
Received December 7, 2017, accepted February 5, 2018, date of publication February 15, 2018, date of current version March 28, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2806379

Parallel and Progressive Approaches for Skyline
Query Over Probabilistic Incomplete Database
YIFU ZENG 1, KENLI LI2, (Senior Member, IEEE), SHUI YU3, (Senior Member, IEEE),
YANTAO ZHOU1, AND KEQIN LI2,4, (Fellow, IEEE)
1College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
2College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
3School of Information Technology, Deakin University, Burwood, VIC 3125, Australia
4Department of Computer Science, The State University of New York, New Paltz, NY 12561, USA

Corresponding author: Yifu Zeng (zengyifu@hnu.edu.cn)

This work was supported in part by the Key Program of National Natural Science Foundation of China under Grant 61472126 and
Grant 61432005, in part by the International (Regional) Cooperation and Exchange Program of National Natural Science Foundation
of China under Grant 61661146006, in part by the National Natural Science Foundation of China under Grant 61370095,
and in part by the National Key Research and Development Program of China under Grant 2016YFB0200201.

ABSTRACT The advanced productivity of the modern society has created a wide range of similar
commodities. However, the descriptions of commodities are always incomplete. Therefore, it is difficult for
consumers to make choices. In the face of this problem, skyline query is a useful tool. However, the existing
algorithms are unable to address incomplete probabilistic databases. In addition, it is necessary to wait
for query completion to obtain even partial results. Furthermore, traditional skyline algorithms are usually
serial. Thus, they cannot utilize multi-core processors effectively. Therefore, a parallel progressive skyline
query algorithm for incomplete databases is imperative, which provides answers gradually and much faster.
To address these problems, we design a new algorithm that uses multi-level grouping, pruning strategies,
and pruning tuple transferring, which significantly decreases the computational costs. Experimental results
demonstrate that the skyline results can be obtained in a short time. The parallel efficiency for an Octa-core
processor reaches 90% on high-dimensional, large databases.

INDEX TERMS Data management, incomplete data, parallel processing, progressive processing,
probabilistic products, skyline query.

I. INTRODUCTION
The widespread use of portable Internet devices such as
mobile phones and tablets, allows people to share comments
on all kinds of commodities, whenever and wherever they
want. In addition, people tend to rely on item descriptions
and comments on the Internet, which are provided by mer-
chants or other customers, in selecting their favorite items.
Therefore, the growing numbers of comments on review sites,
such as TripAdvisor and Yelp, are playing an increasingly
important role in our daily lives. However, due tomany issues,
such as limitations of measuring equipment, deliberate with-
holding of disadvantages, and transmission errors, most of the
information is incomplete. Additionally, the randomness of
the commodities and the reliability of the data increases the
probabilistic uncertainty of the data. The positive review rate
and the number of comments also influence the reliability of
the ratings, since they reflect the gap between the descrip-
tion of commodities and the subjective feelings of clients.

Consequently, the information of a commodity usually
carries uncertainty of not only probability but also com-
pleteness. Therefore, processing these probabilistic incom-
plete data efficiently and accurately would be an important
achievement.

We give an example to illustrate a practical application
scenario. Suppose Mr. Smith wants to enjoy his meal nearby,
and the restaurant information in terms of distance, price
and reliable rate is as shown in Fig. 1(a). For two restau-
rants with similar distance, price, or other parameter such as
facilities or environment, the one with more comments and
a higher positive rate is more reliable. The number of com-
ments indicates the popularity of the restaurant. Apparently,
a popular restaurant is more likely to be truly and accurately
described. A negative review rate indicates the probabil-
ity that a customer’s dining experience will not match that
shown in the advertising campaigns. Therefore, the restaurant
with higher positive rate is more reliable. We use P-skyline

VOLUME 6, 2018
2169-3536 
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13289

https://orcid.org/0000-0002-2966-2521


Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 1. Two forms of uncertain datasets. (a) Probabilistic tuples.
(b) Probabilistic incomplete tuples.

query [1] to extract the best candidates from this database.
Restaurants b, c and f are the best choices if we set the
threshold to 0.5. Therefore, Mr. Smith should choose his
dining place from the subset {b, c, f } as these restaurants are
better than other candidate restaurants.

However, a more realistic situation is that the data of each
tuple are incomplete. As shown in Fig. 1(b), the average price
information of some restaurants is lost. This is a very common
phenomenon on most shopping websites and recommenda-
tion systems. Faced with this situation, Mr. Smith would be
puzzled again because the previous skyline set {a, b, c} may
not contain the best choices now.

Skyline query is a powerful tool for data mining and deci-
sionmaking and is highly suitable for this case. It has received
significant attention from the database community [2]–[5].
In addition to skyline query, some similar algorithms have
been proposed for obtaining suitable candidates [6], [7].
There are many sophisticated solutions for complete, certain
databases, which means the skyline query results can be
obtained in a short time [8]. Additionally, for probabilistic
databases, such as that shown in Fig. 1(a), there have been
many recent developments of skyline queries [1], [9]–[13].
These developments are important, as this research has many
applications. A famous example is the selling of airline tickets
at http://www.bing.com/travel. The availability and price of
airline tickets show substantial uncertainty. To help their
users make decisions, bing.com provides a service that pre-
dicts changes in tickets prices. This problem is based on the
possible world semantics [14], which is widely adopted in
probabilistic databases [15]–[19].

However, the progressive skyline query is unwarranted
with these methods, but is very important in practical appli-
cations. People may not need to choose from all possible
answers. Providing several candidates for customers in a
short time is very helpful. For example, Mr. Smith wants
to obtain recommendations for nearby restaurants. With the
the non-progressive algorithm, he obtains 40 options after
30 seconds. With a progressive algorithm, he obtains

five options in the first two seconds, and the other options
are given soon afterwards. In most cases, five candidates
are sufficient for making a choice. Therefore, a progressive
algorithm is a new challenge with many promising appli-
cations, which better matches practical needs. To address
this problem, we need to evolve the algorithm and make it
supportive of progressive query. Moreover, with the increas-
ing popularity of multi-core portable devices, parallelizable
algorithms are becoming more popular. An efficient parallel
algorithm can be run in a smart phone and tablet, whichmakes
it feasible to obtain all kinds of recommendations based on
local databases with greatly decreased waiting time.

Motivated by these issues, we make the following
contributions:
• We define tuple grouping, strict group encoding and an
inclusion relation as the basis of the algorithm, which
enhance the parallel efficiency of the algorithm.

• We provide an optimized definition of the incomplete
data mode, which provides more reasonable answers.

• We formulate the algorithm with progresion, which
reduces the waiting time for most users who do not need
a complete candidate set to make a choice.

• We propose several pruning approaches in both the pre-
treatment stage and the comparsion stage, which reduce
the response time of the system.

• We perform an extensive experimental study on both
synthetic and real datasets to evaluate the efficiency and
effectiveness of our proposed algorithm, especially on
massive and high-dimensional datasets.

The rest of the paper is organized as follows: In Section III,
we propose the incomplete data model and the P-skyline
model. The related works are also reviewed. In Section IV,
we design some effective pruning strategies and algorithms
for overcoming the problems in skyline queries over proba-
bilistic incomplete data. In Section V, we evaluate the perfor-
mance of the proposed algorithm by extensive experiments.
In Section VI, we present the conclusions of the paper and
discuss directions for future work.

II. RELATED WORK
Skyline query is a popular paradigm for extracting interest-
ing objects from multi-dimensional databases. Skyline query
also garnered considerable research attention over uncertain
data. Pei et al. [1] first proposed probabilistic skyline query
over uncertain databases. Kin et al. introduced a probabilistic
skyline algorithm called P-skyline, which computes the exact
skyline probabilities of all objects. Its performance is scalable
with the dataset size or the dimensionality. Lian and Chen
focused probabilistic reverse skylines, and considered both
monochromatic and dichromatic cases [20]. Zhang et al. [21]
studied the problem of efficiently computing skylines against
sliding windows over an uncertain data stream. Recently,
Lian and Chen [22] proposed a novel and important query
for uncertain databases, namely, probabilistic group subspace
skyline query (PGSS), and presented an efficient query pro-
cedure. Ding and Jin [23] proposed the notation of distributed

13290 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

skyline queries over uncertain data and designed two compu-
tationally and communication-efficient algorithms. Most of
these previous studies are based on P-skyline. Specification
by the user of an appropriate probability threshold is one of
the challenges for P-skyline. Moreover, in P-skyline, tuples
are considered individually, and the dominance relationship
between them is not taken into account.

Although incomplete data exist widely in practice,
the amount of research that considers incomplete data,
let alone probabilistic incomplete data, is very limited.
A closely related work to incomplete data is the k-dominant
skyline problem [24]. The k-dominant skyline algorithm
overcomes the non-transitivity property by discarding points
that are dominated in all dimensions, while keeping points
that are only dominated in k dimensions. The k-dominant
skyline algorithm cannot applied to incomplete data directly
and incurs prohibitive costs, which can be avoided with the
knowledge of incomplete dimensions. Khalefa et al. [25]
first defined a dominance relation for incomplete data, which
is different from ours. They also introduced the ISkyline
algorithm for skyline computation over incomplete data.
Haghani et al. [26] addressed the problem of process-
ing continuous top-k queries over incomplete data streams.
Wolf et al. [27] introduced QPIAD, which is a novel
query rewriting and optimization framework that tack-
les the challenges of incomplete autonomous databases.
Soliman et al. [28] explored a novel probabilistic model that
extends partial orders to represent the uncertainty in the score
of database records, and formulated several types of ranking
queries on this model. Gao et al. [29] proposed the k-skyband
skyline for incomplete databases in 2014. Cheng et al. [30]
studied similarity search on dimension-incomplete data.
Lofi et al. [31] proposed an approach for the challenge
of dealing with missing information in datasets in connec-
tion with skyline query processing, by using crowd-enabled
databases.

However, none of them studied the database with uncer-
tainties of both incomplete and probabilistic characteristics.
In this paper, we formalize a progressive skyline query over
probabilistic incomplete data. In addition, this query is real-
ized in a parallel way.

III. PRELIMINARIES
In this section, we first present the uncertain data model
that we use in this paper. Afterwards, an innovative incom-
plete data model is proposed. To avoid misunderstanding,
we assume that the smaller value is better. For reference,
Table 1 summarizes the symbols that are used frequently in
the rest of this paper.

A. UNCERTAIN DATA MODEL
There have beenmany researchworks about query processing
on the locationally uncertain data model, which emphasizes
processing the uncertainty of the location [1], [32], [33]. All
the objects in this model are known to exist. Admittedly,
this uncertain model is useful in many cases. However, the

TABLE 1. Symbols and description.

TABLE 2. Distinctions between two models [32].

uncertain model is not applicable to our problem about
incomplete probabilistic products,in which it is possible for
each product to be unavailable. Therefore, we conduct our
research on the basis of another existing uncertain datamodel.
Different from the previous model, this one has locationally
certain objects with existence probabilities (see Table 2). This
model is widely used in a variety of online trading sites and
previous papers [5], [19], [22].

The research works about skyline query over probabilistic
data are mostly based on the P-skyline Model, which was
first proposed in [1]. Here, we give an example to illustrate
P-skyline. According to Fig. 1(a), the non-dominated prob-
ability of tuple d is calculated by Pnon−dom(d) = P(a) ×
P(d) = 0.3, because d is not dominated only if a is
unavailable. Similarly, Pnon−dom(b) = P(b) = 0.5, no tuple
can dominate b. In summary, P-skyline returns individual
data tuples with non-dominance probabilities that are greater
than or equal to a specified threshold. In this example, for a
threshold of 0.5, the P-skyline answer set is {b, c, f }.

B. INCOMPLETE DATA MODEL
Due to the existence of missing dimensional values, the tra-
ditional definition of a dominance relationship under com-
plete data is no longer applicable. The existing research
works on skyline query over incomplete data use an incom-
plete data models, as in Definition 1 [25], [29]. Admittedly,
Definition 1 provides a feasible model for tackling incom-
plete data. However, this model is unreasonable in some
cases. As shown in Fig. 1, tuple a dominates all the other
tuples when its price information is missing. Restaurant a
has a relatively high price in this database. A customer may
find the prices unaffordable when he arrives at restaurant a.

VOLUME 6, 2018 13291



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

TABLE 3. Four-dimensions incomplete dataset.

Therefore, we need a more reasonable incomplete data model
for performing a more reasonable skyline query over incom-
plete data. The definition and further comparisons are given
below.
Definition 1:Assume that t.[i] is the i-th dimensional value

of t . Tuple t dominates another tuple t ′ (denoted as t≺t ′) if
the following two conditions hold:

• For each dimension i, either t.[i] and/or t ′.[i] are/is
unknown, or t.[i]6t ′.[i].

• There is at least one dimension j in which both t.[j] and
t ′.[j] are known, and t.[j] < t ′.[j].

We define a new dominance relationship over incom-
plete data in Definition 2. The detail comparisons of
Definition 1 and Definition 2 are given under Definition 3.
Definition 2 (Dominance Relationship Over Incomplete

Data): Assume that t.[i] is the i-th-dimensional value of t .
Tuple t dominates another tuple t ′ (denoted as t≺t ′) if the
following four conditions hold:

• There is at least one dimension i in which both t.[i] and
t ′.[i] are known.

• For each dimension j in which both t.[j] and t ′.[j] are
known, t.[j] ≤ t ′.[j].

• There is at least one dimension k in which t.[k] <

t ′.[k] or t.[k] exists while t ′.[k] is unknown.
• There does not exist any dimension m in which t.[m] is
unknown while t ′.[m] is known.

The skyline set for an incomplete data set S is defined as
follows:
Definition 3 (Skyline Set): The skyline set of an incomplete

multidimensional data set S is a set of tuples that are not
dominated by any other tuple in S.
A relatively more complete database (see Table 3) is intro-

duced for analyzing the differences between Definition 1 and
Definition 2. For convenience, we adjust the measurement
unit to simplify the data and assume that a lowermeasurement
value is better. Additionally, we use different background
colors to differentiate the lost dimensions.

Under Definition 1, information lose seems to be advan-
tageout for the merchants, which is unreasonable. According
to Table 3, restaurant n dominates nearly all the other restau-
rants, with only the value of the first dimension known, as do
restaurants p, q and r . Consequently, the skyline set of this
dataset under Definition 1 is {n, p, q, r}, which is apparently
unacceptable for customers. This set may encourage the mer-
chants to lose some information intentionally.

The same patterns under Definition 2 will yield more
reasonable results.We give priority to tuples with higher com-
pleteness to prune the relatively incomplete tuples. According
to Table 3, tuple a dominates tuples r and h; tuple b dominates
tuples{n,m, i, f , d}; tuple c dominates tuples q and e; and
tuple g dominates tuple p. Consequently, the skyline set of this
dataset, according to Definition 2, is {a, b, c, g, j, k}, which is
obviously more applicable and helpful for customers. People
who are sensitive to price could choose b, which is the cheap-
est option with good taste and service. People who do not care
about money but have limited time, can choose g. Since this
nearby restaurant has the best service, it could also be chosen
to ensure a positive dining experience.

Moreover, if a tuple has a great value in any one dimension,
but lose values of all the other dimensions, it still can be a sky-
line answer under Definition 2. For example, if the distance
of tuple p is 0.5, it will still be a skyline answer. Therefore, for
our skyline query over incomplete data, Definition 2 is more
suitable.
Definition 4: P-skyline query over a probabilistic incom-

plete database S outputs a subset of S that has a P-skyline
probability that is larger than a threshold α.

The answer set of the database in Fig. 1(b) according
to Definition 4 is {b, d, f } if we set the threshold to 0.5.
This paper studies the problem of apply P-skyline query
over a probabilistic incomplete database, which is given
in Definition 4.

IV. SKYLINE QUERIES PROCESSING
In this section, we first put forward a baseline algorithm
for probabilistic incomplete data. Then, several methods are
introduced for enhancing the efficiency of the algorithm.

A. BASELINE ALGORITHM
The baseline algorithm is designed for the control test.
Since there is no existing any algorithm that is designed
for P-skyline query over a probabilistic incomplete database,
the baseline algorithm is simply designed according to
Definition 2 and the definition of P-skyline [1]. As shown
in Algorithm 1, the baseline algorithm is a brute-force algo-
rithm; it is time-consuming and inapplicable to big databases
due to the high computational burden of calculating P-skyline
probabilities. Moreover, the baseline algorithm is a serial
algorithm.

B. GROUPING AND SORTING
Most existing skyline query algorithms are serial because of
the dependence among tuples. The computation of a tuple

13292 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

Algorithm 1 Baseline Algorithm
Input: d-dimensional probabilistic incomplete data set S.
Output: PQ(S).
1: Initialize PQ(S)
2: for each tuple tp∈S do
3: Calculate PP(tp);
4: if PP{tp}≥α then
5: Put tp into PQ(S);
6: Return PQ(S).

often relies on the results for other tuples. Therefore, the key
to parallelization is to determine which tuples are indepen-
dent of one another.

Bitmap is an important concept in the processing of incom-
plete data [25], [29]. For ease of representation and com-
putation, we represent a d-dimensional incomplete tuple t
by a d-bit bitmap vector t.b whose entries are 1 for all
complete dimensions and 0 for all incomplete dimensions.
For example, the bitmaps of tuples t = (3,−, 2,−) and
t ′ = (−, 2, 2, 3) are t.b = 1010 and t ′.b = 0111,
respectively.

For the convenience of describing the incompleteness of a
tuple or a bitmap group, integrity is defined in Definition 6.
For example, the integrity of tuples t = (3, 1, 2,−) and
t ′ = (−,−,−, 3) are C(t) = 3 and C(t ′) = 1, respectively.
Definition 5 (Independent Tuples): Tuples a and b are

independent tuples if a⊀b and b⊀a.
Definition 6 (Integrity): The integrity C(ti) of any tuple ti

is the sum of the entries of its bitmap vector. The integrity
C(Bm) of any bitmap group Bm is the integrity of the tuple
in this group. The maximum integrity value of a tuple is its
dimension d and the minimum integrity value of a tuple is 1.
Assume that tuple a and tuple b have the same integrity

value and different bitmaps. It can be demonstrated that they
are independent tuples. Therefore, we can allocate them to
different buckets according to their bitmaps and integrity
value for convenience of parallelization.
Lemma 1: Two tuples are independent tuples if they have

the same integrity value and different bitmaps.
Proof: Assume that tuple a and tuple b have the same

integrity value and different bitmaps. There is at least one
dimension, i, in which a.[i] is known and b.[i] is unknown.
Moreover, there is at least one dimension, j, in which b.[j] is
known and a.[j] is unknown. According to Definition 2, a⊀b
and b⊀a. Therefore, a and b are independent tuples. �
As shown in Fig. 2, the buckets with the same integrity

value have the same priority level. Thus, they can be pro-
cessed at the same time. For tuples with the same bitmap,
the dominance relationship is the same as that for complete
data. We can process the skyline query by each bitmap in a
particular order. Besides, some of the settled answers can be
used to prune tuples before processing.
Lemma 2: All tuples in Bm, where C(Bm) = d, will not be

dominated by any tuple in Bn, where C(Bn) = d − 1.

FIGURE 2. Integrity pyramid.

Proof:According to Definition 2, the number of missing
dimensions of tuples in Bn is greater than that of Bm, so that
Lemma 2 holds. �

According to Lemma 2, it is impossible for all of the local
P-skyline answers to be dominated by tuples in the lower
layers. Moreover, it is impossible for tuples that belong to
different buckets of the same layer to have a dominance rela-
tionship. Therefore, once we obtain a local P-skyline answer,
we can output it immediately because it is the final answer.
Progression can be realized by this way.

Before the processing of each bucket, it is necessary to sort
it according to a set of rules. For Bm with integrity d , sorting
should be carried out according to the following rules:
• Prepose the tuple with smaller value in any dimension.
• For tuples with the same minimum value, prepose the
tuple with the smaller sum value over all dimensions.

For example, subset {a, b, c, d} in Table 3 will be sorted as
{b, c, a, d} because tuples b, c, and a have a minimum value
of 1, while the minimum value of d is 2. In addition, the sum
value of b over all dimensions is 8 while those for c and a
are 10 and 11 respectively.
Lemma 3: For a sorted group, it is impossible for a candi-

date tuple to be dominated by a postpositional tuple.
Proof: Assume that tuple a is in front of tuple b. In the

dimension in which the minimum value of a is attained,
if b is larger than a, it cannot dominate a. If b is equal to a
in that dimension, there is at least one dimension in which
b is larger than a because the sum of b over all dimensions
is larger than that of a. Therefore, according to Definition 2,
it is impossible for b to dominate a. �

Algorithm 2 Grouping and Sorting
Input: d-dimensional probabilistic incomplete data set S.
Output: 2d − 1 numbers of sorted bucket Bsm.
1: Initialize 2d − 1 numbers of bucket Bm;
2: while S is not empty do
3: Read an object s from S;
4: Put s into a bucket Bm based on its bitmap;
5: Remove s from S;
6: Monotonic sort each bucket Bm;
7: Return Bsm

The sorting in descending order can be performed in
each group in a parallel way. Meanwhile, it can be pro-
cessed by the grouping operation. Algorithm 2 illustrates this
procedure.

VOLUME 6, 2018 13293



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 3. Complete and incomplete pruning tuples.

C. INDIVIDUAL BUCKET PROCESSING
The processing of each bucket begins from the top of the
integrity pyramid, which is shown in Fig. 2. It is impossible
for tuples in the top bucket to be dominated by tuples in
lower layers so the answers can be output progressively.
Moreover, we can use some tuples with higher dominance
ability to prune other tuples, which accelerates the processing
speed. In order to clarify the dominance ability of each tuple,
Definition 7 is given as follows. A higher value of pruning
ability of a tuple indicates the greater chance of this tuple to
dominate other tuples.
Definition 7 (Pruning Ability): The pruning ability for

tuple tp is denoted as PA(tp) and is computed by

PA(tp) = 1− (1− P(tp))× (1− P(tq))

×

∏
∀tx ,tq≺tx≺tp

(1− P(tx))

Definition 8 (Completed Pruning Tuple): A tuple tp is
a complete pruning tuple if its pruning ability is larger
than or equal to 1− α. the tuple is marked with c©.
Lemma 4: All tuples that are dominated by a complete

pruning tuple c©tp can be safely discarded without affecting
the answer set.

Proof: Assuming that ti is dominated by c©tp. Pp{ti} =
P(ti) ×

∏
∀tx ,tx≺ti (1− P(tx)). Since PA(tp)≥ 1− α, so that

(1 − P(tp)) ×
∏
∀tx ,tx≺tp ≤ α. Since tp ≺ ti, we have

(1 − P(ti)) ×
∏
∀tx ,tx≺ti < (1 − P(tp)) ×

∏
∀tx ,tx≺tp < α.

So that Pp{ti} < P(ti)× α, which is less than α. Therefore, ti
can be safely discarded and this lemma holds. �
Some tuples that are not marked as c© are also useful in

pruning strategies. These incomplete pruning tuples can help
produce complete pruning tuples. According to Fig. 3(a),
tuple tp is a complete pruning tuple when its existence prob-
ability is larger than 1 − α. When P(tq) < 1 − α, it is
possible to help tp become a complete pruning tuple. With
assistant tuples, it is still possible for a tuple with low exis-
tence probability to become a complete pruning tuple. For
example, as shown in Fig. 3(b), suppose we have pruning
tuples tp and tq. P(tq) = 0.3, P(tp) = 0.5 and tq≺tp. Since
PA(tq) < 0.6 and PA(tp) > 0.6, tp can be marked as c©
while tq is not. Further, if we set P(tp) = 0.4 and keep
other conditions invariably, PA(tp) will be 0.58, which is less
than 0.6. If we have another pruning tuple tr that dominates tp,
even if its existance probability is only 0.1, PA(tp) will be
larger than 1−α and tp will become a complete pruning tuple.

TABLE 4. Three-dimensions probabilistic incomplete dataset.

Therefore, a tuple set that contains complete pruning tuples
and incomplete pruning tuples should be created in the pro-
cessing procedure. We can directly discard tuples that are
dominated by a complete pruning tuple.

With Lemmas 2, 3 and 4, Algorithm 3 is designed.

Algorithm 3 Single Bucket Processing
Input: Bm.
Output: Answer set PQ(Bm).
1: Initialize pruning set PS(Bm)
2: Initialize answer set PQ(Bm)
3: while Bm is not empty do
4: Read a tuple tp from Bm;
5: if PS(Bm)⊀tp then
6: if P(tp)≥α then
7: PQ(Bm) = PQ(Bm)∪tp;
8: Output tp;
9: PS(Bm) = PS(Bm)∪tp;

10: if P(tp)≥(1− α) then
11: Mark tp as c©;
12: else if ∃ c©tq≺tp, tq∈PS(Bm) then
13: Discard tp;
14: Break;
15: else if ∃tq≺tp, tq∈PS(Bm), ∧tq is not c© then
16: Calculate PA(tp);
17: if PA(tp)≥(1− α) then
18: Mark tp as c©;
19: Calculate Pp(tp);
20: if Pp{tp}≥α then
21: PQ(Bm) = PQ(Bm)∪tp;
22: Output tp;

An example is presented to explain this algorithm. Table 4
shows a sorted dataset. Assume that the threshold is 0.4.
Bucket B111 consists of tuples a, b, c, d, e. Tuples a and b are
put into PQ(B111) and PS(B111) in lines 5 to 8 of Algorithm 3
where a is marked as c©, while b is not. Then, tuple c is
dominated by an incomplete pruning tuple b. Tuple c is
put into PS(B111), but not PQ(B111), after the calculation
of PA(c) and Pp{c}. Afterwards, d is put into PQ(B111) and
PS(B111), while e is pruned by completed pruning tuple a.

13294 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 4. PS(Bm) transfer to its subsets.

From this procedure, we obtain PQ(B111) of a, b, d and
PS(B111) of c©a, b, c©c, c©d .

D. LOWER-LAYER PROCESSING
The pruning set can be transferred to the subsets after we
obtain the pruning set of a higher-layer bucket. The pruning
efficiency can be greatly enhanced by this approach.
Definition 9: Tuples in Pruning Set PS(Bm) of bitmap

group Bm will be transferred to subsets PS(Bn), which is
the Pruning Set of bitmap group Bn if the following two
conditions hold:
• Exactly on digit of Bm.b is 1, while Bn.b is 0.
• For each digit of Bm.b that is 0, the same digit of Bn.b
must be 0 as well.

Lemma 5: Tuples that are supposed to be in the final
P-skyline results will not be pruned by the transferred pruning
tuples.

Proof: ti is a tuple that is supposed to be in the final result
set PQ(S) without the use of the transferred pruning tuples.
Assume that ti will be pruned by transferred pruning tuple t tj .
Since t tj is a tuple that was copied from tj with one or more
missing dimensions, tj can also prune ti. Thus, ti cannot be a
final skyline tuple and the assumption is invalid. Therefore,
ti will not be pruned by any transferred pruning tuple and
Lemma. 5 holds. �
The notation of pruning set transfer is introduced to reduce

the calculation workload and enhance the pruning efficiency.
After the processing of the sorted bitmap group Bsm, which
has the maximum value of integrity C(Bm) = d , the PS(Bm)
can prune not only tuples in Bsm but also tuples in any other
bitmap group Bsn that has an integrity value of C(Bn) = d−1.
As illustrated in Fig. 4, PS(Bm) from the upper level should
be transferred to the lower level to enhance the efficiency.
For example, assume that tuple t = (1, 3, 1) is in PS(Bm)
with probability 0.7. To fully realize its pruning potential and
improve the overall computational efficiency, we can transfer
this tuple to the Pruning Set of bitmap groups with a bitmaps
of 110,101,and 011. Similarly, the tuples in each bitmap
group’s pruning set could also be transferred. To streamline
and optimize this transfer characteristic, we give a definition
that describes the conditions of the tuple sender and the tuple
receiver (see Definition 9). This also means that the receiver
bucket is independent of the other higher-level buckets.

The receiver bucket only needs to wait for the processes in its
sender buckets to be completed, but not the processes in other
buckets. The parallel efficiency is improved. For example,
the transfer will occur from Bm.b = 110 to B(n).b = 100, but
not Bp.b = 001. In this way, the initial Pruning Set of these
groups is not empty, which provides a considerable reduc-
tion in the number of calculations in the overall process of
P-skyline query over uncertain incomplete data.

Algorithm 4 Lower Layers Processing
Input: Bm.
Output: Answer set PQ(Bm).
1: Initialize pruning set PS(Bm)
2: Get pruning tuples from related upper layer;
3: Initialize answer set PQ(Bm)
4: SBP(Bm);

With the use of transferred pruning tuples, Algorithm 4
is designed as follows: SBP() is moved from line 3 to line 22
in Algorithm 3. We give an example in Table 4 to illustrate
the transfer mechanism. We obtain PS(B111) after applying
Algorithm 3. Then, PS(B111) can be transferred to PS(B101)
and PS(B110). Buckets B101 and B110 can be processed in
parallel with these pruning sets at this stage. Tuple f is put
into PS(B101) and output as an answer, while tuple g is
pruned by transferred pruning tuple d . The other buckets are
processed in a similar way. The final answers of P-skyline
in this database under threshold of 0.4 are tuples a, b, d ,
f and h.

E. INDIVIDUAL BUCKET EFFICIENCY ENHANCEMENT
The processing of individual buckets is serial in Algorithm 3.
The parallel efficiency decreases when the processing of
some buckets finishes before the processing of others. A typi-
cal example is that only one thread is loaded when processing
the first bucket. The processing of all the other buckets relies
on the result for the first bucket. Therefore, parallelizing the
processing of individual buckets is very important.
Definition 10 (Tuple Bus): Tuples in one tuple bus can-

not dominate each other, which means they are independent
tuples. The capacity of the tuple bus is the number of proces-
sor threads.
Lemma 6: Any number of independent tuples can be pro-

cessed at the same time without changing the final results.
Proof: Assume that tuples a and b are independent

tuples. According to Algorithm 3, the sequence of processing
influences the generation of the pruning set. Since a and b
do not have a dominance relationship, putting one into the
pruning set does not affect the other. Therefore, a and b can
be processed in any order and Lemma 6 holds. �
Lemma 7: The use of a tuple bus does not affect the final

results.
Proof: Tuples in the same tuple bus do not have a

dominance relationship. Therefore, according to Lemma 6,
Lemma 7 holds. �

VOLUME 6, 2018 13295



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

TABLE 5. The database parameter settings.

Before the processing in Algorithm 3, we can obtain indi-
vidual tuples from the sorted bucket before the full load of
the tuple bus. Then, they can be read by each thread and
processed in parallel. We give an example to illustrate the
operation. Assume that the number of thread is two. The
processing of B111 in Table 4 involves the processing of buses
{a, b}, {d}. The tuples in each bus are processed in parallel.
The final algorithm is shown in Algorithm 5. Line 4

ensures the parallel processing according to different plat-
forms. Line 5 to line 8 are the building of bitmap index.
Line 10 to line 36 are the main processing flow that are
illustrated above. With Algorithm 5, a probabilistic incom-
plete database can be processed to a set of skyline answers
efficiently.

V. EXPERIMENTAL EVALUATION
To evaluate our proposed algorithms, we implement them
in C++. The experiments are performed on a PCwith an Intel
XeonTM E5-2690 2.9GHz CPU (with 8 cores) and 8GBmain
memory, under the Ubuntu 14.04 operation system.

A. EXPERIMENTAL SETUP
To generate the synthetic datasets that are used in the exper-
iments, we compile a random database generator program
in C++. The generator provides the database with three
parameters: database size, dimensionality and incomplete
rate. Similar to [5], [23], we use uniform distribution to
randomly generate an reliable probability of each tuple to
make them be probabilistic uncertain. The reliable probability
of each tuple takes a random value between 0 and 1.The
parameters settings of the synthetic database are summarized
in Table 5.

We also evaluated our algorithms on four real world
datasets: CCarDB, HotDB, NBA and UCarDB. CCarDB is a
6-dimensional database of size 41,424. In our experiments,
we consider three numerical attributes of each car: Price,
Mileage and Age. HotDB contains 10,120 5-dimensional
values, which represent the comments and positive review
ratios of hotels in Beijing. The attributes contain location,
facilities, service, sanitary condition and price inforamtion.
These two databases are probabilistic incomplete databases
and were obtained by us from two famous e-commerce web-
sites in China. NBA contains 17,266 5-dimensional values,
which represent the box scores of the basketball players in the
National Basketball Association.UCarDB is a 2-dimensional
dataset of size 1,048,575, which represents used car informa-
tion in U.S. These two databases have been widely used in
many previous works on dominance problems [34]–[40].

The experiments are divided into two parts: In the first part,
we compare the performances of four algorithms: BF, IP, TS

Algorithm 5 Final Algorithm
Input: Probabilistic incomplete database S.
Output: Answer set PQ(S).
1: Initialize PQ(S);
2: Initialize 2d − 1 numbers of Bm;
3: Initialize 2d − 1 numbers of PS(Bm);
4: Set capacity of a tuple bus to thread count;
5: while S is not empty do
6: Read an object s from S;
7: Put s into a bucket Bm based on its bitmap;
8: Remove s from S;
9: Monotonic sort each Bm;
10: for each Bsm from higher layer to lower layer do
11: while tuple bus TB is not full do
12: Read a tuple tp from Bsm;
13: if TB⊀tp then
14: TB = TB∪tp;
15: Discard tp from Bsm;
16: else
17: Skip tp;
18: Capture a tuple tp from TB;
19: if PS(Bm)⊀tp then
20: if P(tp)≥α then
21: PQ(Bm) = PQ(Bm)∪tp;
22: Output tp;
23: PS(Bm) = PS(Bm)∪tp;
24: if P(tp)≥(1− α) then
25: Mark tp as c©;
26: else if ∃ c©tq≺tp, tq∈PS(Bm) then
27: Discard tp;
28: Break;
29: else if ∃tq≺tp, tq∈PS(Bm), ∧tq is not c© then
30: Calculate PA(tp);
31: if PA(tp)≥(1− α) then
32: Mark tp as c©;
33: Calculate Pp(tp);
34: if Pp(tp)≥α then
35: PQ(Bm) = PQ(Bm)∪tp;
36: Output tp;
37: Transfer PS(Bm) to its subsets;
38: return 0

and EP. BF is the baseline algorithm, which is described in
Section 1. IP applies Algorithm 3 to all buckets after grouping
and sorting. TS applies pruning tuple transfer, as described
in Section 4, on IP. EP is the algorithm that is presented as
Algorithm 5. We will find that EP has obvious advantages
over the other algorithms through comparison. In the second
part, examine the performance of EP under other
conditions.

In the following experiments, we consider the following
three aspects as our performance metrics:
• Processing time: the time spent processing the database;
• Progression: the number of output answer tuples in the
timer shaft;

13296 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 5. Experiment results for synthetic data. (a) Processing time with different database sizes. (b) Processing
time with different data dimensions. (c) Processing time with different incomplete rates. (d) Processing time with
different threshold values.

• Parallel efficiency: the parallel efficiency of our paral-
lelized algorithm.

B. COMPARISON EXPERIMENTS
To evaluate the performance of our algorithm, a comparison
is necessary. However, our algorithm is the first parallel
algorithm to tackle P-skyline query over incomplete uncertain
databases with progression. Therefore, we design a compari-
son with the four algorithms that are presented in this paper:
BF, IP, TS and EP, which were introduced in the previous
subsection.

The performance comparison is the first experiment on a
synthetic database. Three parameters are varied in building
the synthetic database: the number of tuples in the database,
the dimensionality d and the incomplete rate. We change the
dimensionality, database size, incomplete rate, and threshold
value from d = 2 to d = 7, 1k to 1M , 0.2 to 0.6, and α = 0.3
to α = 0.7, respectively. The results are shown in Fig. 5.

As shown in Fig. 5(a), the processing time of each algo-
rithm keeps growing when the database size increases. How-
ever, the processing time of BF is obviously much larger
compared to the other algorithms, regardless of whether the
database size is large or small.We find that the time cost ofBF
becomes unacceptable when the database size reaches 300K .
In addition, IP has a barely acceptable processing time,
according to the figure. For a small database, its processing

time is only slightly longer than those of TS and EP. How-
ever, the time cost of IP is more than ten times that of EP
when the database size reaches 100K . Additionally, the time
gap between IP and EP widens as the size of the database
increases. Therefore, both of BF and IP are unsuitable for
processing a large database.

Fig. 5(b) indicates that for all algorithms, higher dimen-
sionality databases require much more processing time than
lower dimensional databases. The cost for d = 7 is more than
ten times that for d = 2 in all algorithms. However, EP still
outperforms the others algorithms. The curve of EP is flatter
than those of the others, which means it is suitable for high-
dimensional databases.

Fig. 5(c) reveals that the incomplete rate has little effect on
the processing time of each algorithm. The processing time
of each algorithm rises inconspicuously when the incomplete
rate is 0.3. All of the four lines are nearly straight.

Similarly, the threshold value has little influence on the
processing time of each algorithm. Fig. 5(c) shows that the
larger threshold value is, the lower the time cost.

Next, we try to implement all four algorithms on real
databases CCarDB, HotDB, NBA and UCarDB. The exper-
imental results are shown in Fig. 6. BF is unable to han-
dle UCarDB. BF requires more than one thousand seconds,
which is unacceptable. EP remarkably outperforms all the
other algorithms. EP is almost twenty times faster than IP

VOLUME 6, 2018 13297



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 6. Experiment results for real data. (a) Processing time of CCarDB. (b) Processing time of HotDB.
(c) Processing time of NBA. (d) Processing time of UCarDB.

FIGURE 7. Processing time of EP. (a) Processing time by dimensions. (b) Processing time by incomplete rates.

onHotDB and NBA, and it is more than forty times faster that
UCarDB. Therefore, our algorithm EP is also very efficient
on real data.

C. FURTHER PERFORMANCE EVALUATION
According to the comparison experiments, our algorithm can
output the answer in a quarter of a second, even when the
database size is increased to one million. In this section,
we try to determine the maximum performance by applying
it to a larger and higher-dimensional database. At the same
time, the parallel efficiency and progression of EP are also
tested.

The experiments show that the processing time increases
steadily and continuously as the database size increases. The
dimensionality of the database also influences the processing
time. Experimental results are shown in Fig. 7(a). For a
database with a size of 100 K, the processing time varies
from 0.029 s to 0.379 s when its dimensionality is varied
from 2 to 7. Even when the database size is increased to
one million, our algorithm can still return the answer quickly.
On a database with 30 M tuples, the processing time is still
acceptable. Even for a 7-dimensional database, the result
is given in approximately one minutes. Therefore, the time
complexity of our algorithm is acceptable.

13298 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

FIGURE 8. Parallel efficiency of EP. (a) Parallel efficiency by dimensions. (b) Parallel efficiency by incomplete rates.

FIGURE 9. Progressive of EP. (a) Progressive by sizes. (b) Progressive by dimensions.

The incomplete rate of the database is correlated with the
difficulty of processing. In our experiment, 0.3 seems to be
the hardest incomplete rate, which is shown in Fig. 7(b). How-
ever, the influence of the incomplete rate is comparatively
small.

Fig. 8(a) shows the parallel efficiency of EP. The
y-coordinate implies the parallel efficiency of EP. For the
Octa-core system, a parallel efficiency of 0.9 means a
speedup ratio of 7.2. The parallel efficiency increases as
the database size and dimensionality increase. This is very
significant because larger and higher-dimensional databases
are more time-consuming. Fig. 8(b) indicates that the paral-
lel efficiency is highest when incomplete rate is 0.3, which
means that EP enjoys better parallel performance on more
difficult tasks. Progressive testing is conducted under default
settings of d = 5 and size = 1 M . The number of answers
on a low-dimensional or small database is too small for
determining the progression of EP. The experimental result is
shown in Fig. 9. It illustrates that EP achieves better progres-
sive on a larger database. According to Fig. 9(a), EP outputs
all the results in the first fifth of the processing procedure
when size = 30M , which is very time-saving for users. For a
smaller database, users also receive sufficient skyline tuples
in a shorter time. Additionally, the processing time on a small
database is shorter. Fig. 9(b) implies that at least fifty percent
of the final answers can be output in the first third of the

processing time. Thismeans that users reveive enough skyline
candidates to make decisions before the querying is finished.
Therefore, the progression of EP is very meaningful.

VI. CONCLUSION
For most problems in market analysis and decision making,
P-skyline query over incomplete uncertain data is a very
useful tool. In most cases, the number of tuples that need to be
processed does not exceed ten millions, and the dimension-
ality is not more than six. The algorithm that we proposed in
this paper has been demonstrated to be efficient and valuable
in this range. The processing time is limited to a few seconds.
The parallel efficiency of our algorithm is also outstanding
when processing high-dimensional large databases, which
greatly reduces the time-cost. Additionally, the progression
of our algorithm provides sufficient candidates for users to
make decision before whole querying process has finished.
Therefore, we believe this algorithm has many applications.
Future research should examine skyline queries with privacy
protection.

REFERENCES
[1] J. Pei, B. Jiang, X. Lin, and Y. Yuan, ‘‘Probabilistic skylines on uncertain

data,’’ in Proc. 33rd Int. Conf. Very Large Data Bases, 2007, pp. 15–26.
[2] I. Bartolini, P. Ciaccia, and M. Patella, ‘‘SaLSa: Computing the skyline

without scanning the whole sky,’’ in Proc. 15th ACM Int. Conf. Inf. Knowl.
Manage., 2006, pp. 405–414.

VOLUME 6, 2018 13299



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

[3] K. C. K. Lee, B. Zheng, H. Li, and W.-C. Lee, ‘‘Approaching the sky-
line in z order,’’ in Proc. 33rd Int. Conf. Very Large Data Bases, 2007,
pp. 279–290.

[4] Y. Wang, Z. Shi, J. Wang, L. Sun, and B. Song, ‘‘Skyline preference
query based on massive and incomplete dataset,’’ IEEE Access, vol. 5,
pp. 3183–3192, 2017.

[5] X. Zhou, K. Li, Y. Zhou, and K. Li, ‘‘Adaptive processing for distributed
skyline queries over uncertain data,’’ IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 2, pp. 371–384, Feb. 2016.

[6] Y. M. AbdulAzeem, A. I. Eldesouky, H. A. Ali, and M. M. Salem, ‘‘Rank-
ing distributed database in tuple-level uncertainty,’’ Soft Comput., vol. 19,
no. 4, pp. 965–980, 2015.

[7] Y.-T. Tsou, Y.-L. Hu, Y. Huang, and S.-Y. Kuo, ‘‘SFTopk: Secure func-
tional top-k query via untrusted data storage,’’ IEEE Access, vol. 3,
pp. 2875–2890, 2015.

[8] S. Borzsony, D. Kossmann, and K. Stocker, ‘‘The skyline operator,’’ in
Proc. 17th Int. Conf. Data Eng., Apr. 2001, pp. 421–430.

[9] H. Yong, J.-H. Kim, and S.-W. Hwang, ‘‘Skyline ranking for uncertain
data with maybe confidence,’’ in Proc. IEEE 24th Int. Conf. Data Eng.
Workshop (ICDEW), Apr. 2008, pp. 572–579.

[10] M. J. Atallah and Y. Qi, ‘‘Computing all skyline probabilities for uncertain
data,’’ in Proc. 28th ACM SIGMOD-SIGACT-SIGART Symp. Principles
Database Syst., 2009, pp. 279–287.

[11] W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu, ‘‘Probabilistic skyline
operator over sliding windows,’’ inProc. 25th Int. Conf. Data Eng. (ICDE),
Mar./Apr. 2009, pp. 1060–1071.

[12] I. Bartolini, P. Ciaccia, and M. Patella, ‘‘The skyline of a probabilistic
relation,’’ IEEE Trans. Knowl. Data Eng., vol. 25, no. 7, pp. 1656–1669,
Jul. 2013.

[13] L. Antova, C. Koch, and D. Olteanu, ‘‘From complete to incomplete
information and back,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data,
2007, pp. 713–724.

[14] S. Abiteboul, P. Kanellakis, and G. Grahne, ‘‘On the representation and
querying of sets of possible worlds,’’ Theor. Comput. Sci., vol. 78, no. 1,
pp. 159–187, 1991.

[15] C. C. Aggarwal and P. S. Yu, ‘‘A survey of uncertain data algorithms and
applications,’’ IEEE Trans. Knowl. Data Eng., vol. 21, no. 5, pp. 609–623,
May 2009.

[16] M. Hua, J. Pei, W. Zhang, and X. Lin, ‘‘Ranking queries on uncertain data:
A probabilistic threshold approach,’’ in Proc. ACM Int. Conf. Manage.
Data (SIGMOD), 2008, pp. 673–686.

[17] E. Michelakis, R. Krishnamurthy, P. J. Haas, and S. Vaithyanathan,
‘‘Uncertainty management in rule-based information extraction systems,’’
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2009, pp. 101–114.

[18] G. Xiao, K. Li, K. Li, and X. Zhou, ‘‘Efficient top-(k, l) range query
processing for uncertain data based on multicore architectures,’’ Distrib.
Parallel Databases, vol. 33, no. 3, pp. 381–413, 2015.

[19] X. Zhou, K. Li, G. Xiao, Y. Zhou, and K. Li, ‘‘Top k favorite proba-
bilistic products queries,’’ IEEE Trans, Knowl. Data Eng, vol. 28, no. 10,
pp. 2808–2821, Oct. 2016.

[20] X. Lian and L. Chen, ‘‘Reverse skyline search in uncertain databases,’’
ACM Trans. Database Syst., vol. 35, no. 1, 2010, Art. no. 3.

[21] W. Zhang, X. Lin, Y. Zhang, W. Wang, G. Zhu, and J. X. Yu, ‘‘Proba-
bilistic skyline operator over sliding windows,’’ Inf. Syst., vol. 38, no. 8,
pp. 1212–1233, 2013.

[22] X. Lian and L. Chen, ‘‘Efficient processing of probabilistic group sub-
space skyline queries in uncertain databases,’’ Inf. Syst., vol. 38, no. 3,
pp. 265–285, 2013.

[23] X. Ding and H. Jin, ‘‘Efficient and progressive algorithms for distributed
skyline queries over uncertain data,’’ IEEE Trans. Knowl. Data Eng.,
vol. 24, no. 8, pp. 1448–1462, Aug. 2012.

[24] C.-Y. Chan, H. Jagadish, K.-L. Tan, A. K. H. Tung, and Z. Zhang, ‘‘Finding
k-dominant skylines in high dimensional space,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2006, pp. 503–514.

[25] M. E. Khalefa,M. F.Mokbel, and J. J. Levandoski, ‘‘Skyline query process-
ing for incomplete data,’’ in Proc. IEEE 24th Int. Conf. Data Eng. (ICDE),
Apr. 2008, pp. 556–565.

[26] P. Haghani, S. Michel, and K. Aberer, ‘‘Evaluating top-k queries over
incomplete data streams,’’ in Proc. 18th ACM Conf. Inf. Knowl. Manage.,
2009, pp. 877–886.

[27] G. Wolf, H. Khatri, B. Chokshi, J. Fan, Y. Chen, and S. Kambhampati,
‘‘Query processing over incomplete autonomous databases,’’ in Proc. 33rd
Int. Conf. Very Large Data Bases, 2007, pp. 651–662.

[28] M. A. Soliman, I. F. Ilyas, and S. Ben-David, ‘‘Supporting ranking queries
on uncertain and incomplete data,’’ Int. J. Very Large Data Bases, vol. 19,
no. 4, pp. 477–501, 2010.

[29] Y. Gao, X. Miao, H. Cui, G. Chen, and Q. Li, ‘‘Processing k-skyband,
constrained skyline, and group-by skyline queries on incomplete data,’’
Expert Syst. Appl., vol. 41, no. 10, pp. 4959–4974, 2014.

[30] W. Cheng, X. Jin, J. T. Sun, X. Lin, X. Zhang, and W. Wang, ‘‘Searching
dimension incomplete databases,’’ IEEE Trans. Knowl. Data Eng., vol. 26,
no. 3, pp. 725–738, Mar. 2014.

[31] C. Lofi, K. El Maarry, andW.-T. Balke, ‘‘Skyline queries in crowd-enabled
databases,’’ in Proc. 16th Int. Conf. Extending Database Technol., 2013,
pp. 465–476.

[32] M. L. Yiu, N. Mamoulis, X. Dai, Y. Tao, and M. Vaitis, ‘‘Efficient eval-
uation of probabilistic advanced spatial queries on existentially uncer-
tain data,’’ IEEE Trans. Knowl. Data Eng., vol. 21, no. 1, pp. 108–122,
Jan. 2009.

[33] Y. Wang, X. Li, X. Li, and Y. Wang, ‘‘A survey of queries over uncertain
data,’’ Knowl. Inf. Syst., vol. 37, no. 3, pp. 485–530, 2013.

[34] D. Papadias, Y. Tao, G. Fu, and B. Seeger, ‘‘Progressive skyline compu-
tation in database systems,’’ ACM Trans. Database Syst., vol. 30, no. 1,
pp. 41–82, 2005.

[35] W. Zhang, X. Lin, Y. Zhang, J. Pei, and W. Wang, ‘‘Threshold-based
probabilistic top-k dominating queries,’’ Int. J. Very Large Data Bases,
vol. 19, no. 2, pp. 283–305, 2010.

[36] E. Tiakas, G. Valkanas, A. N. Papadopoulos, Y. Manolopoulos, and
D. Gunopulos, ‘‘Metric-based top-k dominating queries,’’ in Proc. EDBT,
2014, pp. 415–426.

[37] E. Tiakas, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Progressive pro-
cessing of subspace dominating queries,’’ Int. J. Very Large Data Bases,
vol. 20, no. 6, pp. 921–948, 2011.

[38] M. Kontaki, A. N. Papadopoulos, and Y. Manolopoulos, ‘‘Continuous
top-k dominating queries,’’ IEEE Trans. Knowl. Data Eng., vol. 24, no. 5,
pp. 840–853, May 2012.

[39] B. J. Santoso and G.-M. Chiu, ‘‘Close dominance graph: An efficient
framework for answering continuous top-k dominating queries,’’ IEEE
Trans. Knowl. Data Eng., vol. 26, no. 8, pp. 1853–1865, Aug. 2014.

[40] Y. Tao, X. Xiao, and J. Pei, ‘‘Efficient skyline and top-k retrieval in
subspaces,’’ IEEE Trans. Knowl. Data Eng., vol. 19, no. 8, pp. 1072–1088,
Aug. 2007.

YIFU ZENG received the master’s degree from
the College of Electrical and Electronic Engineer-
ing, Nanyang Technological University in 2012.
He is currently pursuing the Ph.D. degree with
the Department of Information Science and Engi-
neering, Hunan University, Changsha, China. His
research interests include parallel computing and
data management.

KENLI LI received the Ph.D. degree in computer
science from the Huazhong University of Science
and Technology, China, in 2003. He was a Vis-
iting Scholar with the University of Illinois at
UrbanaChampaign from 2004 to 2005. He is cur-
rently a Full Professor of computer science and
technology with Hunan University and an Asso-
ciate Director with the National Supercomputing
Center, Changsha, China. He has authored over
160 papers in international conferences and jour-

nals, such as the IEEE TRANSACTIONS ON COMPUTERS, the IEEE TRANSACTIONS

ON PARALLEL AND DISTRIBUTED SYSTEMS, Journal of Parallel and Distributed
Computing, International Conference on Parallel Processing, and CCGrid.
His major research interests include parallel computing, grid and cloud
computing, and DNA computing. He is an Outstanding Member of CCF,
and is an Associate Editor of the IEEE TRANSACTIONS ON COMPUTERS.

13300 VOLUME 6, 2018



Y. Zeng et al.: Parallel and Progressive Approaches for Skyline Query Over Probabilistic Incomplete Database

SHUI YU received the B.Eng. degree in electronic
engineering, the Associate degree in mathemat-
ics, and M.Eng. degree in computer science from
the University of Electronic Science and Technol-
ogy of China, China, in 1993, 1993, and 1999,
respectively, and the Ph.D. degree in com-
puter science from Deakin University, Melbourne,
Australia, in 2004. He was a Lecturer with the
Computer College, University of Electronic Sci-
ence and Technology of China. He has a good

experience of industry, especially in network design and software develop-
ment organization and implementation. He is currently a Senior Lecturer
with the School of Information Technology, Deakin University. His research
interests include big data theory and application, networking theory and
application, and mathematical modeling. He dedicates himself in advance
human understanding of networks and information, including their measure-
ment, representation, analysis, and application. As a semi-mathematician,
he targets on narrowing the gap between theory and application using math-
ematical tools.

YANTAO ZHOU received the Ph.D. degree in
information and electrical engineering from the
Wuhan Naval University of Engineering, China,
in 2009. He is currently a Professor of electric and
information engineering with Hunan University,
Changsha. His major research interests include
parallel computing and data management.

KEQIN LI (M’90–SM’95–F’15) is currently a
Distinguished Professor of computer science with
the State University of New York. He has
authored or co-authored over 400 journal articles,
book chapters, and refereed conference papers. His
current research interests include parallel comput-
ing and high-performance computing, distributed
computing, energy-efficient computing and com-
munication, heterogeneous computing systems,
cloud computing, big data computing, CPU-GPU

hybrid and cooperative computing, multicore computing, storage and file
systems, wireless communication networks, sensor networks, peer-to-peer
file sharing systems, mobile computing, service computing, Internet of
Things, and cyber-physical systems. He has received several best paper
awards. He is currently or has served on the Editorial Boards of the IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, the IEEE TRANSACTIONS

ON COMPUTERS, the IEEE TRANSACTIONS ON CLOUD COMPUTING, and the Journal
of Parallel and Distributed Computing.

VOLUME 6, 2018 13301


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	UNCERTAIN DATA MODEL
	INCOMPLETE DATA MODEL

	SKYLINE QUERIES PROCESSING
	BASELINE ALGORITHM
	GROUPING AND SORTING
	INDIVIDUAL BUCKET PROCESSING
	LOWER-LAYER PROCESSING
	INDIVIDUAL BUCKET EFFICIENCY ENHANCEMENT

	EXPERIMENTAL EVALUATION
	EXPERIMENTAL SETUP
	COMPARISON EXPERIMENTS
	FURTHER PERFORMANCE EVALUATION

	CONCLUSION
	REFERENCES
	Biographies
	YIFU ZENG
	KENLI LI
	SHUI YU
	YANTAO ZHOU
	KEQIN LI


