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ABSTRACT This paper aims to investigate an intelligent model for a combined infrared radiation-
convection (IRC) dryer by using a support vector regression (SVR) algorithm based on an improved particle
swarm optimization algorithm (IPSO). The IPSO algorithm was designed to optimize the parameters of the
SVR algorithm, which has improved the optimization ability of the IPSO [linear decreasing inertia weight
(LDIW)] algorithm and the standard PSO algorithm by introducing a relative fitness deviation (FD) to the
LDIW equation and by combining a concept of mutation. Based on the data collected from a practical
drying experiment, the best IPSO-SVR (LDIW-FD) model for the IRC dryer was successfully constructed,
and the prediction performance comparisons of different modeling methods were also made. The resulting
IPSO-SVR (LDIW-FD) model has achieved a remarkable predictive accuracy compared with the other
models, demonstrating the effectiveness of the proposed model. In addition, a model of concurrent-counter
flow drying was also successfully established by using the same method, depicting the proposed method
can be readily used to precisely predict different drying processes. This modeling method can give relatively
good predictive output information of the nonlinear system, and it may provide an accurate model for the
prediction control of grain drying.

INDEX TERMS Grain drying, infrared radiation and convection drying, SVR, particle swarm optimization.

I. INTRODUCTION
Grain drying is one of the most important postharvest tech-
niques in modern agricultural production because it can
decrease grain loss by drying the wet grains to specific safety
moisture content (MC) levels for the purpose of preserving
food from microbial spoilage [1]. As technology advances
to new frontiers, the method to dehydrate food is constantly
evolving to produce new hybrid drying systems [2], which
combining a novel drying method like infrared radiation dry-
ing, or microwave drying with the other drying techniques.
In our study, a novel combined infrared radiation (IR) and
convection (IRC) dryer is designed to raise the effectiveness
of drying, which has many advantages, such as its short
drying time, the good quality of the final dried product, and
its energy-saving capability, in addition to its lower price

compared to microwave and vacuum drying methods and the
ability to combine it with other drying techniques [3].

Modeling of the grain drying process is an important
approach because it can provide an accurate mathematical
model for controlling the grain drying system and can facil-
itate better understanding of the grain drying mechanism for
practical production. However, grain drying is a complicated
heat and mass transfer process with the characteristics of
long delay, strong nonlinearity, uncontrolled disturbances and
coupling of key variables, which increase process uncer-
tainty [4]. Thus, it is not easy to build a precise mathematical
model [5], [6]. In this paper, the drying mechanism of IRC
smart dryer is a typical nonlinear process in industrial engi-
neering, hence the control of the IRC drying is a challenging
task.
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The IRC (or IR) drying processes are usually described
by some traditional empirical and semi-empirical differen-
tial equations in the research literatures and the references
therein [7]–[17], which are generally based on some assump-
tions and observations, and do not consider the many com-
plex influencing factors of drying. These simplifications are
assumed to affect the accuracy of control when using these
models for control purpose. Although some complex mech-
anism models have been established, the methods of solving
the equation and boundary conditions are complex; which are
not suitable for the control of grain drying in practice.

A promising approach is to use artificial intelligence (AI)
approaches such as artificial neural network (ANN) or fuzzy
logic (FL) to estimate uncertain continuous nonlinear func-
tions, and then to construct controllers by combining
nonlinear control algorithms such as adaptive control, back-
stepping control, sliding mode control and evolutionary algo-
rithms (EA) or their combinations. The many studies on
learning systems based control have proved that the ANN and
FL of AI technologies are extraordinarily applicable for the
nonlinear systems with highly uncertainties (see the litera-
tures [18]–[24] and the references therein). For instance the
ANN application in the wind turbine control shown in [18],
and in [19] an adaptive fuzzy control method is presented
for a class of nonaffine stochastic nonlinear systems via
backstepping; in [20] an observer-based fuzzy output feed-
back control algorithm is proposed by using backstepping
and fuzzy systems’ universal approximation capability for
stochastic nonlinear multiple time-delay systems; in [21] an
adaptive intelligent control of nonaffine nonlinear time-delay
systems with dynamic uncertainties is investigated; in [22] an
intelligent adaptive control algorithm is presented by com-
bining the adaptive backstepping technique with the neural
networks’ approximation ability; in [23] an adaptive neu-
ral control of MIMO nonstrict-feedback nonlinear systems
with time delay is designed; in [24] the T–S fuzzy modeling
approach is applied to represent the underlying nonlinear
system tomake the obtained condition easily verified, and etc.
The many valuable simulation results of the above methods
have demonstrated that FL or ANN systems have excel-
lent approximation ability for the unknown nonlinearities in
system dynamics.

Currently, many scholars have already successfully
described the drying characteristics of many agricultural
products by using ANN [25]–[27], and there are also many
researchers who have paid attention to the control of different
drying processes by using ANN, or FL algorithms, or the
combination of ANN and FL. Such as Wu et al. [28] have
proposed an adaptive neuro-fuzzy inference system for a
bulk tobacco flue-curing control process; Li et al. [29]
have proposed a recurrent self-evolving fuzzy neural net-
work (RSEFNN) predictive control scheme for microwave
drying; O. F. Lutfy et al. have designed an intelligent sim-
plified type 2 neuron-fuzzy controller for a belt dryer [1]; in
our study works a genetically optimized fuzzy Immune PID
controller for the IRC dryer [30] and a double fuzzy immune

PID controller [31] were proposed, respectively. In addition,
in our study [32], we have also developed a precisely ANN
model of back propagation for the IRC drying.

In addition to ANN, support vector machine (SVM) is
another representative artificial intelligent algorithm, which
has several advantages over ANN, including better gener-
alization ability, easier training, a mechanism for modeling
structured data and, most importantly, the generation of a
unique solution [33], while ANN faces issues such as becom-
ing trapped in local minima, slow learning and the need to
tune meta-parameters [34]. Furthermore, compared to con-
ventional learning methods, which are based on large-scale
samples, SVM is very suitable for learning based on small-
scale samples [35]. So, SVM will be a suitable method for
the application of intelligent control in the grain drying than
ANN.

SVM was first developed for solving classification tasks,
and then was used to solve regression tasks, in which case it
is called Support Vector Regression (SVR). SVR has been
widely used in the last decades due to its many advan-
tages [36]–[40]. However, there are currently no studies on
the modeling of grain drying with SVR in the literatures.
So, in this study, SVR is selected to approximate the nonlinear
relationship of IRC drying, and in the results part we have also
compared the prediction performance of the SVRmodel with
the ANN model.

In the SVRmodel, γ (the coefficient of the kernel function
that is adopted in the SVR model) and C (the penalty factor
of the SVR model) are user-determined parameters, which
need to be optimized. Jaime Alonso used a procedure called
internal grid search to obtain the best parameters with 2-fold
cross-validation, which was repeated five times, to predict
carcass weight in beef cattle [39], as did Liu et al. [40]. Grid
search based on cross-validation (CV) for realizing optimal
parameter selection in SVM has proved to be effective. With
this approach, C and γ can be searched first over a wide range
and then in a narrow range to obtain more precise values,
thereby avoiding over-fitting and enabling themodel to obtain
more precise prediction results. Heuristic algorithms such as
Genetic Algorithm (GA) and the Particle Swarm Optimiza-
tion (PSO) algorithm are also good choices for finding the
best parameters of SVR.

The PSO algorithm was introduced by Kennedy and Eber-
hart in 1995 [41], which is an optimization technique and
belongs to the category of artificial intelligence techniques.
As an emerging evolutionary algorithm, it follows a simple
principle that is easy to implement. The PSO algorithm is
effective in solving many nonlinear optimization problems.
Unlike many traditional mathematical methods, this opti-
mization method does not require any gradient information
about the objective or error function and can obtain the best
solution independently [42]. This method is also less depen-
dent on the starting point in obtaining the globally optimal
solution.

Due to its excellent characteristics of simplicity and fast
convergence, the PSO algorithm has been widely applied
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in many domains, such as multi-objective optimization,
mode identification, and signal processing [43]–[45]. How-
ever, the PSO algorithm has some limitations, such as:
premature convergence and failure to obtain the globally
optimal results [46]. To improve the performance of the
standard PSO algorithm, some investigations have been car-
ried out on combining it with other methods, e.g., by intro-
ducing some mechanism into the standard PSO algorithm
and modifying the inertial weights [47], [48]. For example,
to improve the global searching ability in early iterations
and enhance the local optimization ability in later iterations,
Shi and Eberhart [49] proposed a LDIW equation in, in addi-
tion, to avoid becoming trapped in the local optima, the con-
ception of mutation can be introduced.

Hence, based on the above observations, we investigate a
model for the grain drying process, i.e., support vector regres-
sion modelling method based an improved particle swarm
optimization algorithm. The main contributions of this paper
are as follows: 1) SVR algorithm is an attractive solution
to deal with the highly nonlinear process of engineering.
Compared to the exiting traditional empirical models, it can
comprehensively consider more influence factors of grain
drying and can be readily used to describe different drying
processes regardless of the dryer type; 2) compared to ANN,
SVR is based on statistical learning theory, and it is more
fit to learn based on small-scale samples. Hence, it will be
a better choice to be used in the practical drying control
by modeling the complex IRC drying process; 3) A non-
linear optimization algorithm -an improved PSO algorithm
(IPSO (FD-LDIW)) is firstly proposed, which introduces a
Fitness Deviation (FD) equation into the LDIW equation
and combines a concept of mutation. It further improves the
optimization ability of the standard PSO algorithm and the
IPSO algorithm based on the LDIW equation proposed by
the scholar Y. Shi (IPSO(LDIW)).

The rest of this paper are arranged as follows: the material
and methods principle are given in Section II. A prediction
model for the IRC dryer has been developed by using the
IPSO-SVR (LDIW-FD) method to predict the outlet grain
MC of the IRC dryer, and the simulation results and com-
parisons of the prediction performance are also presented in
Section III. The results discussion is given in Section IV,
which further demonstrate the effectiveness of the SVR
modeling method. Finally, the work has been concluded in
Section V.

II. MATERIAL AND METHODS
A. EXPERIMENTAL SYSTEM
The data that were used in this study were collected from the
IRC grain drying system that had been put into use in Harbin
Development Zone, Binxi town, China, Dongyu Machinery
Co. Ltd. Fresh, mature corn was purchased from a local farm
(an agricultural area in northern China). The self-designed
IRC grain drying experiment system is mainly composed
of the mechanical structure, which is shown in Fig. 1, and

FIGURE 1. Mechanic structure diagram of the grain drying system. 1, 4, 8:
Bucket elevators; 2: Wet grain bin; 3, 5, 6, 9, 11: Belt conveyor; 7: Dried
grain bin; 10: Dryer.

FIGURE 2. Control scheme diagram of the grain dryer.

FIGURE 3. Schematic diagram of the IRC grain dryer. Sensors: (1) Hot air
flow rate, (2) Hot air temperature, (3) Infrared radiation waste gas
temperature, (4) Infrared radiation waste gas flow rate, (5) Drying waste
gas humidity, (6) Drying waste gas temperature, (7) Inlet grain
temperature and moisture, (8) Outlet grain temperature and moisture,
(9) Grain temperature after convection drying, (10) Grain temperature
after infrared radiation drying, (11) Combustion tube temperature, (12)
Flue gas temperature, (13) Ambient temperature and humidity.

the control structure, which is shown in Fig. 2 [30]–[32].
As shown in Fig. 1, the mechanical system consists of the
following parts: a wet grain bin, a 5HSHF10-type grain dryer
(2.06 m × 1.30 m × 5.3 m), a dried grain bin, 3 bucket
elevators, and 5 belt conveyor machines. Fig. 3 shows the
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structure of the designed 5HSHF10-type grain dryer, which
is rectangular in shape and consists of four sections: a stor-
age grain section (0.8 m in height), a convection section
(1.1 m in height), a radiation section (0.8 m in height), and
a discharging grain section (1.2 m in height). The convection
section is a combination design and there are three kinds
of drying techniques to choose in the convection section:
concurrent flow drying, concurrent-counter flow drying, and
mixed flow drying. Thus, the dryer combines the advantages
of infrared radiation drying technology and convection drying
technology: the infrared radiation material on the surface
of the radiation tube absorbs the heat that is generated by
the oil furnace to carry out radiation drying in the radiation
section, while the waste gas that is generated by the infrared
radiation drying is used to carry out the convection drying
in the convection section by mixing with a suitable amount
of cold air in the main hot air channel. The drying process
is as follows: the wet grains in the wet grain bin flow into
the dryer from the top of the dryer; pass through the storage
section, the convection section, the radiation section and the
discharging section in sequence; and, finally, are evacuated
from the bottom of the discharging grain section according to
the set grain flow rate. In a circulating dryingmode, if the out-
let grainmoistures haven’t reached the target value, according
to the moisture that is detected by the outlet grain moisture
sensor, the grains will enter the dryer again through the top
entrance by reversing belt conveyor 6; otherwise, the grains
that meet the targetMCwill be discharged into the dried grain
bin by advancing belt conveyor 6 and the drying process will
end. In this paper, we mainly consider the modeling of the
circulating drying process of the IRC dryer using an improved
PSO-SVR (LDIW-FD) method.

As shown in Fig. 2, the programmable controller tech-
nology (PLC) and the frequency converter are adopted in
the control system and 21 temperature values (measure-
ment accuracy: ±0.1 ∼ ±0.5◦C), 3 hot wind speed values
(measurement accuracy: ±0.2% reading ±0.5% full range),
2 humidity values (measurement accuracy:±3.0%RHwithin
20%-80% RH) and the outlet and inlet grain MC values
(measurement accuracy: within±0.2% (wb)) can be detected
in real time by the sensors that are installed in the IRC dryer.
The detected data are collected by the PLC and transmitted
to a computer or a touch screen for storage, display and
calculation through Ethernet communication, and 3 bucket
elevators, 5 grain belt conveyor machines and other devices
are controlled in the control center. Throughout the entire
grain drying process, the speed control of the discharging
grain motor can be adjusted automatically by an intelligent
control algorithm at every time interval or adjusted manually
by an experienced worker according to the detected drying
parameters

In this paper, the data that are used to model the IRC drying
were obtained from a drying experiment that was performed
on the IRC grain dryer (corn concurrent flow and radiation)
on November 25, 2015. During the experiment, the ambi-
ent temperature ranged from −19◦C to −9◦C, the ambient

TABLE 1. Descriptions of the features of the model dataset used in the
paper.

FIGURE 4. Corn drying curve of the IRC dryer.

relative humidity ranged from 60% to 70%, the hot air
speed was approximately 12 m/s, and the initial average
MC of the corn was approximately 28% (wet base). The
inlet/outlet grain MC sensors had been validated in advance
by a 105◦C standard oven moisture measuring method
(GB5497-1985). The data were collected every minute when
the radiation temperature reached 380◦C and the hot air
temperature reached 120◦C after running the IRC dryer
for 0.5 hours.

The collected data were processed by eliminating unrea-
sonable data, such as large random errors that were caused
by system failures or obviously inaccurate measurements
that were caused by the icing phenomenon inside the grain.
A dataset of 274∗9 numerical descriptions of grain drying
was finally selected for predicting the outlet grain MC of the
IRC dryer, in which each row represents the parameter values
for one minute and the 9 columns represent 9 main factors
that affect grain drying: the drying time (Dt), the inlet grain
moisture content (Min) and temperature (Tin), the outlet grain
MC (Mout) and temperature (Tout), the grain temperature at
the infrared radiation section (Tir), the grain temperature at
the convection section (Tcv), the hot air temperature at the
convection section (Th), and the discharging grain motor
speed (V ). In this paper, the outlet grain MC model for
the radiation and concurrent drying of the IRC dryer was
designed using an IPSO-SVR (LDIW-FD) algorithm. Table 1
describes the model dataset that is used in the paper, and the
drying curve of the dataset is shown in Fig. 4.
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B. SUPPORT VECTOR REGRESSION (SVR)
Support vector machine (SVM) is a machine learning
method, which was proposed by Vapnik et al. It is based
on statistical learning theory and the structural risk mini-
mization (SRM) principle [39]. The most commonly used
type of SVR is ε-SVR, which is briefly introduced in the
following [50], [51].

A set of training data is given as
{
(xi, yi) | xi ∈ Rn, yi ∈ Rl

}
,

i = 1, . . . ,m, where xi is the input and yi is the target output.
The purpose of SVR is to find a function f (x), as shown in (1),
that is close to the target value yi.

f (x) = wTφ(x)+ b (1)

where φ(x) is a transformation function that maps each input
vector x in the Euclidean space into X = φ(x) in the high-
dimensional feature space; w ∈ Rn is a weight vector; the
superscript T denotes transpose; and b ∈ R is a bias value.
In this study, an ε-SVR model is designed. The ε-SVR

method uses a new type of loss function, called the insensitive
loss function, which has at most ε deviation from the obtained
targets yi for all training data [51]. Only when the absolute
value of the deviation is greater than a certain value is the
loss calculated; this is equivalent to building a zone of width
2ε of the interval by taking f (x) as the center. If the training
sample falls into the zone, it is considered correct.

Thus, the SVR primal problem can be formalized as (2):

min
1
2

∥∥∥w2
∥∥∥+ C∑m

i=1
lε(f (xi)− yi) (2)

where C is the penalty factor on samples that are outside the
ε-error zone and

lε (f (xi)−yi)=

{
0, if |f (xi)− yi| ≤ ε
|f (xi)− yi| − ε, otherwise

(3)

Considering the deviation of training samples that are
outside the ε-insensitive zone, the slack variables ξi and ξ∗i
are introduced, and then the primal problem is rewritten as
follows:

min
1
2

∥∥∥w2
∥∥∥+ C∑m

i=1
(ξi + ξ∗i ) (4)

s.t


f (xi)− yi ≤ ε + ξi
yi − f (xi) ≤ ε + ξ∗i
ξi, ξ

∗
i ≥ 0, i = 1, 2 . . . . . .m

(5)

By introducing a dual set of variables, a Lagrangian func-
tion is constructed according to the dual theorem [51], which
is shown in (6).

L
(
w, b,ξi, ξ∗i , αi, α

∗
i , µi, µ

∗
i
)

=
1
2
‖w‖2 + C

∑m

i=1
(ξi + ξ∗i )

−

∑m

i=1
(µiξ i + µ

∗
i ξ
∗
i )

+

∑m

i=1
αi (f (xi)− yi − ε − ξi)

+

∑m

i=1
α∗i (yi − f (xi)− ε − ξ∗i )) (6)

where αi, α∗i , µi, and µ
∗
i are the Lagrangian multipliers.

Let the partial derivatives of L with respect to the primal
variables (w, b, ξi, ξ∗i ) be zero for optimality:

∂L
∂w
= 0→ w =

∑m

i=1
(αi − α∗i )φ(xi)

∂L
∂b
= 0→

∑m

i=1
(αi − α∗i ) = 0

∂L
∂ξi
= 0→ C = µi + αi

∂L
∂ξ∗i
= 0→ C = µ∗i + α

∗
i

(7)

Substituting (7) into (6), we obtain the dual problem of
ε-SVR, which is shown in (8):

max
α,α∗

∑m

i=1
yi
(
α∗i − αi

)
− ε

(
α∗i + αi

)
−

1
2

∑m

i=1

∑m

j=1

×
(
α∗i − αi

) (
α∗j − αj

)
K (xi, xj) (8)

such that
∑m

i=1
(αi − α∗i ) = 0; 0 ≤ αi, α∗i ≤ C (9)

where K (xi, xj) = φ(xi)Tφ(xi) is the kernel function.
For a nonlinear system such as grain drying, one of the

most widely adopted kernel functions is the radial basis func-
tion (RBF), which shown in (10) [39]. It has fewer required
parameters and can manage the nonlinear relationship well.

K
(
x, xj

)
= exp(−γ

∥∥x − xj∥∥2) (10)

The above process satisfies the Karush–Kuhn–Tucker
condition, which is shown in (11):

αi (f (xi)− yi − ε − ξi) = 0
α∗i

(
yi − f (xi)− ε − ξ∗i

)
= 0

αiα
∗
i = 0, µiµ∗i = 0

(C − αi) ξi = 0,
(
C − α∗i

)
ξ∗i = 0

(11)

FIGURE 5. The model structure of SVR.

By solving (8) (9) using the Sequential Minimal Opti-
mization (SMO) algorithm, which was first proposed by
John C. Platt for obtaining the optimal solutions of convex
programming problems, the best-estimate function f (x) can
be expressed in the form that is shown in (12), and the model
structure that is designed in this paper is shown in Fig. 5:

f (x)=
∑n

j=1
(α∗j − αj)K (x, xj)+b=

∑n

j=1
λjK (x, xj)+b

(12)
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where λj = α∗j − αj(0 ≤ αj, α
∗
j ≤ C), λj is the weight

coefficient of the support vector, xj is the support vector, and
n is the number of support vectors.

The kernel function K
(
x, xj

)
enables operations to be

performed in the input space rather than in the potentially
high-dimensional feature space. In this way, computation
is avoided in the high-dimensional space and the result is
equivalent.

C. IMPROVED PSO ALGORITHM FOR OPTIMIZING THE
SVR PARAMETERS
The PSO algorithm is based on research on swarms, such as
bird flocking and fish schooling [42]. According to the results
on bird flocking, birds search for food by flocking, and the
most effective way for each bird to find food is to search the
area around the bird that is nearest to the food.

In this paper, we used an improved PSO algorithm (IPSO)
to search for the optimal SVR parameters for constructing
the best SVR model for predicting the outlet grain MC.
The adopted fitness function of the IPSO algorithm is the
prediction accuracy, which is based on the cross-validation
(CV) method. The idea of the CV method is as follows: The
original data are grouped into two sets, namely the training set
and the validation set, wherein the training set is used to train
the model and the validation set is used to validate the model.
Then, the prediction accuracy of performance indicators on
the validation set is taken as the prediction accuracy of the
model.

To obtain the optimal parameters, the PSO algorithm first
arranges D particles at random locations to form the swarm
(X = {X1, X2, X3, . . . ,XD}), and every particle contains
N parameters to be identified in the searching range (Xi =
{Xi1, Xi2, . . . ,XiN}). The fitness value can be used to eval-
uate the quality of the identified parameters. Each particle
represents a potential solution, according to the following
information: the current position, the current velocity and the
fitness value. A swarm of particles starts flying within the
search space to search for optimal points from their initial
positions, and flying direction and distance are determined
by the velocity, which can be adjusted dynamically. Every
particle can remember its personal best position, which is
called Pbest, and share information to obtain the global best
position of the swarm, which is called Gbest. The parti-
cle moves to a new position by tracking Pbest and Gbest
within the search space according to its flying experience,
and its position is iteratively updated by using the following
equations.

V j+1
i =WV j

i + a1r1(X
Pbest
i −X ji )+ a2r1(X

Gbest
i −X ji ) (13)

X j+1i =X ji + V
j+1
i (14)

where:
i = 1, 2, . . . ,D: the ith particle;
V j+1
i : the particle velocity at new iteration (j+ 1);
V j
i : the particle velocity at current iteration j;
W : inertial weight;

a1, a2: acceleration coefficients, which are between
0 and 2;
r1, r2: random numbers, which are between 0 and 1;
XPbesti : personal best position of particle i;
XGbesti : global best position of the swarm;
X ji : position of particle i at current iteration j;
X j+1i : position of particle i at new iteration (j+ 1).
According to (13), each particle modifies the position by

the following information: the current position, the current
velocity and the distances between the current position, Pbest
and Gbest.

To improve the standard PSO algorithm, the LDIW equa-
tion was proposed by Shi and Eberhart [49] shown in (15).
In earlier iterations, j is less than J , i.e.,W is closer toWmax ,
which can improve the global search ability, and in later
iterations, j is closer to J , i.e., W is closer to Wmin, which
can enhance the local optimization ability.

W = Wmax − (Wmax −Wmin)
j
J

(15)

where Wmax and Wmin are the maximum and minimum
inertia coefficients, respectively. j is the current iteration
number, and J is the given maximum number of iterations.
However, the LDIW method still needs to be improved to
enhance the search ability: for example, if some particles
obtain the best position in early iterations, it is perhaps nec-
essary to search in a local range carefully, rather than just
performing simple global search, and similarly, to not only
perform simple local search in later iterations. The fitness
value describes the quality of the particle, so it can be used to
effectively guide the flying velocity of each particle. In this
paper, the relative deviation between the fitness value of
the current position and the fitness value of the global best
position is introduced into the LDIW equation to further
enhance the global cognitive ability of each particle; the
resulting equation is called the LDIW-FD equation and is
shown in (16). The modified equation can enhance each
particle’s optimization ability according to the fitness value,
in both early and late iterations. If the relative deviation of
the fitness value is large, the particle’s search step can be
increased and the optima can be found in a wider search-
ing range; if the fitness value is close to the global best
fitness value, the search step can be decreased to search
in a local range. Thus, the searching ability will be further
enhanced.

W = (Wmax − (Wmax −Wmin)
j
J
)

∗
fitness (j)− global_fitness

fitness(j)
(16)

where fitness (j) is the particle’s fitness value at current
iteration j and global_fitness is the global best fitness value
of the swarm.

In addition, the concept of mutation is introduced into the
design of the IPSO algorithm to avoid becoming trapped in
the local optima: some particles are reinitialized according to
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a certain probability, which can make some particles jump
out of the previous optimal location and search a wider
space.

D. MODEL PERFORMANCE COMPARISON CRITERIA
In this study, we use MSE and R to evaluate the prediction
performance of the designed drying model, which are shown
in (17)-(18), as shown at the bottom of this page, where m
is the total size of the dataset, yi is the actual value, and ŷi
is the predicted value. The closer MSE is to zero, the better
the prediction performance of the model, and the closer R
(which ranges from 0 to 1) is to 1, the better the model
fits.

III. MODEL DEVELOPMENT AND SIMULATION RESULTS
A. MODEL BUILDING
For modeling the IRC dryer, the implementation libsvm is
used [52]. The purpose of establishing the model is to pre-
dict the drying performance, i.e., the outlet grain MC, as a
function of the drying time. Suppose the drying performance
at the next time point depends on 9 factors of the current
sample time. The outlet grain MC of the next time point
can be predicted by the 9 factors of current sample time.
The data in Table 1 are randomly divided into two parts: a
training dataset of 175∗9 randomly selected items from the
entire dataset and a test dataset of 99∗9 items to validate the
prediction accuracy of model.

FIGURE 6. Flow diagram of model building for the IRC dryer.

We use columns 1-9 of the training dataset as the indepen-
dent variables and the outlet grain MC of the next sample
interval in the dataset as the dependent variable. The flow
diagram of model building is shown in Fig. 6.

B. MODEL REALIZATION
Before training themodel, the data should be normalized. The
normalization formula is shown in (19):

X ′ =

(
X ′max − X

′

min

)
× (Xi − Xmin)

Xmax − Xmin
+ X ′min (19)

where Xi, Xmax, and Xmin respectively represent the mea-
sured values, the maximum value and the minimum value
of the input or output vector in the sample data; X ′max and
X ′min respectively represent the maximum and minimum val-
ues of the mapping parameter range [1 2]. In the program,
we can use the mapminmax function to satisfy the data format
requirements.

In this research, 5-fold CV was used, in which the training
data were divided into 5 groups, where each group was a
subset of the validation set and 4 groups were the training
sets. Thus, 5 models were established. In the training, each
model was trained with the same values of C and γ . Finally,
the average verification accuracy of the 5models was taken as
the performance index of the IPSO-SVR (LDIW-FD) model,
i.e., the fitness function of the IPSO algorithm. The IPSO
algorithm searched for the optimal values of C and γ in every
iteration until the termination condition was satisfied, and
then theC and γ valueswith the optimal verification accuracy
were used to train the SVR model.

FIGURE 7. Fitness curves of different PSO algorithms.

In this paper, to compare the optimization abilities of the
PSO algorithms, the IPSO (LDIW-FD), the IPSO (LDIW)
and the standard PSO algorithms were used to optimize the
SVRmodel parameters. Each PSO algorithm was run 5 times
and the parameters with the minimum fitness value were
selected. The initial parameters were as follows: the maxi-
mum number of generations: 100; the size of the population:
20; the range of C : [0.01,100]; the range of γ : [0.001,1000];
the mutation probability: 0.9; Wmax = 0.9; Wmin = 0.3;
a1 = 2; and a2 = 2. The optimal fitness curves, which were
obtained with different PSO algorithms, are shown in Fig. 7,

MSE =
1
m

∑m

i=1

(
yi − ŷi

)2 (17)

R =

√√√√ (m
∑m

i=1 ŷiyi −
∑m

i=1 ŷi
∑m

i=1 yi)
2

(m
∑m

i=1 ŷi
2
−
(∑m

i=1 ŷi
)2)(m∑m

i=1 y
2
i − (

∑m
i=1 yi)

2)
∈ [0 1] (18)
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TABLE 2. Optimized parameters of the SVR model by different PSO algorithms.

TABLE 3. 91 support vectors of the PSO-SVR (LDIW-FD) model.

TABLE 4. Description of the IPSO-SVR (LDIW-FD) model.

and the optimal parameter values under different optimization
algorithms are shown in Table 2.

The bestC and γ values that are obtained by IPSO (LDIW-
FD) are used to train the SVRmodel, and the obtained regress
model is shown in (20), where b is equal to −1.51 and n is
equal to 91.

f (x) =
∑91

j=1
λjK

(
x, xj

)
− 1.51 (20)

Table 3 shows some of the support vectors and the corre-
sponding coefficients of the IPSO-SVR (LDIW-FD) model.
The model parameters and the final regress prediction per-
formance values on the training dataset and the testing dataset
are described in Table 4. The relative prediction error between
the original data and the predicted data are respectively shown
in Fig. 8.

C. MODEL EVALUATION
To evaluate the prediction performances of the IPSO-SVR
(LDIW-FD) model; the IPSO-SVR (LDIW) model; the stan-
dard PSO-SVR model; the SVR model by the grid search
method, which is called GS-SVR; the SVR model by the
genetic algorithm, which is called GA-SVR; and the ANN
model of back propagation, which is called ANN-BP, were
established to predict the outlet grain MC for the IRC dryer.
The ANN-BP model consisted of 8 input variables, a hidden

layer with 10 initial neurons, 1 output variable, and a learning
rate of 0.1, and was trained by the Levenberg-Marquardt
(LM) algorithm [32]. The initial parameters of the GA-SVR
model were as follows: the maximum number of generations:
100; the size of the population: 20; the range of C: [0.01,100];
the range of γ : [0.001,1000]; the selection probability: 0.9;
and the mutation probability: 0.7.

For effective comparison, each model was trained 5 times.
The performance indicators of MSE and R on the test-
ing dataset are compared in Table 5. The relative error
comparisons of the three PSO-SVR algorithms on a sample
of 50 testing data are shown in Fig. 9 (a), and the relative
error comparisons on a sample of 50 testing data between
the IPSO-SVR (LDIW-FD) algorithm and the other AI algo-
rithms are shown in Fig. 9(b).

IV. RESULTS DISCUSSION
According to the simulation results, the designed IPSO-SVR
(LDIW-FD) model has achieved a better prediction accuracy
and showed a superior modelling ability for the learning and
modelling of nonlinear grain drying processes, which are
discussed as follows:

(1) The optimization results comparison of the PSO algo-
rithms: The value of the fitness function and the parameter C
can evaluate the optimization ability of the PSO algorithms:
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FIGURE 8. Relative prediction error of the IPSO-SVR (LDIW-FD) model. (a) Relative prediction error of MC on
the training dataset. (b) Relative prediction error of MC on the testing dataset.

TABLE 5. Comparison of prediction performances of models on the testing dataset.

the smaller the value of the fitness function is, the better is
the optimization ability of the PSO algorithm. In addition,
a smaller value of parameter C would be better because larger
C is easy to lead to overfitting of SVR algorithms. As shown
in Fig. 7 and Table 2, compared to the other PSO algorithms,
the IPSO (LDIW-FD) algorithm has obtained the least fitness
function value and the least C value, showing an excellent
optimization ability. The global fitness value obtained by
the IPSO (LDIW-FD) algorithm is equal to 0.027%, which
is about 25% decrease and about 27% decrease than the
optimized results of the IPSO (LDIW) and the Standard PSO
algorithms, respectively. The SVR parameter C searched by
the IPSO (LDIW-FD) is equal to 2.34 that is obviously less
than the values searched by the other two PSO algorithms
(the C values searched by the IPSO-SVR (LDIW) and by the
standard PSO algorithm are, respectively, equal to 41.36 and
77.74). In all, the optimization ability of the IPSO (LDIW-
FD) algorithm is obviously superior to the standard PSO
algorithm and also has improved the optimization ability of
the IPSO (LDIW) algorithm by introducing a relative fitness
deviation to the LDIW equation.

(2) The prediction performance of the IPSO-SVR (LDIW-
FD) model: As seen from the model prediction results shown
in Table 4, the proposed model can precisely predict the
outlet grain MC of next sample interval of the IRC dryer,
of which the performance indicatorsMSE and R computed on
the training dataset are, respectively, equal to 0.000169 and
99.8%, and on the testing dataset are, respectively, equal to
0.000299 and 99.7%. From Fig. 8, it can be seen that the

relative prediction errors on the training dataset and testing
dataset are mostly within ±0.02, which depict the predicted
values well fit the actual values and the proposed model can
successfully predict the change trends of the outlet grain MC
with the drying time.

(3) The prediction performances comparison: As shown
in Table 5, all AI algorithms have good prediction perfor-
mances, of which the MSE values are within 10−4 order of
magnitude, depicting AI methods are excellent tools for the
learning and modelling of nonlinear processes. Furthermore,
as seen from Table 5, the average MSE values of the 5 SVR
algorithms are all smaller than that of the ANN-BP algorithm,
which indicates that the SVR method is superior to ANN-BP
algorithm, and SVR method is a better choice for modeling
the grain drying process than ANN-BP algorithm.

In addition, as seen in Table 5, compared to the other algo-
rithms, it can be seen that the IPSO-SVR (LDIW-FD) model
outperforms the other compared algorithms, and its average
MSE value is equal to 0.000353, which is the lowest among
all the ANN algorithms. Furthermore, the prediction perfor-
mance of the IPSO-SVR (LDIW-FD) algorithm is obviously
improved than the IPSO-SVR (LDIW) algorithm (the average
MSE of the IPSO-SVR (LDIW) algorithm is 0.000465, which
is only slightly less than that of the standard PSO algorithm),
and it also has the advantage of avoiding becoming trapped
in the local optima.

In addition, as seen from Figure 9 (a) (b), the aver-
age relative prediction error of the IPSO-SVR (LDIW-FD)
model is the least among all the compared algorithms,
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FIGURE 9. Relative prediction error comparison. (a) Errors comparison among PSO-SVR algorithms. (b) Errors comparison among different AI
algorithms.

which further demonstrates the effectiveness of the proposed
algorithm.

(4) Analysis of the predicted kinetic drying curves:
Fig. 10 shows that IPSO-SVR (LDIW-FD) model can pre-
cisely predict the changes in the outlet grain MC with the
drying time under a specific drying-air temperature. At the
beginning of drying, the moisture absorption phenomenon
within the grain occurred and the closer the grain was to
the upper layer, the more obvious was the moisture absorp-
tion phenomena, so the outlet grain moisture curves of the
IRC dryer at the beginning showed an ascending tendency.
After approximately 90 minutes, the grain MC began to
decease as the drying time increased. It decreased by 7%-8%,
which indicates that a drying cycle was completed. Between
90-180 minutes, the same change trend repeated, but the
average drying rate decreased and the grain MC decreased
by 3%-4%. After two more cycles of the same change trends,
the grain drying process ended. It is inferred that a drying
cycle of the IRC dryer is approximately 90 minutes, and 4
cycles of drying are needed to dry to the target value in this
circulating drying experiment.

FIGURE 10. Prediction results analysis under a certain drying condition.

As shown in Fig. 10, in the first 90 minutes, the grain tem-
perature was basically unchanged when the hot air tempera-
ture was maintained at approximately 120◦C and the average
drying rate was increased; in that period, the water vapor
pressure inside the grain was greater than that of the grain
surface, and the amount of heat that was absorbed by the grain

was roughly balanced with the heat that was utilized for water
evaporation, so there was little effect on the grain tempera-
ture. During the period from 90-180 minutes, the drying rate
decreased and the temperature of the grain increased slightly
compared to the first cycle. After 180 minutes, although
the temperature of the hot air dropped to 100◦C, the grain
temperature increased significantly, which indicates that the
grain drying process entered a descending stage and the heat
for water evaporation decreased.

FIGURE 11. Prediction results comparison of two types of drying
processes.

(5) Prediction ability of different drying techniques: Fol-
lowing the proposedmethod, a predictionmodel for the outlet
grain MC for concurrent-counter grain drying (which is a
type of convection drying technology) was also successfully
established using data that were collected from drying experi-
ment on November 28, 2015. This demonstrates that the SVR
modeling method can be used to predict the performances
of different drying techniques. According to the prediction
performance curves of two types of drying processes that
shown in Fig. 11, the combined IRC drying method has
achieved a faster drying rate, which requires less time to dry
to the target grain MC than the convection drying method.

V. CONCLUSIONS
IRC drying is a complex heat and mass transfer process with
the characteristics of long time delay, highly nonlinearity,
parameter uncertainties or variations, and etc. It is difficult to
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build an accurate mathematical model for its kinetic drying
process, which substantially increase complexity of control
strategies. Facing the problem, ANN and SVR of AI methods
are both super tools to model the complex nonlinear system
and have a lot of successful applications. Compared to the
ANN method, SVR has more advantages, such as: suitable
for learning based on small-scale samples, easier training,
the generation of a unique solution, and not trapping local
minima, so it is more suitable to be used in the modelling of
the grain drying than the ANN method.

In this study, taking into account the modelling superiority
of the SVR method, we present a SVR model based on an
improved PSO optimization algorithm for the IRC dryer,
which is called IPSO-SVR(LDIW-FD) for short. The adopted
improved PSO algorithm in this model is used to optimize
the parameters of the SVR algorithm. The proposed model
is developed and simulated by programming in Matlab, and
two comparative studies have also beenmade, one of which is
to compare the optimization ability of the IPSO(LDIW-FD)
algorithm with the other two PSO algorithms, and the other is
to evaluate the prediction performances of different methods
of AI

By the comparison results shown in Fig.7 and Table 2, it
can be seen that the optimization ability of the IPSO (LDIW-
FD) algorithm has been improved compared to that of the
IPSO (LDIW) and the standard PSO algorithm, and the global
cognitive ability of each particle in the IPSO (LDIW-FD)
algorithm is further enhanced by introducing a LDIW-FD
equation to the standard PSO algorithm and it avoids becom-
ing trapped in the local optima by combining the concept of
mutation. The prediction results of Table 4 and Fig. 8 have
shown that the IPSO-SVR (LDIW-FD) model can precisely
predict the outlet grain MC of the next sample time on the
training dataset and the testing dataset. By the comparison
results in Fig. 9 and Table 5, it shows that IPSO-SVR (LDIW-
FD) outperforms the other compared AI algorithms, more-
over, all SVR models outperform the ANN-BP model in the
prediction precision of MSE. Therefore, SVR algorithm is a
more effective method in modeling the complex grain dry-
ing system than ANN-BP. Finally, based on the IPSO-SVR
(LDIW-FD) prediction model, the drying performance was
analyzed, and a model for concurrent-counter grain drying
was also successfully established, which again proves the
effectiveness of the SVR modeling method, depicting that it
can describe a range of drying experiments while the empir-
ical models are generally only limited to a specific drying
experiment.

In all, these above results demonstrate the efficiency of
the proposed IPSO-SVR (LDIW-FD) model. Of course, this
study has shown that ANN and the other comparedmodels are
also fit to a drying system, but the IPSO-SVR (LDIW-FD)
model can describe the dying performance more precisely.
Furthermore, the IPSO-SVR (LDIW-FD) model can com-
prehensively consider more influence factors of grain drying
and can be readily used to describe any drying processes
regardless of the dryer type compared with the traditional

empirical and semi-empirical models. In the future study
the proposed IPSO-SVR (LDIW-FD) model may provide an
accurate model for the intelligent prediction control of the
IRC grain drying.
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