cope with more general systems that have
not only the time-varying power but also the nonlinearities
bounded by non-triangular functions.

APPENDIX
PROOF OF PROPOSITION 1
According to (10), it is clear that |z1|p(t) = |ξ1|

p(t).
In addition, by Lemma 3 one can deduce that

|xi|p(t) =
∣∣ξi + x∗i ∣∣p(t)

= |ξi − ξi−1βi−1|
p(t)

≤ 2p−1 |ξi|p(t) + 2p−1βpi−1 |ξi−1|
p(t)

=

(
2p−1 + 2p−1βpi−1

)
·

(
|ξi−1|

p(t)
+ |ξi|

p(t)
)
. (35)
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Clearly, 2p−1 + 2p−1βpi−1 ≥ 1. Define

ρi := 2p−1 + 2p−1 · βi−1 ≥ 1 for all i = 2, . . . , j. (36)

It follows from (35) and (36) that

|z1| = |ξ1|p(t)

|z2| ≤ ρ2
(
|ξ1|

p(t)
+ |ξ2|

p(t)
)

|z3| ≤ ρ3
(
|ξ2|

p(t)
+ |ξ3|

p(t)
)

...

|zj| ≤ ρj
(∣∣ξj−1∣∣p(t) + ∣∣ξj∣∣p(t)) .

This implies that

|z1|p(t) + |z2|p(t) + · · · + |zj|p(t)

≤ |ξ1|
p(t)
+ ρ2

(
|ξ1|

p(t)
+ |ξ2|

p(t)
)
+ · · ·

+ ρj

(∣∣ξj−1∣∣p(t) + ∣∣ξj∣∣p(t))
= πj

(
|ξ1|

p(t)
+ |ξ2|

p(t)
+ · · · + |ξj|

p(t)
)

for a constant πj ≥ 1. This completes the proof.
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