
Received December 28, 2017, accepted February 6, 2018, date of publication February 16, 2018, date of current version March 16, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2806884

Verifying the Correctness of Workflow Systems
Based on Workflow Net With Data Constraints
YAQIONG HE , GUANJUN LIU , (Member, IEEE), DONGMING XIANG,
JIAQUAN SUN, CHUNGANG YAN, AND CHANGJUN JIANG
1Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, China
2Shanghai Electronic Transactions and Information Service Collaborative Innovation Center, Tongji University, Shanghai 201804, China
3Department of Computer Science, Tongji University, Shanghai 201804, China

Corresponding authors: Guanjun Liu (liuguanjun@tongji.edu.cn) and Changjun Jiang (cjjiang@tongji.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFB1001804, in part
by the Shanghai Science and Technology Innovation Action Plan Project under Grant 16511100900, and in part by the National Natural
Science Foundation of China under Grant 61572360.

ABSTRACT The correctness verification is very important for workflow systems. It is closely related
with both control-flows and data-flows. Workflow nets with data (WFD-nets) are a kind of formal model
that can reflect some logical structures of workflow systems, e.g., choice and concurrency, and represent
some operations on data, e.g., read, write, and delete. However, these data operations are conceptual in
WFD-nets and only characterize the logical relation between two operations, e.g., whether a write and a
read are concurrently operating on a data. They do not consider the functional requirements about data
(i.e., data constraints). Thus, some data errors cannot be found via WFD-nets. In order to solve this problem,
we propose Workflow nets with Data Constraints (WFDC-nets) and define four levels of soundness to
describe different correctness requirements. Based on the reachability graphs of WFDC-nets, we verify
the soundness. The related algorithms are proposed and a tool is developed to show the effectiveness and
usefulness of our method.

INDEX TERMS Workflow systems, data constraints, Petri nets, soundness.

I. INTRODUCTION
The design of workflow systems becomes more complicated
due to a large amount of business logics and activities [1], [2],
which results in a more difficult analysis and verification
of systems’ correctness. There are many studies about the
correctness verification of workflow systems such as model
checking [3], [4], formal specifications [5] and theorem prov-
ing techniques [6]. As a prominent formal model, workflow
nets (WF-nets) that are a class of Petri nets are suitable
to represent the business logics of workflow systems [7].
The soundness of WF-nets is an important property which
guarantees that a system can always terminate once it runs.
In other words, soundness guarantees that a system has nei-
ther deadlock nor livelock [8], [9]. Sometimes, the concept
of soundness becomes looser according to different system
requirements such as weak soundness, relaxed soundness,
k-soundness and generalized soundness [10]–[13]. However,
these definitions of soundness ignore the data operated in the
execution process of a system.

In practical application (e.g., e-commerce transaction
system and financial management system), data plays an

important role. There exists the case that the business process
of a system is sound from the view of aspect of control-flow
but is not correct if data-flow is considered, e.g., missing data,
inconsistent data and conflict data [14]. These data errors
bring a big challenge for system design. Many studies focus
on data-flows in workflow systems. Sadiq et al. [14] define
several data abnormalities that may lead to an incorrect exe-
cution of a workflow system. Some model-checking-based
methods are given in [3], [15], and [16].. Sun et al. [15]
provide a data-flow perspective to detect data-flow errors,
which includes data-flow specification and data-flow analy-
sis. Xiang et al. [17] check the data inconsistency in concur-
rent systems by Petri nets with data operations. Du et al. [18]
propose a subclass of logic Petri nets (LPNs) to model
and detect the indeterminacy of passing data in e-commerce
systems. Artifact systems are proposed in [19] and [20] as
data-centric models to verify some desirable data properties.
There are also some methods that analyze the correctness
of data-flows based on the soundness of extended WF-nets.
Trcka et al. [21] propose a workflow net with data (WFD-net)
to detect data-flow errors, which adds data elements, guards

11412
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0002-4452-5787
https://orcid.org/0000-0002-7523-4827

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

and data operations (e.g., read, write and delete) to a
WF-net. The soundness of WFD-net is further studied
in [22], [23], and [24] that extends the classical soundness
to must-/may-soundness with respect to different data refine-
ments. Wang et al. [25] propose a more refined workflow net
with transition conditions (WTC-net) based on a WFD-net to
further analyze the refined data.

Although these studies provide different methods to detect
the data-flow errors, they do not consider the values of data.
In other words, some errors of control-/data-flows can be
reflected only if the values of data are taken into account. For
example, a payment requirement from a shopper is delivered
to a third-party cashier which is bond to a merchant in an
e-commerce transaction system [26]. If the merchant does not
verify the payment notification from the third-party cashier,
malicious shoppers may falsify the total price of goods before
the payment. As a consequence, the merchant loses money.
In this transaction system, there is no deadlock or livelock
(i.e., it is sound). However, its business process lacks an activ-
ity of checking whether the amount of money in the payment
is equal to the total price of goods before the payment is
done. Therefore, the correctness of the business process of
the system can be verified only if the data constraints are
considered in the model.

In order to solve the above problem, we define aWorkflow
Net with Data Constraints (WFDC-net). It not only formal-
izes the abstract data operations, but also considers data con-
straints. Furthermore, we propose four levels of soundness
named as soundness, control-soundness, data-soundness and
non-soundness, and use them to reflect different correctness
requirements.We describe the related algorithms and develop
a tool to check them.

The remaining paper is organized as follows. Section II
introduces some concepts used in this paper. Section III gives
a motivated example of a car management system. Section IV
defines WFDC-nets. Section V constructs the reachability
graph of a WFDC-net. Section VI formalizes and verifies
four levels of soundness based on the reachability graph.
Section VII introduces our tool. The last section concludes
this paper.

II. BASIC CONCEPTS
A Petri net [7], [27] is a triple N = (P,T ,F), where P and
T are disjoint sets of places and transitions, respectively; and
F ⊆ (P× T) ∪ (T × P) is a flow relation.

For a node x ∈ P ∪ T , •x = {y | (y, x) ∈ F} denotes the
preset of x, and x• = {y | (x, y) ∈ F} denotes its postset.
Amarking is a mappingM : P→ N, whereN = {0, 1, 2, · · · }
is the set of non-negative integers. A marking is usually
represented by a multiset. For example, M = [p1, 2p2] is a
marking, whereM (p1) = 1,M (p2) = 2 and ∀p ∈ P\{p1, p2} :
M (p) = 0.
A transition t is enabled at a markingM ifM ≥ •t , denoted

asM [t〉. After firing t , a new markingM ′ is generated, where
M ′ = M − •t + t•. It is denoted as M [t〉M ′. If a marking

M ′′ is generated after firing a transition sequence σ at M ,
it is denoted as M [σ 〉M ′′. The set of all markings that are
reachable from M0 is denoted by R(M0).

A workflow net is a special Petri net, which can model the
business process of a workflow system. It has only one initial
place and one terminal place. It requires a strong connection
if one transition and two arcs are added to connect from the
initial place to the terminal place.
Definition 1 (WF-Net [9]): A Petri net N = (P,T ,F) is a

workflow net (WF-net) if
(1) it has a source place i and a sink place o such that

•i = ∅ ∧ o• = ∅; and
(2) if a transition ε /∈ T is added into N , then we get a

new Petri net N ∗ where •i = ε ∧ o• = ε, and N ∗ is strongly
connected.

Soundness is an important property of workflow nets that
guarantees that a system has no deadlock, livelock or dead
transition.
Definition 2 (Soundness of WF-Net [9]): Let N= (P,T ,F)

be a WF-net. [i] and [o] denote the initial marking and
terminal marking, respectively. N is sound if it satisfies

(1) ∀M ∈ R([i]) : [o] ∈ R(M);
(2) ∀M ∈ R([i]) : M ≥ [o]⇒ M = [o]; and
(3) ∀t ∈ T , ∃ M ∈ R([i]) : M [t〉.
In fact, the soundness of WF-nets only focuses on the

correctness of control-flows, but does not consider the errors
of data-flows. Even though a workflow system is sound,
it does not necessarily satisfy the correctness of data-flows.
A WFD-net extends a workflow net with conceptual data
operations on refined data including read, write and delete.
The concept of refinement was originally defined in [28] and
later extended in system verifications [29]. It is a conceptual
notion that a concrete specification can be substituted for an
abstract one if its behavior is consistent with the abstract one.
To introduce WFD-nets, we first introduce some notations
associated with them. These notations come from in [24].
D = {d1, · · · , d|D|} is a set of data elements. 5 =

{πi
d
|i ∈ Nk , d ∈ D} is a set of propositions [30],

where Nk = {1, 2, · · · , k}, and πi
d denotes an atomic

propositional formula related to data d . For example, π1d1 ,
π1

d2 and π2d2 are three propositional formulas. π1d1 and
π1

d2 have the same propositional function with differ-
ent variables (i.e., data d1 and d2). π1d2 and π2

d2 have
different propositional functions with the same variable
(i.e., data d2). G5 is a set of guards and every guard is a
compound propositional formula.

Based on these notations, a WFD-net is defined to model
some conceptual data operations.
Definition 3 (WFD-Net [24]): A 9-tuple WD = (P,T ,

F,D,Rd,Wt,De, grd,G5) is a workflow net with data
(WFD-net), where

(1) (P,T ,F) is a WF-net;
(2) D is a finite set of data elements;
(3) Rd:T → 2D is a label function of reading data;
(4) Wt:T → 2D is a label function of writing data;
(5) De:T → 2D is a label function of deleting data; and

VOLUME 6, 2018 11413

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

(6) grd:T → G5 is a guard function of assigning a guard
to each transition.

III. A MOTIVATING EXAMPLE
Our work is motivated by a car management system. In a
university, a car of every staff is authorized to have one (and
only one) permit-card that records some information such as
the plate number of the car. Only when a car has a permit-
card, it can be permitted to enter the campus of the university.
When a user logs in the system, an enquiry is needed to verify
if s/he has registered her/his car or not. If the user has regis-
tered her/his car, s/he can modify some information before
the permit-card has been made. Note that the process of
approving and making a permit-card is omitted in our model
for simplifications. If s/he has not registered her/his car, s/he
needs to input the related information (e.g., the plate number
of the car and her/his license) into the system. If the related
car information is legal (e.g., the plate number has not been
registered before), it allows the user to go forward. Otherwise,
the information is required to input again. When s/he goes to
the next step, s/he needs to upload some documents’ copies
such as driving license. In the similar way, if the documents
are legal, the system accepts the application, and the user
can log out. Otherwise, the user is required to resubmit these
documents. Due to the fact that the modifying procedure is
similar with the process of registration, we do not introduce
it again.

Fig. 1 is a WFD-net of the motivated example.
There are data elements, conceptual data operations and
guards in it. The data set is D = {reg, cid, doc},
where reg, cid and doc represent the registering record,
car plate number and document materials, respectively.
5 = {Exist(reg), isUnique(cid), isLegal(doc)} and G5 =
{Exist(reg),¬Exist(reg), isUnique(cid), ¬isUnique(cid),
isLegal(doc),¬isLegal(doc)}. Rd ,Wt andDe represent read,
write and delete operations, respectively. However, these
refined data and conceptual data operations in WFD-nets do
not reflect the values of data, e.g., whether the car information
is correct after a write operation is done. It is necessary to
verify the car information and its document materials.

The car management system has some constraints, e.g.,
it requires that a plate number can be registered only once
and then correspond to only one permit-card. In this workflow
system, if these constraints on data items are not verified, they
easily result in some abnormal data. For example, a user has
registered the plate number of a car, and a new user first goes
to register the plate number of another car. Later, the new
user modifies the new plate number into the previous one.
Because themodification process lacks the step of checking if
the modified information is legal, the new user’s modification
can also be approved, i.e., the previous plate number are
registered again.

This problem exists not only in the car management
system, but also in other workflow systems, such as
e-commerce transaction systems, financial management sys-
tems and delivery systems. The dissatisfaction of data

FIGURE 1. A WFD-net of the car management system.

constraints can potentially cause some fund losses [31], [32].
The traditional verification methods only check whether the
business logics of workflow systems are correct or not. There-
fore, although the soundness of the WFD-net modeling a
workflow system can guarantee that the business process
of the system is deadlock-free and livelock-free, it cannot
indicate that its business process is correct, just as shown in
our motivation example. This paper does not only focus on a
correct termination of workflow processes, but also verifies
some data constraints, e.g., whether documents are legal and
car information is not equal to others in database. In the
following sections, we will give our formal model, extend the
soundness properties and verify them.

IV. WORKFLOW NET WITH DATA CONSTRAINTS
In order to solve the above problem, we propose aWFDC-net
that is obtained by adding a set of data constraints into
a WFD-net. Fig. 3 shows the modeling framework of our
WFDC-net.

In WFDC-nets, we consider both routing paths and con-
straints of data elements, and a data item is allowed to

11414 VOLUME 6, 2018

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

be associated with different constraints. Assume that 9 =
{ψi

d
|i ∈ Nk , d ∈ D} is a set of atomic propositional formulas,

where Nk = {1, 2, · · · , k} is a finite set of non-negative
integers. 5 ⊆ 9 is a subset of 9 which includes all atomic
propositional formulas in guards. 8 ⊆ 9 represents a data
constraint set. For convenience, we formalize5 = {πmd |m ∈
Nk1 , d ∈ D} and 8 = {ϕn

d
|n ∈ Nk2 , d ∈ D}, where k1 ≤ k

and k2 ≤ k . Thus, for any d ∈ D, if ψid = πm
d and

ψi
d
= ϕn

d , then πmd = ϕnd .
For example, in the car management system,5 = {π1reg :

Exist(reg), π2cid : isUnique(cid), π3doc : isLegal(doc)}.
The data constraints include: (1) the value of data cid is
unique; and (2) the value of data doc is legal. Thus, 8 = {
ϕ1

cid
: isUnique(cid), ϕ2doc : isLegal(doc)}. Their union set

is denoted as9 = {ψ1
reg
: Exist(reg), ψ2

cid
: isUnique(cid),

ψ3
doc
: isLegal(doc)}. For readability, we use isUnique(cid)

to substitute a πcid : isUnique(cid) and isUnique(cid)ϕ
to substitute a constraint ϕcid : isUnique(cid). Thus,
5 = { Exist(reg), isUnique(cid), isLegal(doc)} and 8 = {
isUnique(cid)ϕ , isLegal(doc)ϕ}.
During the execution of a workflow system, data con-

straints are attached to different related data elements, and
using them we can check whether the data satisfies the data
constraints.
In order to describe the execution of a workflow system

with some data constraints, we further define a constraint
pattern based on 8.
Definition 4 (Constraint Pattern Pa(8)): A triple

Pa(8)
= (D,8, 0D) is a constraint pattern, where
(1) D is the data set;
(2) 8 is the data constraint set; and
(3) 0D : D → 28 is a mapping function that that maps

each data in D to a set of constraints.

FIGURE 2. A WFDC-net of the car management system.

For example in Fig. 2, 8 = { isUnique(cid)ϕ,
isLegal(doc)ϕ} where cid, doc ∈ D. 0D(cid) =

isUnique(cid)ϕ and 0D(doc) = isLegal(doc)ϕ . Once a con-
straint pattern is given, the verification can be conducted
to check whether a workflow system satisfies some data
constraints.

Based on WFD-net and data constraint pattern,
a WFDC-net is defined as follows.
Definition 5 (WFDC-Net): A 2-tuple N = (WD,Pa(8))

is a workflow net with data constraints (WFDC-net),
where

(1) WD is a WFD-net;
(2) Pa(8) is a constraint pattern.
As shown in Fig. 2, it is the WFDC-net modeling

our motivated example, which formalizes the set of con-
straints 8 and adds constraint pattern Pa(8) to the WFD-net
in Fig. 1.

V. REACHABILITY
Since aWFDC-net models both control-flows and data-flows
of a workflow system, its states should include markings and
data information. Furthermore, the data constraints are also
considered in the states of WFDC-nets. In this paper, a state
of WFDC-net is called a configuration.

In order to introduce configuration, we first formalize some
notations. ρD:D → {>,⊥} is an assigning function, where
> represents a defined value and ⊥ means an undefined
value. An assigning function ρ5 : 5→ {TRUE,FALSE,⊥}
denotes that an atomic propositional formula π ∈ 5 is
assigned to TRUE , FALSE or ⊥ (undefined). A mapping
function `5 : 5→ D represents a relationship between all
propositional formulas in 5 and data elements in D. It is
assumed that ρ5(π) = ⊥ if ∃d ∈ D : `5(π) = d ∧ ρD(d) =
⊥. An assigning function ρ8 : 8 → {TRUE,FALSE,⊥}
denotes that a constraint of data d is assigned to TRUE (sat-
isfied), FALSE (not satisfied) or ⊥ (undefined). A mapping
function `8 : 8→ D represents a relationship between all
data constraints in 8 and data elements in D. Similarly, if
∃d ∈ D : 0D(d) 6= ∅ ∧`8(ϕ) = d ∧ ρD(d) = ⊥, then
ρ8(ϕ) = ⊥. Furthermore, ρG : G5 → {TRUE,FALSE,⊥}
means that the evaluation of guards is TRUE , FALSE or ⊥
(undefined). A mapping function `G : G → 25 assigns an
element in 25 for guard in G.
A triple ρ = (ρD, ρ8, ρ5) is called a data state, and we use

P to represent the set of all data states.
Definition 6 (Configuration): Let N = (WD,Pa(8)) be a

WFDC-net and WD = (P,T ,F,D,Rd,Wt,De, grd,G5).
c = 〈M , ρ〉 = 〈M , ρD, ρ8, ρ5〉 is a configuration of N ,
where

(1) M is a marking of WD;
(2) ρD: D→ {>,⊥} is a mapping function that evaluates

the data element as > (a defined value) or ⊥ (an undefined
value) ;

(3) ρ8: 8 → {TRUE,FALSE,⊥} assigns TRUE (satis-
fied), FALSE(not satisfied) or⊥ (an undefined value) to each
ϕ ∈ 8; and
(4) ρ5: 5 → {TRUE,FALSE,⊥} assigns TRUE,

FALSE or ⊥ (an undefined value) to each π ∈ 5.
The initial configuration of N is c0 = 〈[i], ρD, ρ8, ρ5〉

satisfying ∀d ∈ D,∀ϕ ∈ 8,∀π ∈ 5 : ρD(d) = ⊥∧ρ8(ϕ) =
⊥ ∧ρ5(π) = ⊥, and the terminal configuration set is Cf =
{〈[o], ρ〉|ρ ∈ P}.

VOLUME 6, 2018 11415

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

For example, the initial configuration of the WFDC-net
in Fig. 2 is

c0 = 〈[start], {ρD(reg) = ⊥, ρD(cid) = ⊥, ρD(doc) = ⊥},

{ρ8(isUnique(cid)ϕ) = ⊥, ρ8(isLegal(doc)ϕ) = ⊥},

{ρ5(Exist(reg)) = ⊥, ρ5(isUnique(cid)) = ⊥,

ρ5(isLegal(doc)) = ⊥}〉.

It is simplified as c0 = 〈[start], {⊥,⊥,⊥}, {⊥,⊥},
{⊥,⊥,⊥}〉. In general, a WFDC-net has one unique initial
configuration but possibly more terminal configurations due
to different data states.

In order to analyze a WFDC-net, we give its enabling and
firing rules.
Definition 7 (Enabling Rule): Let N = (WD,Pa(8)) be a

WFDC-net and WD = (P,T ,F,D,Rd,Wt,De, grd, G5).
A transition t ∈ T is enabled at the configuration c =
〈M , ρD, ρ8, ρ5〉, denoted by c[t〉 if
(1) M [t〉;
(2) ∀d ∈ Rd(t) ∪ De(t) : ρD(d) = >;
(3) ∀π ∈ `G(grd(t)) : ρ5(π) 6= ⊥; and
(4) ρG(grd(t)) = TRUE.
In the WFDC-net of Fig. 2, the transition t7 has a guard

grd(t7) = [isUnique(cid)], where `(isUnique(cid)) = {cid}.
c = 〈[p4], {>,>,⊥}, {TRUE,⊥}, {TRUE,TRUE,⊥}〉 is
a configuration. t7 is enabled at the marking [p4], and
ρ5(isUnique(cid)) = TRUE . We can find that ρG(grd(t7)) =
TRUE . Thus, t7 is enabled at the configuration c.
Definition 8 (Firing Rule): Let N = (WD,Pa(8)) be a

WFDC-net and WD = (P,T ,F,D,Rd,Wt,De, grd,G5). A
set of configurations C ′ is generated after firing an enabled
transition t ∈ T at the configuration c = 〈M , ρD, ρ8, ρ5〉,
where

C ′ = {〈M ′, ρD′, ρ′8, ρ5
′
〉 |M [t〉M ′

∧(∀d ∈ Wt(t) : ρD′(d) = >)

∧(∀d ∈ De(t) : ρD′(d) = ⊥)

∧(∀d ∈ D \ (Wt(t) ∪ De(t)) : ρD′(d) = ρD(d))

∧(∀ϕ ∈ 8 : `8(ϕ) ∈ Wt(t)

⇒ ρ′8(ϕ) ∈ {TRUE,FALSE})

∧(∀ϕ ∈ 8 : `8(ϕ) ∈ De(t)⇒ ρ′8(ϕ) = ⊥)

∧(∀ϕ ∈ 8 : `8(ϕ) ∈ D \ (Wt(t) ∪ De(t))

⇒ ρ′8(ϕ) = ρ8(ϕ))

∧(∀π ∈ 5 : (∀d ∈ `5(π) ∩Wt(t) : 0D(d) = ∅)

⇒ ρ5
′(π) ∈ {TRUE,FALSE})

∧(∀π ∈ 5 : (∀d ∈ `5(π) ∩Wt(t) : 0D(d) 6= ∅)

⇒ ρ5
′(π) = ω)

∧(∀π ∈ 5 : `5(π) ∈ De(t)⇒ ρ5
′(π) = ⊥)

∧(∀π ∈ 5 : `5(π) ∈ D \ (Wt(t) ∪ De(t))

⇒ ρ5
′(π) = ρ5(π))}

where

ω ∈

{TRUE}, if ∃ϕ ∈ 0D(d) : π = ϕ
∧ρ′8(ϕ) = TRUE;

{FALSE}, if ∃ϕ ∈ 0D(d) : π = ϕ
∧ρ′8(ϕ) = FALSE;

{TRUE,FALSE}, if ∃ϕ ∈ 0D(d) : π 6= ϕ.

It is denoted by c[t〉C ′.
After firing an enabled transition t at a configuration c, a set

of new configurations are generated. Their markings and data
states not only satisfy the firing rules of WFD-nets, but also
consider the transformation of data constraints.
For example of c0 = 〈[start], {⊥,⊥,⊥}, {⊥,⊥}, {⊥,⊥,
⊥}〉 in Fig. 2, when the enabled transition t1 is fired, data reg is
written into the system. According to Definition 8, we know
that ρD′(d) = > and ρ5′(Exist(reg)) ∈ {TRUE,FALSE}
since 0D(reg) = ∅. The generated C ′ = {c1, c2}, where c1 =
〈[p1], {>,⊥,⊥}, {⊥,⊥}, {TRUE,⊥,⊥}〉 and c2 = 〈[p1],
{>,⊥,⊥}, {⊥,⊥}, {FALSE,⊥,⊥}〉.

For another example, the transition t4 is enabled at
the configuration c3 = 〈[p2], {>,⊥,⊥}, {⊥,⊥}, {FALSE,
⊥,⊥}〉. According to Definition 8, data cid is written into
system after firing t4, ρD′(cid) = >. Since 0D(cid) =
{isUnique(cid)ϕ}, we can get ρ8

′(isUnique(cid)ϕ) ∈

{TRUE,FALSE}. There exists a π = isUnique(cid)
which is equal to the data constraint isUnique(cid)ϕ , then
ρ5
′(isUnique(cid)) = TRUE when ρ8′(isUnique(cid)ϕ) =

TRUE and ρ5
′(isUnique(cid)) = FALSE when

ρ8
′(isUnique(cid)ϕ) = FALSE , i.e., a configuration set

C ′′ = {c4, c5} is generated, where c4 = 〈[p4], {> ,> ,⊥},
{TRUE,⊥}, {FALSE, TRUE, ⊥} 〉, and c5 = 〈[p4] , {>, >
,⊥}, {FALSE,⊥}, {FALSE, FALSE ,⊥} 〉.
Definition 9 (Reachability): Let N = (WD,Pa(8)) be a

WFDC-net and WD = (P,T ,F,D,Rd,Wt,De, grd, G5).
c, c′ and c′′ are configurations of N . C, C ′ and C ′′ are
configuration sets of N .

(1) There is amay-step from c to c′, denoted by c→may c′,
if ∃t ∈ T : c[t〉c′;
(2) c′′ is may-reachable from c if there is a sequence of

configuration c0, · · · , ci, · · · , cn such that ci →may ci+1,
where 0 ≤ i < n. It is denoted by c

∗
−→mayc′′ with c0 = c

and cn = c′′;
(3) There is a must-step from c to C, denoted by c →must

C, if ∃t ∈ T : c[t〉c′∧ c′ ∈ C. Furthermore, a must-step exists
from C to C ′, denoted by C →must C ′, if C ′ =

⋃
c∈C Cc

where c →must Cc or Cc = {c} if c is a dead configuration;
and

(4) C ′′ is must-reachable from C if there is a sequence
of configuration sets C0, · · · ,Ci, · · · ,Cn of N such that
Ci→must Ci+1, where 0 ≤ i < n. It is denoted by C

∗
−→mustC ′′

with C0 = C and Cn = C ′′.
The definition of reachability refers to [23]. May-

reachability considers one execution path from a configura-
tion to another one. Must-reachability considers all execution
paths from a configuration to all successor configurations of

11416 VOLUME 6, 2018

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

FIGURE 3. WFDC-net (workflow net with data constraints).

it. Due to the fact that each successor is may-reachable, must-
reachability also generates different may-paths. In this paper,
the set of may-reachable configurations from c0 is denoted
by R(c0).

For example, two configurations c1 and c4 are may-
reachable from the initial configuration c0 in Fig. 4,
denoted as c0 →may c1 and c0

∗
−→may c4. Two con-

figuration sets {c1, c2} and {c4, c5, c12, c13} are must-
reachable from c0, denoted as c0 →must {c1, c2} and
c0
∗
−→must {c4, c5, c12, c13}, respectively. Meanwhile, the con-

figuration set {c4, c5, c12, c13} is also must-reachable
from {c1, c2}, which is denoted as {c1, c2}

∗
−→must {c4, c5,

c12, c13}.
Based on the firing rules of WFDC-net, we define a con-

figuration graph with data constraints (CDC-graph).

Definition 10 (CDC-Graph): Let N = (WD,Pa(8)) be a
WFDC-net. G = (C, E,S) is a configuration graph with data
constraints of N , where

(1) C = R(c0);
(2) E = {(c,C ′)| c ∈ C ∧ C ′ ∈ 2R(c0) ∧ (∃t ∈ T : c [t〉

C ′)}; and
(3) S : E → T is a label function that S(c,C ′) = t if

c[t〉C ′ ∧ (c,C ′) ∈ E .
Fig. 4 shows a CDC-graph of theWFDC-net in Fig. 2, e.g.,

e0 = (c0, {c1, c2}) ∈ E and S(e0) = t1. In this graph, there
are three terminal configurations, which are represented by
double-line circles. A branched arrow with multiple heads is
used to represent an edge e ∈ E between a configuration and
its successor configurations.

Algorithm 1 Constructing CDC-Graph
Require: WFDC-net N ;
Ensure: CDC-graph G;
1: Let c0 be a root node, and mark it ‘‘new’’;
2: while there exists a ‘‘new’’ node do
3: Arbitrarily choose a ‘‘new’’ node, on behalf of c;
4: if ∀t ∈ T : ¬c[t〉 then
5: if M = [end] then
6: Change the mark of c to ‘‘end’’; goto step 2;
7: else
8: Change the mark of c to ‘‘leaf ’’; goto step 2;
9: end if
10: else
11: for each t ∈ T that satisfies c[t〉 do
12: According to firing rules, calculate every c′ ∈ C ′

that satisfies c[t〉 C ′;
13: if there exists a node that has the same configura-

tion as c′ in the directed trace from c0 to c then
14: Generate a directed arrow pointing to this node

and label the arrow with ‘‘t’’;
15: else
16: if |C ′|=1 then
17: Record c′; generate a directed arrow point-

ing to c′ and label it with ‘‘t’’; mark c′ with
‘‘new’’;

18: else
19: Record every c′ ∈ C ′; generate a branched

arrow pointing to each c′ and label it with
‘‘t’’; mark every c′ with ‘‘new’’;

20: end if
21: end if
22: end for
23: end if
24: Change the mark of c to ‘‘old’’;
25: end while

Based on Definition 10, we propose an algorithm to
construct the CDC-graph of a WFDC-net. As shown in
Algorithm 1, we use the breadth-first method to implement
this algorithm. According to the firing rule in Definition 8,

VOLUME 6, 2018 11417

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

FIGURE 4. A CDC-graph of the WFDC-net in Fig.2.

new nodes (i.e., configurations) and edges are iteratively
generated and added into the CDC-graph.

The CDC-graph of a WFDC-net reflects all running infor-
mation of a workflow system, e.g., control-flows and data-
flows with data constraints. Therefore, we can check the
correctness of workflow systems based on their CDC-graph.
In the following section, we extend the classical sound-
ness with data constraints, and propose algorithms to
verity it.

VI. HIERARCHICAL SOUNDNESS
The classical soundness property of WF-nets focuses on
the correctness of business logics in the control-flows of
workflow systems, and the analyzing result divides work-
flow systems into two categories: sound or non-sound
(see in Fig. 5(a)). Based on WF-nets, WFD-nets consider
the influence of data elements to the soundness verification

and propose must-/may-soundness (see in Fig. 5(b)).
These soundness properties only guarantee a proper ter-
mination of workflow systems. However, they ignore the
satisfaction of some data constraints, e.g., whether the car
information is unique in a database. In fact, data constraints
are closely related with the reliability and the correctness of
systems. Therefore, we propose the hierarchical soundness of
WFDC-nets which considers the following two aspects.

(1) Logical correctness. It guarantees that the terminal
configurations can be reached in different data refinements.
Meanwhile, there are no deadlocks, livelocks or dead transi-
tions in all configurations.

(2) Satisfaction of data constraints. It guarantees that every
terminal configuration and every path of configurations sat-
isfy data constraints.

With respect to the above considerations, we propose
four levels of soundness, i.e., soundness, control-soundness,

11418 VOLUME 6, 2018

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

FIGURE 5. (a) The soundness of WF-net; (b) the soundness of WFD-net;
(c) the soundness of WFDC-net.

data-soundness and non-soundness. Their relationships are
shown in Fig. 5(c).

In order to formalize these soundness of WFDC-nets,
we first discuss must-/may-termination and normal/abnormal
termination of CDC-graphswith respect to the business logics
and data-flows of workflow systems.

A. MUST-/MAY-TERMINATION
Based on the definition of reachability, we define must-
termination and may-termination to ensure the control-flow
correctness.
Definition 11 (Must-/May-Termination): Let N =

(WD,Pa(8)) be a WFDC-net and WD = (P,T ,F,
D,Rd,Wt, De, grd,G5). G = (C, E,S) is a CDC-graph
of N , where c0 is the initial configuration of N . c, c′ are
configurations of N . C, Cf are sets of terminal configurations
of N . N satisfies must-termination if G satisfies

(1) ∀c ∈ R(c0) : ∃C ⊆ Cf ∧ c
∗
−→must C;

(2) ∀c ∈ R(c0) : M ≥ [o]⇒ M = [o]; and
(3) ∀t ∈ T : ∃ c ∈ R(c0): c[t〉.
N satisfies may-termination if one of the above three

conditions does not hold.
The may-termination of WFDC-nets shows that there exist

some paths that can reach terminal configurations but not
every path is required to reach a terminal configuration. The
must-termination represents that all paths from the initial
configuration can reach the terminal configurations.

According to Definition 11, we can check whether every
path has a terminal configuration, whether a path has an end
configuration c that belongs to a terminal configuration set
Cf and whether every transition is live. The specific method
is given as Algorithm 2.

B. NORMAL/ABNORMAL TERMINATION
By using Algorithm 2, we can find that the CDC-graph
in Fig. 4 satisfies must-termination. This shows that the
business logics of the car management system can lead to

Algorithm 2 Must-/May-Termination Analysis
Require: CDC-graph G; Transition set T ;
Ensure: Must(G); signdead ; signlock ; Tfire;

/∗ Must(G)=TRUE represents must-termination. ∗/
1: Initialize sign = 0; signdead = 0; signlock = 0; Tfire =
∅;

2: for C = R(c0);C 6= ∅;C = C − {c} do
3: Arbitrarily choose a c ∈ C ;
4: Traverse all c′ that satisfies c

∗
−→mayc′;

5: if ∃ c′ marked with ‘‘leaf ’’ then
6: if c′ is marked with ‘‘dead’’ then
7: goto step 16;
8: else
9: mark c′ with ‘‘dead’’; signdead = signdead + 1;

/∗ There is a deadlock. ∗/
10: end if
11: else if ∃ c′ marked with ‘‘end’’ then
12: goto step 16;
13: else
14: signlock = signlock + 1;

/∗ There is no termination. ∗/
15: end if
16: if ∃t ∈ T satisfies c[t〉 then
17: For all t satisfies c[t〉 : Tfire = Tfire ∪ {t};
18: end if
19: end for
20: sign = signdead + signlock ;
21: if sign = 0 ∧ Tfire = T then
22: Must(G) = TRUE ;
23: else
24: Must(G) = FALSE ;
25: end if

deadlock-free and livelock-free. However, we cannot con-
clude that its workflow process is completely error-free at this
time.We need to further verify whether its data constraints are
satisfied via its CDC-graph, i.e., a normal data that satisfies
its constraints can reach the terminal configuration, but an
abnormal data which does not satisfy its constraints is not
allowed to. A correct WFDC-net must guarantee that the
abnormal data can be stopped during execution. To this end,
we propose the normal/abnormal termination of WFDC-net.
Definition 12 (Normal and Abnormal Termination): Let

N = (WD,Pa(8)) be a WFDC-net and WD =

(P,T ,F,D,Rd,Wt,De, grd,G5). G = (C, E,S) is a CDC-
graph of N , where Cf is a set of terminal configurations
of N . C, C ′ are sets of configurations. N satisfies normal
termination if for any d ∈ D, G satisfies:
(1) ∀c ∈ R(c0), ∀ϕ ∈ 0D(d) : c

∗
−→must C ∧ C ⊆ Cf ⇒

• ∀c′ ∈ C : ρ8′(ϕ) 6= FALSE;
• ∃c′′ ∈ C : ρ8′′(ϕ) = TRUE; and

(2) ∀c ∈ R(c0), ∀ϕ ∈ 0D(d) : ρ8(ϕ) = FALSE ⇒
∃C ′ ∈ 2R(c0) : c

∗
−→must C ′ ∧ C ′ * Cf ∧ (∀c′ ∈ C ′,

ρ8
′(ϕ) = ⊥).

VOLUME 6, 2018 11419

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

N satisfies abnormal termination if G does not satisfy the
above conditions.

Algorithm 3 specifies the check method of Definition 12.
To analyze the normal and abnormal termination, we need to
verify every configuration of a CDC-graph from two aspects:
data constraint values TRUE (satisfied) and FALSE (not satis-
fied). For a data d ∈ D and its related constraint ϕ ∈ 0D(d),
if there exists a configuration c with ρ8(ϕ) = TRUE , then
there must be a TRUE or⊥ of ϕ at the terminal configuration
of every path from it, i.e., a data with a satisfied constraint will
successfully reach the terminal configuration or be deleted for
some reasons. If there exists a configuration c′ with ρ8(ϕ) =
FALSE , then there must be a ⊥ of ϕ in every configuration
of a must-reachable configuration set C from c′, and there
must be a TRUE or⊥ of ϕ in all terminal configurations from
C , i.e., a data with a dissatisfied constraint will be deleted
during execution and then either be replaced by a satisfied one
or not. Furthermore, in all terminal configurations of paths
from c and c′, there exists at least one TRUE of ϕ, i.e., there
must be at least one efficient operating result after execution.

For ourmotivated example, if users input a normal data into
the carmanagement system in Fig. 2, they successfully get the
car permit-card, or they log out with nothing. If users input
an abnormal data into the system, the data must be deleted
during their executions and users must be guided to re-input
a correct one or log out directly.

We can observe from Fig. 4 that the terminal con-
figuration c21 does not satisfy Definition 12(1) since
ρ8(isUnique(cid)ϕ) = FALSE , which means the value of
data cid does not satisfy its data constraint isUnique(cid)ϕ ,
and it lacks a verification of cid after cid is written into this
system.

C. HIERARCHICAL SOUNDNESS
Based on must-/may-termination and normal/abnormal ter-
mination above, we define four levels of soundness includ-
ing soundness, control-soundness, data-soundness and non-
soundness.
Definition 13 (Hierarchical Soundness): Let N =

(WD,Pa(8)) be a WFDC-net, G = (C, E,S) be a CDC-
graph of N . N is

(1) sound if G satisfies must- and normal termination;
(2) control-sound if G satisfies must-termination;
(3) data-sound if G satisfies normal termination; or
(4) non-sound if G satisfies may- and abnormal

termination.
Soundness requires a completely proper termination,

i.e., all execution paths can reach the terminal configurations
under all data constraints from the initial configuration.
Control-soundness means that all execution paths can

reach the terminal configurations, regardless of data con-
straints.
Data-soundness shows that all data elements satisfy data

constraints and there are no abnormal data in the terminal
configurations.

Algorithm 3 Normal-Termination Analysis
Require: CDC-graph G; Constraint pattern Pa(8);
Ensure: Normal(G);8T ; 8F ;
1: Initialization: array 8T []; array 8F [];
2: for 8; 8 6= ∅; 8 = 8− {ϕ} do
3: Arbitrarily choose a data constraint ϕ ∈ 8;
4: for CT = R(c0);CT 6= ∅;CT = CT − {c} do

/∗ Verify data with a satisfied constraint. ∗/
5: Arbitrarily choose a c ∈ CT ;
6: if ρ8(ϕ) = TRUE then
7: Traverse every cf ∈ Cf that satisfies c

∗
−→must Cf ;

8: if ∃ρ8f (ϕ) = FALSE then
9: 8T [ϕ] = 1; goto step 19;
10: else
11: if ∀cf ∈ Cf : ρ8f (ϕ) = ⊥ then
12: 8T [ϕ] = 1; goto step 19;
13: else
14: 8T [ϕ] = 0;
15: end if
16: end if
17: end if
18: end for
19: for CF = R(c0);CF 6= ∅;CF = CF − {c} do

/∗ Verify data with a dissatisfied constraint. ∗/
20: Arbitrarily choose a data a c ∈ CF ;
21: if ρ8(ϕ) = FALSE then
22: Traverse every C that satisfies c

∗
−→must C ;

23: if ∃C that satisfies ∀c′ ∈ C : ρ8′(ϕ) = ⊥ then
24: if C * Cf then
25: Find C ′ satisfies C

∗
−→must C ′ ∧ C ′ ⊆ Cf ;

26: if @c′′ ∈ C ′ : ρ8′′(ϕ) = FALSE then
27: if ∃c′′′ ∈ C ′ : ρ8′′′(ϕ) = TRUE then
28: 8F [ϕ] = 0;
29: else
30: 8F [ϕ] = 1; goto step 2;
31: end if
32: else
33: 8F [ϕ] = 1; goto step 2;
34: end if
35: else
36: 8F [ϕ] = 1; goto step 2;
37: end if
38: else
39: 8F [ϕ] = 1; goto step 2;
40: end if
41: end if
42: end for
43: end for
44: if (

∨
ϕ∈88T [ϕ] = 0) ∧ (

∨
ϕ∈88F [ϕ] = 0) then

45: Normal(G) = TRUE ;
46: else
47: Normal(G) = FALSE ;
48: end if

11420 VOLUME 6, 2018

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

FIGURE 6. A WFDC-net in LDCC-tool.

FIGURE 7. A CDC-graph in LDCC-tool.

Non-soundness indicates the incorrectness in both control-
flows and data-flows of a workflow system.

VII. AN ANALYZING TOOL OF WFDC-NET
Based on our algorithms, we develop a tool called LDCC-tool
(Logic and Data Constraints Check tool) to detect the errors
in control-flows and data-flows with data constrains.

LDCC-tool is developed based on PIPE (Platform Inde-
pendent Petri Net Editor) [33], which is an open source
tool of Petri net. Using LDCC-tool, we can create not only
WFDC-nets but also WFD-nets, and produce CDC-graphs.
Furthermore, LDCC-tool can automatically detect the errors
in control-flows and data incorrectness, and give an analysis
result of hierarchical soundness. By using LDCC-tool, we can

VOLUME 6, 2018 11421

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

import and export a WFDC-net, as shown in Fig. 6. Besides,
we can edit and modify its data elements, guards and data
constraints. The CDC-graph of the WFDC-net is constructed
in Fig. 7, where every node represents a configuration and its
detailed information is hidden in it.

FIGURE 8. The analysis result of hierarchical soundness in LDCC-tool.

The analysis result of the car management system is shown
in Fig. 8. Must(G) = true means that it has no dead-
lock, livelock or dead transition, i.e., it is control-sound.
From the result, 8T [isUnique(cid)ϕ] = false indicates
that there is at least one path such that cid with a sat-
isfied constraint cannot reach the terminal configuration,
8F [isUnique(cid)ϕ] = false indicates that there is at least
one path such that cid with a dissatisfied constraint can reach
the terminal configuration, and Normal(G) = false means
this system does not satisfy all data constraints, i.e., it is not
data-sound and lacks verification of data cid . Obviously, this
workflow system is sound when we take the same control
mechanism to the modifying procedure as the registering
procedure.

VIII. CONCLUSION
The correctness is very important for the workflow systems.
It depends on both control-flows and data-flows. On one
hand, a correct workflow system requires a proper termina-
tion, e.g., no deadlocks, livelocks or dead transitions. On the
other hand, the system should satisfy some data constraints.
Considering the above two points, we propose Workflow
Net with Data Constraints (WFDC-net) to model workflow
systems in which data constraints are represented by propo-
sitional formulas. We also define different levels of sound-
ness to reflect different correctness requirements. Based on
the reachability graph of WFDC-net, we develop the related
tool to automatically verify them. The implementation of
LDCC-tool proves that our method can effectively check the
correctness of workflow systems.

In the future, we plan to do the following work:
(1) Take some control mechanisms to guarantee the

soundness.
(2) Use the unfolding techniques[34]–[36] to reduce the

state space explosion problem.

REFERENCES
[1] M. Dumas, W. M. P. van der Aalst, and A. H. ter Hofstede, Process Aware

Information Systems: Bridging People and Software Through Process
Technology. Hoboken, NJ, USA: Wiley, 2005.

[2] K. M. van Hee, N. Sidorova, and J. M. van der Werf, ‘‘Business process
modeling using Petri nets,’’ in Transactions on Petri Nets andOtherModels
of Concurrency VII. Berlin, Germany: Springer, 2013, pp. 116–161.

[3] E. M. Clarke, O. Grumberg, and D. E. Long, ‘‘Model checking
and abstraction,’’ ACM Trans. Program. Lang. Syst., vol. 16, no. 5,
pp. 1512–1542, 1994.

[4] M. J. Ibáñez, J. Fabra, P. Álvarez, and J. Ezpeleta, ‘‘Model checking
analysis of semantically annotated business processes,’’ IEEE Trans. Syst.,
Man, Cybern. A, Syst., Humans, vol. 42, no. 4, pp. 854–867, Jul. 2012.

[5] A. Speck, S. Feja, S. Witt, and E. Pulvermüller, and M. Schulz, ‘‘Formaliz-
ing business process specifications,’’ Comput. Sci. Inf. Syst., vol. 18, no. 2,
pp. 427–446, 2011.

[6] D. Xu and K. E. Nygard, ‘‘Threat-driven modeling and verification of
secure software using aspect-oriented Petri nets,’’ IEEE Trans. Softw. Eng.,
vol. 32, no. 4, pp. 265–278, Apr. 2006.

[7] W. M. P. van der Aalst, ‘‘The application of Petri nets to workflow man-
agement,’’ J. Circuits, Syst., Comput., vol. 8, no. 1, pp. 21–66, 1998.

[8] W. M. P. van der Aalst et al., ‘‘Soundness of workflow nets: Classifica-
tion, decidability, and analysis,’’ Formal Aspects Comput., vol. 23, no. 3,
pp. 333–363, 2011.

[9] W. M. P. van der Aalst, ‘‘Verification of workflow nets,’’ in Proc. Int. Conf.
Appl. Theory Petri Nets, 1997, pp. 407–426.

[10] A. Martens, ‘‘Analyzing web service based business processes,’’ in Proc.
Int. Conf. Fundam. Approaches Softw. Eng., 2005, pp. 19–33.

[11] J. Dehnert and P. Rittgen, ‘‘Relaxed soundness of business processes,’’ in
Advanced Information Systems Engineering. Berlin, Germany: Springer,
2001, pp. 157–170.

[12] K. Van Hee, N. Sidorova, and M. Voorhoeve, ‘‘Soundness and separability
of workflow nets in the stepwise refinement approach,’’ in Proc. Int. Conf.
Appl. Theory Petri Nets, 2003, pp. 337–356.

[13] K. Van Hee, N. Sidorova, and M. Voorhoeve, ‘‘Generalised soundness of
workflow nets is decidable,’’ in Applications and Theory of Petri Nets.
Berlin, Germany: Springer, 2004, pp. 197–215.

[14] S. Sadiq, M. Orlowska, W. Sadiq, and C. Foulger, ‘‘Data flow and val-
idation in workflow modelling,’’ in Proc. 15th Austral. Database Conf.,
vol. 27. 2004, pp. 207–214.

[15] S. X. Sun, J. L. Zhao, J. F. Nunamaker, and O. R. L. Sheng, ‘‘Formulating
the data-flow perspective for business process management,’’ Inf. Syst.
Res., vol. 17, no. 4, pp. 374–391, 2006.

[16] A. Awad, G. Decker, and N. Lohmann, ‘‘Diagnosing and repairing data
anomalies in process models,’’ in Proc. Int. Conf. Bus. Process Manage.,
2009, pp. 5–16.

[17] D. Xiang, G. Liu, C. Yan, and C. Jiang, ‘‘Checking the inconsistent data
in concurrent systems by Petri nets with data operations,’’ in Proc. IEEE
22nd Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2016, pp. 501–508.

[18] Y. Du, L. Qi, and M. Zhou, ‘‘Analysis and application of logical Petri nets
to E-commerce systems,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 44,
no. 4, pp. 468–481, Apr. 2014.

[19] D. Cohn and R. Hull, ‘‘Business artifacts: A data-centric approach to mod-
eling business operations and processes,’’ IEEE Data Eng. Bull., vol. 32,
no. 3, pp. 3–9, Sep. 2009.

[20] E. Damaggio, A. Deutsch, and V. Vianu, ‘‘Artifact systems with data
dependencies and arithmetic,’’ ACM Trans. Database Syst., vol. 37, no. 3,
2012, Art. no. 22.

[21] N. Trčka, W. M. P. van der Aalst, and N. Sidorova, ‘‘Analyzing control-
flow and data-flow in workflow processes in a unified way,’’ Comput. Sci.
Rep., vol. 0831, pp. 1–24, Jan. 2008.

[22] N. Trčka, W. M. P. van der Aalst, and N. Sidorova, ‘‘Data-flow anti-
patterns: Discovering data-flow errors in workflows,’’ in Proc. Int. Conf.
Adv. Inf. Syst. Eng., 2009, pp. 425–439.

[23] N. Sidorova, C. Stahl, and N. Trčka, ‘‘Workflow soundness revisited:
Checking correctness in the presence of data while staying conceptual,’’
in Proc. Int. Conf. Adv. Inf. Syst. Eng., 2010, pp. 530–544.

[24] N. Sidorova, C. Stahl, and N. Trčka, ‘‘Soundness verification for con-
ceptual workflow nets with data: Early detection of errors with the most
precision possible,’’ Inf. Syst., vol. 36, no. 7, pp. 1026–1043, 2011.

[25] Z.Wang, J.Wang, X. Zhu, and L.Wen, ‘‘Verification of workflow nets with
transition conditions,’’ J. ZhejiangUniv.-Sci. C, vol. 13, no. 7, pp. 483–509,
2012.

11422 VOLUME 6, 2018

Y. HE et al.: Verifying the Correctness of Workflow Systems Based on WFDC-net

[26] R. Wang, S. Chen, X. Wang, and S. Qadeer, ‘‘How to shop for free online
security analysis of cashier-as-a-service based Web stores,’’ in Proc. IEEE
Symp. Secur. Privacy (SP), May 2011, pp. 465–480.

[27] T. Murata, ‘‘Petri nets: Properties, analysis and applications,’’ Proc. IEEE,
vol. 77, no. 4, pp. 541–580, Apr. 1989.

[28] O.-J. Dahl, Structured programming. San Diego, CA, USA: Academic,
1972.

[29] G. Smith and J. Derrick, ‘‘Verifying data refinements using a model
checker,’’ Formal Aspects Comput., vol. 18, no. 3, pp. 264–287, 2006.

[30] M. Huth and M. Ryan, Logic in Computer Science: Modelling and
Reasoning About Systems. Cambridge, U.K.: CambridgeUniv. Press, 2004.

[31] (Feb. 21, 2012). One Yuan Gate Event of Taobao. [Online]. Available:
https://baike.baidu.com/view/6419081.htm

[32] (Nov. 11, 2017). Vulnerability of the Cambridge Satchel
Company Website. [Online]. Available: http://baijiahao.baidu.com/
s?id=1583727274643974605&wfr=spider&for=pc

[33] N. J. Dingle, W. J. Knottenbelt, and T. Suto, ‘‘PIPE2: A tool for the perfor-
mance evaluation of generalised stochastic Petri nets,’’ACMSIGMETRICS
Perform. Eval. Rev., vol. 36, no. 4, pp. 34–39, 2009.

[34] K. L. McMillan, ‘‘Using unfoldings to avoid the state explosion problem
in the verification of asynchronous circuits,’’ in Proc. Int. Conf. Comput.
Aided Verification, 1992, pp. 164–177.

[35] J. Esparza, S. Römer, and W. Vogler, ‘‘An improvement of McMil-
lan’s unfolding algorithm,’’ Formal Methods Syst. Des., vol. 20, no. 3,
pp. 285–310, 2002.

[36] G. Liu, W. Reisig, C. Jiang, and M. Zhou, ‘‘A branching-process-based
method to check soundness of workflow systems,’’ IEEE Access, vol. 4,
pp. 4104–4118, 2016.

YAQIONG HE received the degree from Tongji
University, China, in 2012, where she is currently
pursuing the Ph.D. degree with the Department of
Computer Science and Technology, Tongji Univer-
sity. Her research interests include model check-
ing, Petri net, business process management, and
workflow systems.

GUANJUN LIU (M’16) received the Ph.D. degree
in computer software and theory from Tongji
University, Shanghai, China, in 2011. He was a
Post-Doctoral Research Fellowwith the Singapore
University of Technology and Design, Singapore,
from 2011 to 2013 and with the Humboldt Uni-
versity zu Berlin, Germany, from 2013 to 2014,
supported by the Alexander von Humboldt Foun-
dation. He is currently an Associate Professor with
the Department of Computer Science and Technol-

ogy, Tongji University. He has authored over 60 papers including 12 ones
in IEEE/ACM TRANSACTIONS and one book Liveness of Petri Nets and Its
Application (Tongji University Press, 2017). His research interests include
Petri net theory, model checking, Web service, workflow, discrete event
systems, and information security.

DONGMING XIANG received the bachelor’s and
M.S. degrees from the University of Jinan, China,
in 2010 and2013, respectively. He is currently pur-
suing the Ph.D. degree with the Department of
Computer Science and Technology, Tongji Univer-
sity. His research interests include model check-
ing, Petri net, business process management, and
service computing.

JIAQUAN SUN received the bachelor’s degree
from the University of Zhejiang Technology,
China, in 2016. He is currently pursuing the M.S.
degree with the Department of Computer Science
and Technology, Tongji University. His research
interests include model checking, Petri net, and
business process management.

CHUNGANG YAN received the Ph.D. degree
from Tongji University, Shanghai, China, in 2006.
She is currently a Professor with the Depart-
ment of Computer Science and Technology, Tongji
University. She has authored or co-authored over
100 papers in domestic and international academic
journals and conference proceedings. Her current
research interests include concurrent model and
algorithm, Petri net theory, formal verification of
software, trusty theory on software process.

CHANGJUN JIANG received the Ph.D. degree
from the Institute of Automation, Chinese
Academy of Science, Beijing, China, in 1995.
He is currently the Leader with the Key Labo-
ratory of Embedded System and Service Com-
puting, Ministry of Education, Tongji University,
Shanghai, China. He is an IET Fellow and an Hon-
orary Professor with Brunel University London.
He has authored or co-authored over 300 papers in
journals and conference proceedings. He has led

over 30 projects. His research interests include concurrency theory, Petri
nets, formal verification of software, cluster, grid technology, intelligent
transportation systems, and service-oriented computing. He was a recipient
of one international prize and seven prizes in the field of science and
technology.

VOLUME 6, 2018 11423

	INTRODUCTION
	BASIC CONCEPTS
	A MOTIVATING EXAMPLE
	WORKFLOW NET WITH DATA CONSTRAINTS
	REACHABILITY
	HIERARCHICAL SOUNDNESS
	MUST-/MAY-TERMINATION
	NORMAL/ABNORMAL TERMINATION
	HIERARCHICAL SOUNDNESS

	AN ANALYZING TOOL OF WFDC-NET
	CONCLUSION
	REFERENCES
	Biographies
	YAQIONG HE
	GUANJUN LIU
	DONGMING XIANG
	JIAQUAN SUN
	CHUNGANG YAN
	CHANGJUN JIANG

