
SPECIAL SECTION ON SOFTWARE STANDARDS AND THEIR IMPACT IN REDUCING
SOFTWARE FAILURES

Received November 30, 2017, accepted January 26, 2018, date of publication February 16, 2018, date of current version April 4, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2803685

A Quantitative Framework for Task Allocation
in Distributed Agile Software Development
WAQAR ASLAM AND FARAH IJAZ
Department of Computer Science and Information Technology, The Islamia University of Bahawalpur Pakistan, Bahawalpur 63100, Pakistan

Corresponding author: Waqar Aslam (waqar.aslam@iub.edu.pk)

ABSTRACT Distributed agile software development is a promising paradigm, addressing the necessities
of emergent software application markets that are described by huge user base and small time to market
characteristics. A key decision involved during the development process, is task allocation to teammembers.
An appropriate task-member assignment facilitates project management, lessens the complexities and
influences chances of project success. Task allocation becomes a more challenging activity in a distributed
agile software development due to insufficient understanding of different factors and dependencies involved.
We propose a task allocation framework comprising of two phases: one, identifying factors and dependencies
that strongly influence the task allocation decision; two, proposing a quantitative method that allocates tasks
to team members who best match the task requirements. Task requirements are expressed as capabilities,
catering for different aspects, such as technical, personal, and environment. Our method stays transparent
to the targeted objectives, in this case the best match. Other objectives, such as quality and cost may be
introduced conveniently; even multiple objectives can be addressed. Such a method also allows quality
evaluation of task-member assignment during and after the project completion, toward minimizing related
risks.

INDEX TERMS Software engineering, Agile software development, distributed software development, task
allocation method, task allocation framework.

I. INTRODUCTION
Software development process is organized to deliver
software products faster and economical with enhanced qual-
ity. Agile methods, focusing on customer satisfaction, lever-
age achieving these objectives efficiently. They emphasize
cooperation of individuals, sustain quick and cheap change-
ability and concentrate on producing functional software
rather than strictly following recommended guidelines [1].
Distributed Software Development (DSD) involves teams
working together to achieve project targets. In DSD, devel-
opment sites can be physically distributed within a coun-
try or around the world involving multiple countries [2].
In DSD projects are developed out of various parts, where
each part may be developed at a separate site. DSD offers
global opportunities to further optimize Software Com-
pany objectives; for instance reduced time, less budget and
enhanced quality, by relieving the confinement due to a single
team.

Executing Agile manifesto (Agile Software Develop-
ment is termed as ASD) in DSD gives rise to Dis-
tributed Agile Software Development (DASD), which offers

excellent paybacks; for instance low development bud-
get, possibility to engage increasing number of developers
with proven better capabilities and experiences gained from
around the world and adopting best practices. We exclu-
sively abbreviate Accruing benefits from DASD is not
straight forward, as it also gives rise to challenges that
span on both paradigms: Agility and Distributivity [2].
These challenges include those due to multiplicity of teams,
such as their interdependencies, poor communication and
coordination skills, mistrust among teams, poor association
among various sites due to spatial and temporal distance
and differences in development cultures and languages [3].
In such a setup, task allocation to team members has a
vital role that controls software cost and time concerns,
which remain underpinned as top objectives of Software
Companies.

Task allocation in non-transparent and unjustified man-
ners can be a quality issue and causes decrease in pro-
ductivity/motivation [4]. Whereas proper project planning
is required for successful project development, in reality
more than 40% of projects failed in China due to ineffectual

15380
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-8780-0240
https://orcid.org/0000-0003-1253-4846


W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

arrangement about development tasks of software project and
human assets [5].

Generally, the process of task allocation primarily relies
on tasks identification. In Agile setups, a set of user stories
are identified, with each user story decomposed into set of
tasks that ought to deliver new functionalities. Iteration plans
involve the details of responsible parties and correspond-
ing task allocation [6]. In each iteration, the development
team members pull out tasks by themselves and make self-
assignments to their wish for completion. Self-inspiration
in the development team members is exposed through this
self-pull method. Adopting Agile practices efficiently by
teams distributed over large geographic locations is difficult
as timely decisions about task allocation are hampered due
to absence of direct eye to eye discussions. Coordination
required amongst team members to agree on task assign-
ments, is weakened [7].

DSD being relatively an emerging paradigm, associated
risks are non-trivial and even new risks emerge [8]. These
risks can easily lead to sub optimal tasks allocation to team
members. Task requirements call for capabilities that are
unevaluated. Mainly the increased complexity of task allo-
cation in DSD is caused by insufficient awareness about
scattered locations, diverse time regions and possibly con-
flicting cultures: all this in contrast to collocated teams where
skills of team member are well known, space is shared,
as also culture and time zone [9]. An effective task allocation
has an increased significance for optimal decisions [9] that
influence benefits and minimize risks of DSD [10]. Gener-
ally task allocation is performed by the support of Scrum
Master (Scrum software development) or Project Manager,
whereas it is based on ability and availability. In such
cases, it is commonly driven by past experiences of team
members.

Another task related challenge is different types of depen-
dencies. In Agile setups, there are task-task dependencies
within same Sprints or different Sprints [11]. Task coordina-
tion among teammembers is required to manage these depen-
dencies [12], [13]. In DSD, distributed sites have important
dependencies on each other. These dependencies have strong
communication as well as coordination requirements. Insuf-
ficient interaction among teams causes lack of team spirit
and create rework problem. Other than these, many factors
affect task allocation in DSD and strongly affect the project
success [9]. A survey done on Project Managers highlights
ad-hoc approaches used. Mostly the focus is on cost cutting
that leads to project failures [10].

A task allocation plan should consider characteristics and
relationships between distributed teams. These characteris-
tics are strongly coupled and have strong impact on project
duration and product quality [14]. One key characteristic is
the expertise levels of team members. There is a need to
assign tasks to the best available experts. Thus, effectively
experts assume best possible roles [9], [15]. The expertise lev-
els should be calculated deterministically considering capa-
bilities of team members per roles.

Task allocation can be done as one-to-one, mapping to
each team member a task or it can be done as many-to-one,
mapping to each team member multiple tasks. An important
objective of task allocation is to lessen the effort of task
completion [16]. Similarly other objectives can be defined to
cope up needs.

This leads us to define our research questions addressed in
this paper:
Q1. Which factors and dependencies influence task alloca-

tion in DASD?
Q2. How to allocate tasks to team members quantitatively

and without ambiguity?
To tackle Q1, we identify all factors impacting the

development process in DASD. These factors have inter-
dependencies, which must be considered during task allo-
cation. Thus dependencies are also identified, so is their
influence on software development process. To tackle Q2,
we develop a mathematical method that allows task allo-
cation per their requirements to best available experts per
their capabilities to handle those tasks. The proposed method
takes into account important determinants of tasks allocation
optimality: experience length and past appraisal to perform
specific tasks and relative importance of task requirements.

The structure of the paper is as follows. Section II offers
related literature and highlights how our work departs from it.
Section III and Section IV identify factors and dependencies
in context of DASD. Our proposed method of task alloca-
tion in DASD is explained in Section V, while Section VI
presents discussions about our framework and limitations of
our method. Finally conclusions are drawn in Section VII.

II. RELATED WORK
Some observations in task allocation experiences are high-
lighted. Three organizations following DASD, have identi-
fied major communication challenges in their task related
activities such as task allocation structure, coordination, man-
agement and levying the delivery responsibility of completed
tasks [2]. Similarly time is wasted during re-orientation of
tasks. Switching between tasks distracts team members. For
instance, sometimes switching between four or five small
tasks require more extra time for re-orientation than to
work on these tasks [17]. Globally dispersed teams generally
require about 2.5 times longer than collocated teams to com-
plete their work due to lack of task coordination [13]. Self-
organizingAgile team have reported that task level challenges
of project management are lack of acceptance criteria and
task dependencies. Lack of acceptance criteria means incom-
plete understanding of requirements that create task level
problems. Task dependencies on other teams need toleration
to interruptions. Work cancellation issue causes errors in
effort estimation, triggering re-sizing and re-work [11].

Next, we report on the emergence of task allocation
approaches. We identify different proposed methodologies
and approaches taken in context of task allocation. For
brevity, it suffices to list them in Table 1 along with brief
descriptions.

VOLUME 6, 2018 15381



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

TABLE 1. Proposed methodologies in the context of task allocation.

III. TYPES OF FACTORS
Different factors are identified that influence task allocation
in DASD (see Table 2). Understanding the nature of project
and people has a foundational role, so some basic project and
people related factors should be recognized [28]. A general
analysis about task allocation in DSD environment also high-
lights the importance of these factors [9], [13]–[15], [26].

Expertise and knowledge are other key factors that mostly
play a vital role in development activities. At times, spe-
cific expertise may be needed, so are technical skills
and domain expertise, which have a strong effect on site

selection decision. Site characteristics, such as analyst intel-
ligence and adaptability, programmer approach to problem
solutions based on available software/hardware tools and
client proximity remain important during task allocation.

Task characteristics, for instance, application experience
and platform experience should also be considered. Labor
cost, considered as key aspect and meant for initiating DSD,
has a significant impact on task allocation decisions, espe-
cially those related to distribution of tasks to various
sites or teams. Practitioners define that labor cost is not
the deciding factor; as communication and coordination cost

15382 VOLUME 6, 2018



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

TABLE 2. Task allocation related factors (DSD and Agile related are shown in bold).

should also be considered, so that deciding factor should be
development cost rather than only the labor cost. A strong
coordination requirement among distributed teams is a criti-
cal factor for task allocation. Availability of team members
should be assessed realistically for their consideration of
engagement in other projects and related commitments. Thus
workload factor should be managed to prevent overloading
and choking the deliverables deadlines. Location, cultural and
time difference create site dependencies, are also deciding
factors during work assignment. In DSD, time difference
can be defined as work day differences, start and end of
the workday, holidays and cultural differences along with
language differences. Political reasons among teams in DSD
can also affect communication and coordination negatively.

Task related factors have a direct impact on allocation of
resources to be consumed during development. An important
aspect is prioritization of tasks, which can reflect business
outcome value of the task. Sometimes customer demand is
also addressed by priority [29].

Previous works differentiate between types of DSD envi-
ronments: offshoring (same company but having offices in
distributed locations), offshoring outsourcing (different com-
panies and different countries) and companies supporting
both types (offshoring and offshore outsourcing). These types
of DSD have impact on development in terms of communi-
cation protocol they use. Offshoring companies having prior
working relationships, most probably follow the same com-
munication protocol for better coordination. The situation
is different when outsourcing is involved [9], [10], [15].
It is observed that DSD control structures are either central-
ized or distributed. In centralized structure, team members
report directly to the project manager, who performs coor-
dination as well as control tasks using collaborative tools.
However in distributed structure, team members interact
directly with local coordinators, who report to the project
manager regularly [15]. These two structure types leverage
development of different cultures in companies.

The described factors are success factors. Their impact on
project success may be ranked as critical, normal or low. Such
ranks may be used to assign weights to path in Path Anal-
ysis or coefficients in Regression Analysis. Another form
of factors, failure factors may be defined to build company

history on full/partial case studies of projects that need to
be avoided. Study of failure factors is significant especially
when contradicting success factors emerge, hence tradeoff
points with certain failure chances may be useful.

IV. TYPES OF DEPENDENCIES
Task dependencies refer to the condition when one task needs
to be completed in order to initiate the subsequent task [11],
or the progress of an action relies on the presence of a thing,
where thing can be an artifact or a person or a piece of
information [12]. Different categories of dependencies are
described in Table 3; these should be recognized to achieve
proper coordination during task allocation.

TABLE 3. Task allocation dependencies (DSD and Agile related are shown
in bold).

Coordination among activities is a key issue in software
development, because coordination allow management of
dependencies among activities [12]. Dispersion of teams
globally presents extensive challenges to coordinating inter-
dependent tasks. Coordination has strong impact on task
performance when tasks have highly dependent activities.
Insufficient coordination among development team is the
major source of budget overruns and delays in addition
to compromised quality of software product. Process rigor,
process standardization and agility supports to solve issues
due to distributed teams and requirements dynamism [35].
There are different categories of coordination issues in
DSD, and these issues depend on the nature of concerned
dependencies: for instance, technical, temporal, and process

VOLUME 6, 2018 15383



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

related coordination issues. Technical coordination prob-
lems arise when software inter-component dependencies
are not managed effectively: for example, due to redun-
dant code and incompatible interfaces, integration problems
arise.

Temporal coordination problems occur when time
dependencies are not efficiently managed: for example,
finish-to-start type of dependencies. When software activi-
ties or software parts are not completed according to project
schedule, other works are affected, such as testing phase
cannot start prior to completion of coding. Occurrence and
identification of dependencies during software development
is normal. When these dependencies are not managed timely
and systematically, process coordination problems arise. For
example, problems arise due to lack of adhering to the estab-
lished software processes and non-resolvability of priority
conflicts [36]. Three basic types of dependencies are defined:
flow, fit and sharing [12], [33]:

A. FLOW DEPENDENC
A situation in which an output of an activity is used by other
activity, e.g., designer creates the design specification that is
then used by developer.

B. FIT DEPENDENCY
A situation when multiple activities create outputs that have
to fit together, e.g., the integration phase where all individual
components have to fit together.

C. SHARING DEPENDENCY
A situation when multiple activities need to use some
resource, usually limited, such as the time of an expert tech-
nical architect.

After defining the three basic dependencies, nowmore spe-
cialized dependencies are defined. Workflow dependencies
relate developers throughout the evolution of modification
request (MR). Work related dependencies emerge as work is
done in different parts of a system. For instance, two develop-
ers might work on two different MRs involving files that are
syntactically or logically interdependent. In that case, mod-
ifications made by each developer may affect others work.
These types of work related dependencies are significantly
complex in nature and involve more effort to identify and
supervise. Results show that logical and work dependencies
are more important, impacting the likelihood of source code
files to exhibit field defects.

D. WORKFLOW DEPENDENCY
It represents definite relationships between project members
based on workflows and/or processes.

E. COORDINATION DEPENDENCY
It corresponds to less explicit relationships between project
members based on their past contributions to the develop-
ment effort. Also technical dependencies of the system under
development are considered [33].

From here on, we identify ASD based dependencies, which
can support significant coordination practices. Knowledge,
process and resource are three dependencies that have impact
on ASD, though first one has a strong impact.

F. KNOWLEDGE DEPENDENCY
When information is required for project progress, it comes
with dependencies such as requirements, expertise, historical
and task-member assignment.

1) REQUIREMENT DEPENDENCY
Knowing requirements and in correct sense have a key role,
absence of which affects the project progress.

2) EXPERTISE DEPENDENCY
It occurs whenever task related technical proficiency is lim-
ited to some individual or group. Three categories of experts
are recognized in the field of software development: tech-
nical, design and domain. These types of knowledge are
recommended to be shared in an ASD environment to lessen
dependence on one person.

3) HISTORICAL DEPENDENCY
A situation in which knowledge about past decisions is
required. There must be somebody who acts as a log of past
events and related decisions.

4) TASK-MEMBER ASSIGNMENT
It reflects assigning task(s) to members, due to which project
progress takes certain course.

G. PROCESS DEPENDENCY
A situation when a task is necessarily finalized prior to
another task can proceed. It includes activity and business
process dependencies.

1) ACTIVITY DEPENDENCY
A situation where in an activity cannot continue till another
specific activity is finished, which has an impact on project
development.

2) BUSINESS PROCESS DEPENDENCY
A situation in which a prevailing business practice mandates
tasks to be carried out in a certain order.

H. COORDINATION DEPENDENCY
It corresponds to less explicit relationships between project
members based on their past contributions to the develop-
ment effort. Also technical dependencies of the system under
development are considered [33].

From here on, we identify ASD based dependencies, which
can support significant coordination practices. Knowledge,
process and resource are three dependencies that have impact
on ASD, though first one has a strong impact.

15384 VOLUME 6, 2018



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

I. KNOWLEDGE DEPENDENCY
When information is required for project progress, it comes
with dependencies such as requirements, expertise, historical
and task-member assignment.

1) REQUIREMENT DEPENDENCY
Knowing requirements and in correct sense have a key role,
absence of which affects the project progress.

2) EXPERTISE DEPENDENCY
It occurs whenever task related technical proficiency is lim-
ited to some individual or group. Three categories of experts
are recognized in the field of software development: tech-
nical, design and domain. These types of knowledge are
recommended to be shared in an ASD environment to lessen
dependence on one person.

3) HISTORICAL DEPENDENCY
A situation in which knowledge about past decisions is
required. There must be somebody who acts as a log of past
events and related decisions.

4) TASK-MEMBER ASSIGNMENT
It reflects assigning task(s) to members, due to which project
progress takes certain course.

J. PROCESS DEPENDENCY
A situation when a task is necessarily finalized prior to
another task can proceed. It includes activity and business
process dependencies.

1) ACTIVITY DEPENDENCY
A situation where in an activity cannot continue till another
specific activity is finished, which has an impact on project
development.

2) BUSINESS PROCESS DEPENDENCY
A situation in which a prevailing business practice mandates
tasks to be carried out in a certain order.

K. RESOURCE DEPENDENCY
When an object is required for project success: it includes
entity and technical dependencies.

1) ENTITY DEPENDENCY
A situation in which a resource (person, place or thing) waits
on the availability of another resource. It can cause a busy
block situation, which must be identified resolved.

2) TECHNICAL DEPENDENCY
A situation in which project progress is influenced by techni-
cal characteristics of development, such as due to interaction
of one software component with another [12].

From here on, we identify four types of task inter-
dependencies: pooled, sequential, reciprocal and team.

L. POOLED DEPENDENCE TASK
Individual team members finalize their work independently,
which are then aggregated. For instance, each team member
writes few modules of code independently before they are
integrated.

M. SEQUENTIAL DEPENDENCE TASK
Individual team members finalize their work and deliver it
to other team members. For instance, team members might
design test cases relevant to his specialization in the overall
test plan. After passing the test, the code and the test cases
used, are input to the next team member.

N. RECIPROCAL DEPENDENCE TASK
The work alternates between team members. For instance,
work alternates between programmers and testers throughout
the modification process.

O. TEAM DEPENDENCE TASK
All the team work simultaneously for problem identifi-
cation and proposing solution. For example, during the
software requirement phase, all the team is engaged
together in understanding the requirements and consensus
building [12], [13], [37].

P. DISTRIBUTED ENVIRONMENT DEPENDENCY
Distributed sites have disparity issues of geographical,
social/cultural, technical, temporal, informational, communi-
cation and organizational nature. Together, they are termed
as DED. Due to these issues dependencies emerge, which
when considered with other relevant factors, complexity
increases during task allocation [9], [10].

Depending on the Software Development objective,
a given task allocation strategy may produce conflict-
ing or sub-optimal plan. An efficient Project Management in
GSD may have underlying tradeoffs, which must be brought
into limelight. For instance, characteristics of the sites and
their relationships have significance during task allocation
in DSD [21]. According to results of a systematic literature
review [26], it is required to develop task distribution tech-
niques and standards for Global Software Development to
achieve potential benefits of development distribution such
as lower costs and high quality.

It is important and pertinent to identify the stated depen-
dencies during software development process. Most of
these dependencies are illustrated in Fig. 1, which also
shows how the relationships of team members are affected
by these dependencies. It shows dependencies such as
sequential dependency (SD), activity dependency (AD), fit
dependency (FT), entity dependency (ED), technical depen-
dency (TD), knowledge dependency (KD), team dependence
task (TDT) and reciprocal dependence task (RDT). Prod-
uct owner is the key stakeholder. According to Agile man-
ifesto, software development process has Product Backlog
containing user stories (USs) and Sprint Backlog containing

VOLUME 6, 2018 15385



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

FIGURE 1. Software development process showing different types of
dependencies. Given a project, n User Stories are identified, out of which
p User Stories are selected on priority for the next Sprint s for which the
task set is denoted by Ts. ℵ denotes the set of natural numbers. Other
abbreviations are explained in text. Dependencies and flows are shown
by dotted lines and solid lines respectively.

tasks list. As the project starts, an initial plan is chalked
out, which after identification of USs, develops into a Sprint
plan. After selection of user stories for Sprint, software devel-
opment phases such as analysis, designing, coding, testing
and integration having sequential and activity dependencies.
Analysis phase also have team dependence tasks that depend
on DT for maintaining Sprint Backlog. Integration phase
includes SD and AD, also having FD. RDT affect coding and
testing phases with two way forward and backward depen-
dency. All the tasks for completion also depend on ED and
KD. During Task allocation, these dependencies should be
considered to decrease inconsistencies that may arise due to
neglecting effect of these dependencies in DASD.

Dependencies between different sites in DSD are shown
in Fig. 2, wherein distributed environment dependen-
cies (DED) are shown. DED stays a strong candidate for con-
sideration in a distributed setup, leveraging timely addressing
the arising issues.

V. TYPES OF CAPABILITIES
Whatever method is used to allocate tasks to team mem-
bers, ultimately factors and dependencies are translated into

FIGURE 2. Distributed environment dependencies.

requirements, which are handled by appropriate expertise,
hence its role has prime importance [9], [15]. This section
focuses on this area and determines the required capabilities
for various software roles.

Capabilities refer to the set of skills, awareness, attitudes,
abilities, andmanners that are used to assess performance and
proficiency in a specific profession. They allow to compare
suitability of team members to fulfill certain roles, even qual-
ity criteria demand per task can be imposed [38], [39]. Other
than identifying suitability, we also achieve comparability
using a quantitative method as developed in the next section.
Different types of required capabilities per software roles are
listed in Table 4. Mainly we are interested in listing required
capabilities per software role, including those due to DASD
environment.

VI. PROPOSED MODEL
This model assigns roles to team members based on their
specific capabilities and experiences. A given team member
may vary on these two aspects from other team members,
irrespective of deployment sites. Independent of team mem-
ber capabilities, the roles pose specific requirements. Based
on their capabilities and experiences, these requirements are
met by the assigned team members, fully or partially. We aim
to evaluate the strength of assignment method quantitatively.
Such quantification also enables comparability with other
assignment methods.

In this paper, we useM notation to represent matrices. Let
there be m roles needed to develop the given project with a
possibility of each role having a varying number of require-
ments. We collect unique requirements of all roles. Let there
be n requirements in this universal collection. A Boolean
matrix representing requirements of all roles is created:
R =

[
ri,j
]
∈ {0, 1}m×n. ri,j = 0 implies absence of require-

ment j in role i. ri,j = 1 implies presence of requirement j in

role i. For clarity R =

 r1,1 · · · r1,n
...
. . .

...

rm,1 · · · rm,n

.
Next we tag an arbitrary role and execute our method,

which quantitatively evaluate the suitability of all team mem-
bers to fulfill that role. Most suitable team member, one with
the highest score, is selected to fulfill that role. In case of
a tie between multiple team members, one with the lowest
index value of some order is selected. The tagged role once
assigned, is subtracted from the next evaluation. The process
is repeated till all roles are assigned.

Let there be t team members ready to take m roles.
In case t 6= m, either there are too few team members

15386 VOLUME 6, 2018



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

TABLE 4. Types of required capabilities for software roles (DSD and Agile related are shown in bold).

or too many team members as compared to roles. This sit-
uation is termed as ‘unBalanced Load’ (uBL). If t = m,
the situation is termed as ‘Balanced Load’ (BL). Ideally t
task sets need to be generated so that team members can
assume one role each. Multiple roles of same nature, for

instance Programmer, can result, but unique identification of
all roles, resolves the issue. Based on decision preferences
such as those due to time constraints on project completion
duration, more team members may be hired on temporary
basis.

VOLUME 6, 2018 15387



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

A simple suitability criterion for role assignment is given
in [40]. We extend it by considering two determinants:

a. Past experience of team members (measured in same
unit such as month) to address specific requirements
of the tagged role i. Experience lengths are specified
conveniently by a matrix. Let E(i)

=

[
e(i)j,k
]
∈ Rt×n

be the matrix of experiences of all team members cor-
responding to the universal collection of roles require-
ments. Here R is the set of Real numbers. Thus e(i)j,k is
the experience length of team member j to address the
role requirement k . From this general representation,
experience lengths extra to role requirements can be
filtered out by using the Boolean matrix R.

b. Past performance appraisal points corresponding to
addressability of specific requirements of roles. These
points are increasingly important, whereby manage-
ment driven evaluation leverages objective develop-

ment of employees. Let P(i)
=

[
p(i)j,k

]
∈ Rt×n

be the matrix of performance appraisal points of all
team members corresponding to the universal collec-
tion of roles requirements. Thus p(i)j,k is the perfor-
mance appraisal points of team member j to address
the role requirement k . Similar to the case of experi-
ence lengths, extra performance appraisal points can be
filtered out by using the Boolean matrix R.

The weighted sum of these determinants is termed as score,
while it seeks an appropriate balance between the influences
of these two determinants. The balance reflects on the past
technical history of the Software Development Company
in context of projects already completed. Thus score =
(experiencelength)× α+ (appraisalpoints)× (1− α), where
0 ≤ α ≤ 1 is the weight used to balance between these two
determinants. Let s(i)j,k denote the score achieved by the team
member j for addressing the role i requirement j, then

s(i)j,k = e(i)j,k × ri,j × α + p
(i)
j,k × ri,j × (1− α) . (1)

In (1), multiplication with ri,j filters out requirements irrel-
evant to a particular role. Scores of team members can vary
drastically, so we consider its relative sense. It is determined
relative to maximum score of all team members for a given

requirement. Relative score is given by rs(i)j,k =
s(i)j,k

max1≤k≤t s
(i)
j,k

.

As pointed out in [44], requirements don’t have equal impact,
so they may be weighted accordingly: rs(i)j,k × w(i)

j,k , where

w(i)
j,k is the relative weight of role i requirement k for team

member j. Given a role and a team member, it is the ratio
between the relative score and sum of all relative scores per

role requirements: w(i)
j,k =

rs(i)j,k∑n
k=1 0rs

(i)
j,k

.

Our method, mapping a given role to a team member,
is computed as

f : N→ N,

f (i) = arg
(
max
1≤j≤t

(∑n

k=1
rs(i)j,k

))
. (2)

arg (·) maps role i to the index of team member with maxi-
mum cumulative relative score. N is the set of Natural num-
bers. Best members for all roles are given by the mapping
f (i) , 1 ≤ i ≤ m.

VII. DISCUSSION AND LIMITATIONS
We are working on a task allocation framework in DASD that
can consider influential factors and dependencies. To this end,
we identified them with a focus on DASD setup, which tends
to introduce complexities for decisionmaking. One important
decision is allocation of tasks to teammembers. This decision
is mostly taken qualitatively and lacks in a deterministic way,
hence involves risks that stay for future/subsequent projects.
The gap is covered by aiming for a quantitative method that
we introduced. This method considers the capability require-
ments per role needed to execute the project. For each role,
there is a selection of the best team member based on the past
experience length, past appraisal for undertaking similar tasks
and relative importance of capability requirements.

Our framework requires a pool of tasks and team members
per site. Goodness of our method depends on appropriate
pooling. The solution space is restricted by the boundaries of
the defined pool. A key point to note is that our task-member
mapping is individual. It does not consider site collective
views. These views can be formed, for instance, to cater for
cost and quality concerns at the site levels. Another point
to note is that our method stays valid when required project
effort needs to be divided among various sites. Local deci-
sions can be left to the site managers, who can map tasks to
members.

VIII. CONCLUSIONS
There is an increasing trend of software development in
distributed Agile setups, especially in the emerging software
application market with immense user bases. In contrast to
two decades back and earlier, when software usage patterns
would take years to emerge and settle, nowadays patterns are
sharpwith exponential times. Such software usagemarket has
a direct impact on software development processes. Of all,
those based on two paradigms, Agility and distributiveness,
have competitive development advantage, as markets require.
We support this notion by forming our first research ques-
tion (Q1.), which is addressed by identifying factors and
dependencies in DASD setups. To lessen the time to mar-
ket for emerging software products, we deem it important
to quantify the process of task allocation objectively. This
aspect we pose as second research question (Q2.), which is
addressed by defining an objective of task allocation to the
best member from the available pool.

Currently we search in an n dimension solution space. In
future we plan to extend this framework by forming collective
site views to define our site-global objectives. Such task
allocation objectives will extend our solution space to wider
areas. Also it would be interesting to compare results of the
proposed method with other searching algorithms such as
those based on heuristics and genetics.

15388 VOLUME 6, 2018



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

REFERENCES
[1] K. N. Rao, G. K. Naidu, and P. Chakka, ‘‘A study of the agile software

development methods, applicability and implications in industry,’’ Int. J.
Softw. Eng. Appl., vol. 5, no. 2, pp. 35–45, 2011.

[2] Y. I. Alzoubi, A. Q. Gill, and A. Al-Ani, ‘‘Empirical studies of geographi-
cally distributed agile development communication challenges: A system-
atic review,’’ Inf. Manage., vol. 53, no. 1, pp. 22–37, Jan. 2016.

[3] S. V. Shrivastava and U. Rathod, ‘‘Categorization of risk factors for
distributed agile projects,’’ Inf. Softw. Technol., vol. 58, pp. 373–387,
Feb. 2015.

[4] A. Aslam et al., ‘‘Decision support system for risk assessment andmanage-
ment strategies in distributed software development,’’ IEEE Access, vol. 5,
pp. 20349–20373, 2017.

[5] W.-N. Chen and J. Zhang, ‘‘Ant colony optimization for software project
scheduling and staffingwith an event-based scheduler,’’ IEEE Trans. Softw.
Eng., vol. 39, no. 1, pp. 1–17, Jan. 2013.

[6] S. Amjad et al., ‘‘Calculating completeness of agile scope in scaled agile
development,’’ IEEE Access, to be published.

[7] J. Lin, ‘‘Context-aware task allocation for distributed agile team,’’ in
Proc. 28th IEEE/ACM Int. Conf. Autom. Softw. Eng. (ASE), Nov. 2013,
pp. 758–761.

[8] W. Aslam, F. Ijaz, M. I. Lali, and W. Mehmood, ‘‘Risk aware and quality
enriched effort estimation for mobile applications in distributed agile
software development,’’ J. Inf. Sci. Eng., vol. 33, no. 6, pp. 1481–1500,
2017.

[9] S. Imtiaz and N. Ikram, ‘‘Dynamics of task allocation in global software
development,’’ J. Softw., Evol. Process, vol. 29, no. 1, Jan. 2016.

[10] A. Lamersdorf, J. Munch, and D. Rombach, ‘‘A survey on the state of the
practice in distributed software development: Criteria for task allocation,’’
in Proc. 14th IEEE Int. Conf. Global Softw. Eng., Jul. 2009, pp. 41–50.

[11] R. Hoda and L. K. Murugesan, ‘‘Multi-level agile project management
challenges: A self-organizing team perspective,’’ J. Syst. Softw., vol. 117,
pp. 245–257, Jul. 2016.

[12] D. E. Strode, ‘‘A dependency taxonomy for agile software development
projects,’’ Inf. Syst. Frontiers, vol. 18, no. 1, pp. 23–46, Feb. 2016.

[13] J. Sutanto, A. Kankanhalli, and B. C. Y. Tan, ‘‘Investigating task coordi-
nation in globally dispersed teams: A structural contingency perspective,’’
ACM Trans. Manage. Inf. Syst., vol. 6, no. 2, pp. 1–31, Jul. 2015.

[14] A. B. Marques, J. R. Carvalho, R. Rodrigues, T. Conte, R. Prikladnicki,
and S. Marczak, ‘‘An ontology for task allocation to teams in distributed
software development,’’ in Proc. IEEE 8th Int. Conf. Global Softw. Eng.,
Aug. 2013, pp. 21–30.

[15] S. Mahmood, S. Anwer, M. Niazi, M. Alshayeb, and I. Richardson, ‘‘Key
factors that influence task allocation in global software development,’’ Inf.
Softw. Technol., vol. 91, pp. 102–122, Nov. 2017.

[16] R. K. Smith, J. E. Hale, and A. S. Parrish, ‘‘An empirical study using
task assignment patterns to improve the accuracy of software effort
estimation,’’ IEEE Trans. Softw. Eng., vol. 27, no. 3, pp. 264–271,
Mar. 2001.

[17] M. Korkala and F. Maurer, ‘‘Waste identification as the means for improv-
ing communication in globally distributed agile software development,’’
J. Syst. Softw., vol. 95, pp. 122–140, Sep. 2014.

[18] M. Shen, G.-H. Tzeng, and D.-R. Liu, ‘‘Multi-criteria task assignment in
workflow management systems,’’ in Proc. 36th Annu. Hawaii Int. Conf.
Syst. Sci., Jan. 2003, pp. 1–9.

[19] J. Duggan, J. Byrne, and G. J. Lyons, ‘‘A task allocation optimizer for
software construction,’’ IEEE Softw., vol. 21, no. 3, pp. 76–82, May 2004.

[20] D. K. M. Mak and P. B. Kruchten, ‘‘Task coordination in an agile dis-
tributed software development environment,’’ in Proc. Can. Conf. Elect.
Comput. Eng., May 2006, pp. 606–611.

[21] A. Lamersdorf, J. Münch, and D. Rombach, ‘‘A decision model for sup-
porting task allocation processes in global software development,’’ in Proc.
10th Int. Conf. Product-Focused Softw. Process Improvement (PROFES),
Oulu, Finland, Jun. 2009, pp. 332–346.

[22] Y. Jiang and J. Jiang, ‘‘Contextual resource negotiation-based
task allocation and load balancing in complex software systems,’’
IEEE Trans. Parallel Distrib. Syst., vol. 20, no. 5, pp. 641–653,
May 2009.

[23] A. Lamersdorf and J. Munch, ‘‘TAMRI: A tool for supporting task distri-
bution in global software development projects,’’ in Proc. 4th IEEE Int.
Conf. Global Softw. Eng., Jul. 2009, pp. 322–327.

[24] J. Lin, H. Yu, Z. Shen, and C. Miao, ‘‘Studying task allocation decisions
of novice agile teams with data from agile project management tools,’’ in
Proc. 29th ACM/IEEE Int. Conf. Autom. Softw. Eng., Vasteras, Sweden,
2014, pp. 689–694.

[25] S. Chakraverty, A. Sachdeva, and A. Singh, ‘‘A genetic algorithm for
task allocation in collaborative software developmentusing formal concept
analysis,’’ in Proc. Int. Conf. Recent Adv. Innov. Eng. (ICRAIE), May 2014,
pp. 1–6.

[26] S. Mahmood, S. Anwer, M. Niazi, M. Alshayeb, and I. Richardson, ‘‘Iden-
tifying the factors that influence task allocation in global software develop-
ment: Preliminary results,’’ inProc. 19th Int. Conf. Eval. Assessment Softw.
Eng., Nanjing, China, Apr. 2015, pp. 1–6.

[27] Y. Jiang, ‘‘A survey of task allocation and load balancing in distributed
systems,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 2, pp. 585–599,
Feb. 2016.

[28] R. Popli and N. Chauhan, ‘‘Agile estimation using people and
project related factors,’’ in Proc. Int. Conf. Comput. Sustain. Global
Develop. (INDIACom), Mar. 2014, pp. 564–569.

[29] Z. Masood, R. Hoda, and K. Blincoe, ‘‘Motivation for self-assignment:
Factors agile software developers consider,’’ in Proc. 10th Int. Work-
shop Cooperat. Human Aspects Softw. Eng., Buenos Aires, Argentina,
May 2017, pp. 92–93.

[30] M. Kropp and A. Meier, ‘‘Collaboration and human factors in soft-
ware development: Teaching agile methodologies based on industrial
insight,’’ in Proc. IEEE Global Eng. Educ. Conf. (EDUCON), Apr. 2016,
pp. 1003–1011.

[31] K. M. B. da Silva and S. C. dos Santos, ‘‘Critical factors in agile soft-
ware projects according to people, process and technology perspective,’’
in Proc. 6th Brazilian Workshop Agile Methods (WBMA), Oct. 2015,
pp. 48–54.

[32] T. W. Malone et al., ‘‘Tools for Inventing Organizations: Toward a
Handbook of Organizational Processes,’’ Manage. Sci., vol. 45, no. 3,
pp. 425–443, 1999.

[33] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb, ‘‘Software
dependencies, work dependencies, and their impact on failures,’’ IEEE
Trans. Softw. Eng., vol. 35, no. 6, pp. 864–878, Nov./Dec. 2009.

[34] S. Imtiaz, ‘‘Architectural task allocation in distributed environment:
A traceability perspective,’’ in Proc. 34th Int. Conf. Softw. Eng. (ICSE),
Jun. 2012, pp. 1515–1518.

[35] G. Lee, J. A. Espinosa, andW. H. DeLone, ‘‘Task environment complexity,
global team dispersion, process capabilities, and coordination in software
development,’’ IEEE Trans. Softw. Eng., vol. 39, no. 12, pp. 1753–1771,
Dec. 2013.

[36] J. A. Espinosa, S. A. Slaughter, R. E. Kraut, and J. D. Herbsleb,
‘‘Team knowledge and coordination in geographically distributed soft-
ware development,’’ J. Manage. Inf. Syst., vol. 24, no. 1, pp. 135–169,
Jul. 2007.

[37] N. A. Staudenmayer, ‘‘Interdependency: Conceptual, empirical, & practi-
cal issues,’’ Tech. Rep., 1997.

[38] T. Ley and D. Albert, ‘‘Identifying employee competencies in dynamic
work domains: Methodological considerations and a case study,’’ J. Univ.
Comput. Sci., vol. 9, no. 12, pp. 1500–1518, 2003.

[39] J. G. Rivera-Ibarra, J. Rodríguez-Jacobo, and M. A. Serrano-Vargas,
‘‘Competency framework for software engineers,’’ in Proc. 23rd IEEE
Conf. Softw. Eng. Edu. Training, Mar. 2010, pp. 33–40.

[40] S. T. Acuna, N. Juristo, and A. M. Moreno, ‘‘Emphasizing human capa-
bilities in software development,’’ IEEE Softw., vol. 23, no. 2, pp. 94–101,
Mar. 2006.

[41] V. Thurner, A. Böttcher, and A. Kämper, ‘‘Identifying base competencies
as prerequisites for software engineering education,’’ in Proc. IEEEGlobal
Eng. Edu. Conf. (EDUCON), Apr. 2014, pp. 1069–1076.

[42] C. Gold, J. Abke, and Y. Sedelmaier, ‘‘A retrospective course survey of
graduates to analyse competencies in software engineering,’’ inProc. IEEE
Global Eng. Edu. Conf. (EDUCON), Apr. 2014, pp. 100–106.

[43] M. Paasivaara, C. Lassenius, D. Damian, P. Räty, and A. Schröter,
‘‘Teaching students global software engineering skills using distributed
Scrum,’’ in Proc. 35th Int. Conf. Softw. Eng. (ICSE), May 2013,
pp. 1128–1137.

[44] S. Čelar, M. Turić, and L. Vicković, ‘‘Method for personal capability
assessment in agile teams using personal points,’’ in Proc. 22nd Telecom-
mun. Forum Telfor (TELFOR), Nov. 2014, pp. 1134–1137.

VOLUME 6, 2018 15389



W. Aslam, F. Ijaz: Quantitative Framework for Task Allocation in Distributed Agile Software Development

WAQAR ASLAM received the Ph.D. degree
in computer science from The Eindhoven Uni-
versity of Technology, The Netherlands. He is
currently an Assistant Professor with the Depart-
ment of Computer Science and Information Tech-
nology, The Islamia University of Bahawalpur
Pakistan. His research interests include perfor-
mance modeling of (distributed) software archi-
tectures, effort/time/cost estimation of software
development in (distributed) agile setups, perfor-

mancemodeling andQoS ofwireless/computer networks, and social network
data analysis. He received HEC Oversees Scholarship for the Ph.D. degree.

FARAH IJAZ received the M.S. degree in com-
puter science from the Department of Computer
Science and Information Technology, The Islamia
University of Bahawalpur Pakistan. She is cur-
rently a Visiting Lecturer with The Islamia Uni-
versity of Bahawalpur Pakistan, where she is also
involved in research. Her research interests include
software requirement management in distributed
environment using agile methods with focus on
effort/time/cost estimation.

15390 VOLUME 6, 2018


	INTRODUCTION
	RELATED WORK
	TYPES OF FACTORS
	TYPES OF DEPENDENCIES
	FLOW DEPENDENC
	FIT DEPENDENCY
	SHARING DEPENDENCY
	WORKFLOW DEPENDENCY
	COORDINATION DEPENDENCY
	KNOWLEDGE DEPENDENCY
	REQUIREMENT DEPENDENCY
	EXPERTISE DEPENDENCY
	HISTORICAL DEPENDENCY
	TASK-MEMBER ASSIGNMENT

	PROCESS DEPENDENCY
	ACTIVITY DEPENDENCY
	BUSINESS PROCESS DEPENDENCY

	COORDINATION DEPENDENCY
	KNOWLEDGE DEPENDENCY
	REQUIREMENT DEPENDENCY
	EXPERTISE DEPENDENCY
	HISTORICAL DEPENDENCY
	TASK-MEMBER ASSIGNMENT

	PROCESS DEPENDENCY
	ACTIVITY DEPENDENCY
	BUSINESS PROCESS DEPENDENCY

	RESOURCE DEPENDENCY
	ENTITY DEPENDENCY
	TECHNICAL DEPENDENCY

	POOLED DEPENDENCE TASK
	SEQUENTIAL DEPENDENCE TASK
	RECIPROCAL DEPENDENCE TASK
	TEAM DEPENDENCE TASK
	DISTRIBUTED ENVIRONMENT DEPENDENCY

	TYPES OF CAPABILITIES
	PROPOSED MODEL
	DISCUSSION AND LIMITATIONS
	CONCLUSIONS
	REFERENCES
	Biographies
	WAQAR ASLAM
	FARAH IJAZ


