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ABSTRACT The walking state monitoring is indispensable during the robot-aided walking of people with
lower limb dysfunctions. In this paper, the existence of human–robot coordination state is first statistically
verified in the process of using a walking-aid cane-type robot during walking. Based on this coordination,
a new walking state monitoring method is proposed by using the principal component analysis (PCA). The
abnormal or emergency walking state is promptly detected if the new sample data are found to deviate
from an off-line PCA model, which is generated from plentiful normal walking data of different subjects.
Furthermore, a state diagnosis algorithm based on the contribution plot is also developed for the walking state
recognition and diagnosis. In this way, typical abnormal states like the leg restrictions can be distinguished
from the emergency states including falls and the stumbling. Moreover, the human–robot coordination
analysis can be performed using less sensors built-in the robot without needing the posture information
of full human body. The effectiveness of the proposed method is proven by experiments. Better recognition
rate and real-time performance of the method are also verified by comparing with conventional center of
pressure based monitoring method.

INDEX TERMS Walking-aid robot, state monitoring, human-robot coordination, fall detection.

I. INTRODUCTION
Due to the growth of the aging population and the relative lack
of professional nursing, there exist great demands for mobile
care tools for the elderly and the disabled suffering from
lower limb disorders or visual defects. For people with lower
limbs dysfunction such as paraplegic patients and fracture
patients, the sedentary injuries and inappropriate rehabilita-
tion ways will lead to a faster decline of their body function
if they do not accept correct walking exercise. And themuscle
of their lower limbs will also atrophy faster, which will bring
serious damages to their health [1]. Thus, appropriate walking
exercise is indispensable in improving the life quality for our
targeted users.

To help the individuals with limited mobility in the daily
life, various walking-aid devices have been developed to

provide assistance in locomotion. Common devices such as
canes, walkers and manual wheelchairs can provide strength
support for limbs. Although lightweight and simple, these
devices are unpowered to provide effective assistance. For
example, a user has to move the device (such as a walker)
forward after each step, disrupting normal walking pace and
increasing the energy consumption for these already frail
users [2]. Another kind of powered wheelchairs have also
been developed [3], which makes it easy for users to reach
the destination and minimizes the additional consumption of
the user’s energy but may also leads to a faster decline of
user’s body function in its sedentary motion mode. Similar
devices eg. Mobile Inverted Pendulum [4], [5] as a human-
aided transporter has also been widely used as the travel
tools.
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Considering the deficiencies of existing mobility tools,
intelligent walking-aid robots are extensively studied in this
decade [6]–[13]. A walking-aid robot can assist a user’s
mobility and enable them to be physically active through
assisted walking. Furthermore, some walking-aid robots can
also recognize user’s walking states (both normal walking
and falls) online and react immediately to an emergency. The
correct and real-time walking state monitoring is vital for the
robots to provide a safe and effective assistance.

Current methods of the walking state detection have been
studied a lot on the walking-aid robots. Lee et al. [14] and
Huang et al. [15] propose vision based methods to estimate
the user’s walking states while operating the walking-aid
robot. Di et al. [16] propose the Zero Moment Point (ZMP)
method to measure the position of the user’s gravity to
estimate the user’s stability in using the walking-aid robot.
And Yan et al. [17] propose the human robot coordination
stability (HRCS) tomeasure the walking states of both human
and the walking robot. Di et al. [18] propose the Center of the
Pressure (COP)-based method to estimate the posture during
the operation of the walking-aid robot. In [19], the user’s state
is estimated by a couple of laser ranger finders that predict the
possibility of falling down. Huang et al. [20], Yi et al. [21],
Pierleoni et al. [22], Pivato et al. [23], Qiu et al. [24], and
Ma et al. [25] propose posture estimation methods using
wearable sensors to measure the movements of the whole
body.

It should be pointed out that there are some drawbacks in
the current methods of walking state monitoring while oper-
ating the walking-aid robot. First, a lot of existing methods
are lack of sound theoretical foundations and implemented
based on detecting whether a signal reaches some predefined
thresholds. Secondly, most of the monitoring methods can
only distinguish the normal walking and emergency states
(falls). Meanwhile, the robot is also needed to have the ability
to recognize some abnormal walking states (e.g. the antalgic
gait, the hemiplegic gait, etc.) so that it can better assist the
specific users accordingly. These abnormal gaits are a kind
of intermittent states between normal and emergency walking
states, and are not well addressed so far. Thirdly, somemodel-
based walking state monitoring methods need to acquire the
whole body’s posture information by utilizing a large amount
of wearable sensors thus unfavorable for system integration
and inconvenient for users.

The arm-leg coordination circumstance has been found
during normal human walking [26]–[30], which is also called
limb synergy [31]. And abnormal gaits and falls break the
arm-leg coordination. It is natural to hypothesize that there
still exist certain coordinations during the normal walking
with the walking-aid robot, and these coordinations can be
used as an important features to judge whether the walking
state is normal or not. If this hypothesis is tenable, a human-
robot coordination based walking state monitoring method is
supposed to be obtained. Several possible advantages of this
method are listed as: 1) Since this coordination is prevalent
in the robot-aided human walking, the proposed coordination

based monitoring method has a profound theoretical basis;
2) Although both abnormal and emergencywalking states can
break the coordination, some statistical features might be dug
out to recognize their difference; 3) Without knowing all the
limbs posture information of thewhole body, the coordination
can be easily detected with few sensors on the robot.

The data-driven statistical process monitoring methods are
very popular nowadays for the purpose of process monitoring
and fault diagnosis ([32]–[35]), such as the diagnosis of
three-phase electrical machines [36], the fault detection and
diagnosis in chemical processes [37]. Among current data-
driven statistical process monitoring methods, the principal
component analysis (PCA) method stands out in handling
large numbers of highly correlated variables in the process
for its convenience and effectiveness, which is also widely
applied in the analysis of the inter-joint coordination and limb
synergies [38]–[40]. Thus, the PCA method is supposed to
be adopted to detect and confirm the correlated relationships
of the variables during the human-robot coordination. In tra-
ditional PCA based process monitoring and fault diagnosis
method, the normal data is collected as the standard sample,
and the test statistics are calculated corresponding to the
sample. If online detected data does not belong to the mode
of standard sample, an alarm is activated. In [41], based on
square prediction errors (SPE), a probability mixture based
PCA model is proposed and a fault detection logic is used.
The use of multimode PCA and dynamic PCA formultimodal
process monitoring is proposed in [42] and [43], respectively.
Other efforts on PCA-based multimodal process monitoring
can be found in [44] and [45].

A. CONTRIBUTION OF OUR PAPER
This paper proposes a new walking state monitoring method
based on the human-robot coordination. The PCA is used
to detect the abnormal walking movements and capture the
user’s emergency states while using the cane-type robot. The
main contributions of this study mainly include three aspects:
1) the human-robot coordination state during the robot-aided
walking is statistically verified based on a lot of experimental
data; 2) a new walking monitoring method is obtained which
uses a small number of sensors built-in the robot and is able
to distinguish the normal, abnormal and emergency walking
states; and 3) plentiful experiments are conducted to prove the
effectiveness and better performance of the proposedmethod.

B. ORGANIZATION OF THIS PAPER
The remainder of this paper is organized as follows. Section II
describes all preliminaries related to the proposed methodol-
ogy. Section III illustrates details about the proposed method
that includes a PCA based walking states monitoring algo-
rithm and a state diagnosis algorithm. In Section IV, various
experiments of normal walking, fall states and leg restriction
states of different users are conducted and experiment results
are compared with each other. Finally, the conclusions are
given in Section V.
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FIGURE 1. The intelligent cane-type walking-aid robot system.

II. BACKGROUND
In this section, the cane-type walking-aid robot will be intro-
duced. The brief description of principle component anal-
ysis (PCA) based fault diagnosis, different modes during
walking monitoring and the walking states are also explained.

A. THE CANE-TYPE WALKING-AID ROBOT
The proto-graph of the cane-type walking-aid robot system is
shown in the Fig. 1. This robot consists of an omni-directional
platform, an industrial personal computer (IPC), a six-axis
force sensor under the handle and two laser sensors. The force
sensor is used for detecting the interaction force from the user
to estimate the user’s motion intention. The forward laser
sensor is used to detect the information of obstacles in the
environment. The backward laser sensor is used to detect the
motion velocities of the user’s legs.

The intention based admittance control (IBAC) algorithm
is assumed in this study, which was proposed in our former
work [12]. The relationship between the input force and
desired robot velocity in the intentional direction can be
described by the following transfer function:

G(s) =
V (s)
F(s)
=

1
Ms+ B

, (1)

where F is the interaction force between the human and
the robot, V is the velocity of the robot. M and B are the
mass and damping parameters respectively. Thus, while the
robot moves at the desired velocity under the user’s intention
detected from the input force, the robot can help support the
user during the walking.

B. PCA BASED FAULT DIAGNOSIS
The PCA was first introduced in [46]. It is widely used in
process monitoring and fault diagnosis. The following ele-
ments are required in describing a PCA model based fault
diagnosis [47].

In order to find the fault information in the data, the the
hypothesis test of statistics can be established to judge
whether the process data deviate from the principal compo-
nent model.

Before monitoring the states online, the normal data should
be collected and pre-processed. Assume that the sample data
of normal states is X ∈ Rn×m with n samples and m vari-
ables. After standardization and normalization, the standard
data X̄ is obtained. The statistic index T 2 is used to eval-
uate the change of the principal component sub space X̂ ,
and SPE is used to evaluate the change of the residual sub
space E [48]. If the fault state happens, some variables of the
process will lead to the change of the principal component
sub space X̂ , or some variables of the process will lead to
the change of the residual sub space E . By monitoring both
SPE and T 2, the monitoring of the process is realized in
the PCA based process monitoring methods ([49]–[51]). The
monitoring statistics T 2 and SPE for the sample X̄ (i) are then
calculated by Eq. (6) and (7) (see [48]):

T 2(i) = X̄ (i)TPλ−1PT X̄ (i) (2)

SPE(i) = X̄ (i)(I − PkPTk )X̄ (i) (3)

T 2
α is used to denote the control limit of T 2 under the state

that the confidence of F distribution is α.

T 2
α =

k(m2
− 1)

m(m− k)
Fk,m−k,α , (4)

where Fk,m−1,α is the critical value of the F distribution
corresponding to the α test level, k degrees of freedom and
the m− k condition [48]. m is the number of the variables of
the sample, and k is the number of the main PCs.
SPEα is used to denote the control limit of SPE under the

condition that the confidence is α:

SPEα = θ1[1+
h0Cα
√
2θ2

θ1
+
θ2h0(h0 − 1)

θ1
2 ]1/h0 , (5)

where θ1 =
∑m

i=k+1 λi, θ2 =
∑m

i=k+1 λi
2, θ3 =

∑m
i=k+1 λi

3,
h0 =

1−2θ2θ3
3θ22

. Cα is the threshold of the standard normal
distribution with the confidence is α.
For a new sampling point, if the value of the statistic

index T 2 and the statistic index SPE are less than the control
limits, it indicates that the new data point falls in the same sta-
tistical distribution as the normal process data. If not, the new
data point falls beyond the same statistical distribution with
the normal data, then there may be an abnormal situation in
the process. The detection strategy can be summarized by the
following simple ‘‘IF-THEN’’ rule:

IF :

T 2 > T 2
α (6)

or

SPE > SPEα (7)

THEN: The fault state is detected.

C. WALKING STATES
Note that there exists different walking states in using the
walking-aid robot due to the different degrees of the upper
and lower limbs coordination and human-robot coordination,
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FIGURE 2. Walking states.

as shown in Fig. 2. It’s significant to monitor the differ-
ent walking states and recognize them quickly in using the
walking-aid robot so as to provide the safe and comfortable
operation experience. In this article, we mainly categorize
the walking states into the three kinds: normal walking state,
emergency state, abnormal state, as below:

1) NORMAL WALKING STATE
During the normal walking, there is a good coordination
between upper limbs, lower limbs and the robot. When a
healthy adult is walking normally with nothing assisted,
the arms move out-of-phase with each other at a frequency
that is synchronized with stride frequency [28]. According
to [52], though assembling the sliding handles as the assis-
tance during walking, the arms and legs were similarly coor-
dinated with and without the use of sliding handles, thus,
the sliding handles don’t affect the degree of arm−leg coor-
dination. Besides, Hassan et al. [53] show the good coordina-
tion pattern of using a cane during the walking. In using the
cane-type walking-aid robot, function purposes of the cane
and the sliding handles as well as the ways to use them are
similar, we can assume that there is also a good coordination
between the arm, leg and the cane-type walking-aid robot
during the normal walking with the robot. The normal walk-
ing states in using the walking-aid robot could be described
in Fig. 2.

2) EMERGENCY STATE
Falls and stumbles are defined as the emergency states during
the walking in Fig. 2. If the falling or stumbling happens
during the walking, the subject will be dangerous. To avoid
injuries of the subjects, it is necessary to conduct researches
on the emergency state detection during the walking states
monitoring when using the cane-type walking-aid robot.

3) ABNORMAL STATE
Although there are numerous abnormal walking states, a large
amount of the abnormal gaits include the feature of leg restric-
tion, e.g. the antalgic gait and the gait during the knee-ankle-
foot orthosis for cripple and paraplegic patients’ recovery

FIGURE 3. Leg restriction. (a) Right leg restriction. (b) Left leg restriction.
(c) Both legs restriction.

training [54]. Thus, compared with the normal walking state,
we define the leg restriction states as the abnormal states in
this study (see Fig. 2).

The lower limb holders as shown in Fig. 3 are used to
restrict the motion of subjects’ legs and decrease subjects’
mobility for simulating the abnormal states. Though this
leg restriction always exists during the rehabilitation pro-
cess or in daily walking of the subjects suffering from leg
fracture or paralysis, they are far less dangerous than the
emergency states [55]. Thus, it is important to distinguish the
emergency states from the leg restriction states.

III. PROPOSED METHODOLOGY
The human-robot coordination based walking state monitor-
ing method is outlined in Fig. 4. The proposed method has
two main steps: off-line design of the PCA model and online
monitoring with the state diagnosis using the model. Prior to
off-line design of the PCA model, it is necessary to conduct
the preliminary experiments for analyzing the human-robot
coordination movements of different users while using the
walking-aid robot. Details about these steps are presented as
follows.

A. PRELIMINARY MOVEMENTS ANALYSIS OF USING
WALKING-AID ROBOT
In order to investigate the human-robot coordination of differ-
ent users’ walking in using the cane-type walking-aid robot,
five healthy subjects are invited to conduct experiments for
normal walking data collection with the cane-type walking-
aid robot.

1) SUBJECTS
Five healthy subjects are a female and 4 males. All the
subjects are right handed, they all used the cane-typewalking-
aid robot in the right hand. The information of the five healthy
subjects is shown in Tab. 1. Since at least 60% of falling
behaviors occur in the forward direction [56], subjects were
informed of the experiment goal and requested to perform the
walking trials in forward direction with the cane robot.

2) DATA COLLECTION
The collected data of movements of the human-robot coordi-
nation system is denoted as X ∈ Rn×m with n measurement
states and m state variables as shown in Fig. 5. The user’s
interaction force matrix is denoted as FH , which consists of
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FIGURE 4. Human-robot coordination based walking state monitoring with cane-type robot. (Firstly, the force data FX , FY and MZ are used to calculate
the desired velocity of the robot VRx ,VRy and VRz based on the IBAC algorithm respectively. Then, the movement data of normal walking including the
velocities of the legs VHR ,VHL, the force data FX , FY , MZ and the velocities of the robot VRx ,VRy , VRz are used to calculate the control limits T 2

α and SPEα
in the off-line design of the PCA model. Finally, the online movement sample Xi is used to calculate the statistic indexes T 2

i and SPEi . If T 2
i < T 2

α and
SPEi < SPEα , the walking state is normal walking and the desired velocity of the robot VRx ,VRy and VRz will be sent to the omni-base.
If T 2

i > T 2
α or SPEi > SPEα , the abnormal or emergency state is detected. If the state is diagnosed as the abnormal walking state, i.e.

the walking state is the leg restriction state, the desired velocity of the robot VRx ,VRy and VRz will also be sent to the omni-base.
If the state is diagnosed as the emergency state in the state diagnosis algorithm, then the robot will stop).

TABLE 1. The information of subjects.

the force FX in the X-axis direction and the force FY in the
Y-axis direction, as well as the torqueMZ around the Z-axis,
thus we have:

FH = [FX FY MZ ] (8)

The velocity of the right leg and left leg is VHR and VHL
respectively:

VHR = [VHRX VHRY ] (9)

VHL = [VHLX VHLY ] (10)

VHRX is the component velocity of VHR in X direction.
VHRY is the component velocity of VHR in Y direction.
VHLX is the component velocity of VHL in X direction. VHLY
is the component velocity of VHL in Y direction. The velocity
of the walking-aid robot is denoted as:

VR = [VRx VRy VRz] (11)

VRx is the velocity of the robot in the X-axis direction, VRy
is the velocity of the robot in the Y-axis direction, and VRz is
the velocity of the robot around the Z-axis.

Then the movements could be described as:

X= [FX FY MZ VHRX VHRY VHLX VHLY VRx VRy VRz] (12)

3) HUMAN-ROBOT COORDINATION
The contribution proportion of the principal compo-
nents (PCs) of the five subjects’ movements is shown
in Fig. 7.

The accumulated contribution proportion of the first eight
variables is more than 95%. It indicates that the first eight PCs
could be the main PCs. Hence, it is effective to use the first
eight PCs to analyze the movements by PCA.

4) SIMILARITY ANALYSIS OF SUBJECTS
In the preliminary experiments we also analyzed the similari-
ties between the different movements of the healthy subjects’s
normal walking as shown in Tab. 2. The similarities of the
different healthy subjects’ movements are measured by the
angles θij(i = 1, 2, 3, 4, 5, j = 1, 2, 3, 4, 5, i 6= j) between
the first PCs among the subjects’ movements data:

θij = arccos(
PC(1)i · PC(1)j

||PC(1)i|| × ||PC(1)j||
) (13)
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FIGURE 5. The movements data collected. (a) Side view. (b) Top view.

FIGURE 6. The contribution proportion of the PCs.

Although it was not consistent with what can be seen in
Tab. 2 among all the subjects’ movements data, these low
values of the angles between PCs indicate that the different
users operate the cane-type walking-aid robot in a similar
way, which means there indeed exists the common coordi-
nation of the limbs and the robot thus the similar walking
pattern of different users can be categorized as the same state
so that different user’s walking states could be analyzed by the
PCA method.

B. OFF-LINE DESIGN OF PCA MODEL
In the off-line design of the PCA model, the control limits
T 2
α and SPEα are obtained as the thresholds of the normal

walking under the human-robot coordination. Among differ-
ent walking states, we select the normal walking state as the
standard state to design the standard walking model. Algo-
rithm 1 outlines the complete procedure for off-line standard
model design based on PCA. In the algorithm, the sample
data is denoted as Xnormal and the test data is denoted as Xtest .

TABLE 2. The similarities of the different subjects’ normal walking.

FIGURE 7. Online monitoring and states diagnosis.

Xnormal and Xtest are the experiment data of all the subjects
during the normal walking in forward direction. Xmnormal and
Xmtest are the processed data of centralizing and standardizing
the samples Xnormal and Xtest . The covariance matrix σ of
Xmnormal could be obtained:

σ =
1

n− 1
XTmnormalXmnormal (14)

The eigenvectors δ = [δ1, δ2, δ3, . . . , δm] sorted in
descending order with respect to the eigenvalues λ =
[λ1, λ2, λ3, . . . , λm] of σ could be used to obtain the number
of the main PCs. According to the accumulated contribution
proportion

∑k
i=1 βi, if the first k PCs reaches 95 %, then the

effective number of the main PCs is k .
Then the model Xmodel of the normal walking could be

obtained by PCi = Xmnormal(i)δi, and we have

Xmodel = PC1δ
T
1 + PC2δ

T
2 + PC3δ

T
3 .....+ PCkδ

T
k (15)

Substituting Xmtest into Xmodel , if Xmodel can ensure that the
model error E = Xmtest − Xmodel is the least, then the Xmodel
is the standard model. Finally the control limits T 2

α and SPEα
of T 2 and SPE can be calculated by Eq. (4) and (5).

C. ONLINE WALKING STATE MONITORING
AND DIAGNOSIS
The standard model of normal walking in the off-line design
is used to carry out the online walking state monitoring as
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Algorithm 1 Off-Line Design of The PCA Model
In: Xnormal , Xtest
Out: T 2

α , α
1: Centralize and standardize Xnormal ∈ Rn×m, Xtest .
2: Xmnormal and Xmtest are obtained.
3: Calculate covariance matrix σ of Xmnormal .
4: Calculate the eigenvectors δ = [δ1, δ2, δ3, . . . , δm] sorted

in descending order with respect to the eigenvalues λ =
[λ1, λ2, λ3, . . . , λm] of σ .

5: Calculate the accumulated contribution proportion∑k
i=1 βi of PCs, k ∈ [1,m].

6: if
∑k

i=1 βi ≥ 95% then
7: The first k PCs are the main PCs needed.
8: else
9: k = k + 1.
10: end if
11: Obtain the model Xmodel by Eq. (15).
12: Substituting Xmtest into Xmodel .
13: if Model error E = Xmtest − Xmodel is the least then
14: Xmodel is the standard PCA model.
15: else
16: Input another set of normal walking data as Xnormal .

Goto Step 1.
17: end if
18: Calculate the control limits T 2

α and SPEα of the monitor-
ing statistics T 2 and SPE by Eq. (4) and (5).

19: Return T 2
α and SPEα

shown in Fig. 7. Comparing the control statistics T 2(i) and
SPE(i) of the online measurement X (i) with the control limits
T 2
α and SPEα , if none of the statistic indexes is bigger than

the corresponding control limit, the walking state is thought
to be normal walking, denoted as State = 0. If the state is leg
restriction state, the walking state is denoted as State = 1.
And if the emergency state is detected, the walking state is
denoted as State = 2. The leg restriction state and the emer-
gency state are distinguished by the proposed state diagnosis
algorithm in the following.

1) ONLINE MONITORING
The procedures of online walking state monitoring are intro-
duced in the Algorithm 2. The variable measurement Xi at
the time t = i is collected online. After centralization and
standardization of X (i), Xm(i) is obtained. Then, the statistical
indexes T 2(i) and SPE(i) of Xm(i) are obtained by Eq. (2)
and (3). Compare the T 2(i) and SPE(i) with T 2

α and SPEα ,
if T 2(i) < T 2

α and SPE(i) < SPEα , X (i) is under the human-
robot coordination state, thus, it is a normal walking state.
If (6) and (7) are satisfied, the abnormal or emergency state
is then detected. The potential root causes of this abnormal
state could be identified by the proposed state diagnosis algo-
rithm based on the contribution plot of variables to determine
whether the state is the leg restriction state or the emergency
state.

Algorithm 2 Online Walking State Monitoring

In: X (i), T 2
α , SPEα

Out: State
1: Collect X (i) at t = i.
2: Centralize and standardize X (i)
Xm(i) is obtained

3: Calculate the monitoring statistics T 2(i) and SPE(i) by
Eq. (2) and (3).

4: Compare T 2(i) and SPE(i) with the limits T 2
α and SPEα

5: if T 2(i) < T 2
α and SPE(i) < SPEα then

6: The state of X(i) is normal walking.
State = 0

7: else
8: The state is the abnormal state or emergency state.

State = 1 or State = 2
9: Call the State Diagnosis Algorithm 3
10: if The state is the abnormal state ‘‘Leg Restricition’’

then
11: State = 1

Alarm won’t be generated
12: else
13: The state is the emergency state ‘‘Fall/Stumble’’

State = 2
Alarm is generated

14: end if
15: end if
16: Return State
17: Update

X (i− 1)← X (i)
18: Goto Step 1

2) STATE DIAGNOSIS
The monitoring of the T 2 and SPE just can detect the
abnormal states, but it cannot distinguish the abnormal state
from the emergency state. Wannier et al. [52] point out that
the arm movements will be improved to keep the balance
during the fall. Besides, the arm movement range under
the fall state is much larger than the one under the leg
restriction state. Thus, the potential root causes of the stum-
bling or falling states will be accompanied by the sudden
upper limbs movements. Hence, the movement of upper
limbs could be used to distinguish the abnormal state from
the emergency state. The contribution plot method [57] can
reflect influences of the change of each variables on the
stability of the statistic model and is widely applied in the
fault diagnosis. Accordingly, if one of the variables with
greatest proportion in the contribution plot is a force variable
(reflecting the upper limbmovements) in the abnormal states,
then the emergency state is detected. Otherwise, the abnor-
mal state is detected as the leg restriction state as shown
in Algorithm 3.

The proportion of variables for T 2 in the contribution plot
is denoted as η(j), and the proportion of variables for SPE
in the contribution plot is denoted as ξ (j) with j = 1, 2 . . . k .
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FIGURE 8. Experiment of normal walking.

For the variable xj, the η(j)and ξ (j) can be obtained (see [58]):

η(j) = xTj P
T3−1Pxj (16)

ξ (j) = (I − P(j)P(j)T )2 (17)

Algorithm 3 State Diagnosis Algorithm
In: Xm(i)
Out: State
1: Calculate the proportion η(j) and ξ (j) (j = 1, 2, . . . k) of

each variables of Xm(i) by Eq. (16) and (17).
2: if η(j) = max(η1, η2 . . . , ηk ) or ξ (j) =

max(ξ1, ξ2 . . . , ξk ) then
3: if The variable with greatest proportion in contribution

plot X (i)jis not a force variable, j /∈ [1, 3] then
4: There is no sudden movement of upper limbs

The state is an abnormal state
State = 1

5: else
6: The variablewith greatest proportion in contribution

plot X (i)j is a force variable, j ∈ [1, 3].
The sudden movement of upper limbs is detected.
The state is an emergency state ‘‘Fall/Stumble’’.
State = 2.
Alarm is generated.

7: end if
8: end if
9: Return State

IV. EXPERIMENT
Since it’s significant to monitor the different walking states
and recognize them quickly in using thewalking-aid robots so
as to provide the safe and comfortable operation experience,
experiments have been conducted to evaluate the proposed
method in recognizing the different walking states. Besides,
there exists great possibility of falling forward, the walking
experiments were conducted in the forward direction, includ-
ing speeding up and slowing down. The experiments were
conducted in a space of 5 × 8 m2. The information of the
5 subjects are also given in Tab. 1.

Firstly, the online normal walking experiments are con-
ducted to evaluate the effectiveness of the proposed method
under the normal walking state. Secondly, the leg restric-
tion experiments are conducted to evaluate the performance

FIGURE 9. Motion data of normal walking. (a) Subject 1. (b) Subject 2.

TABLE 3. The motion data of 5 subjects during normal walking.

of the proposed method for detecting the abnormal states.
In order to simulate the leg fracture and paralysis, the lower
limb holders (see Fig. 3) are used to restrict the motion of
subjects’ legs. Additionally, while walking with the robot,
the binding belt is tied on one leg of the healthy subject
which may be pulled randomly as a constraint to cause the
stumbling or falling behavior so as to check the effectiveness
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FIGURE 10. Online monitoring of normal walking. (a) Motion data of
subject 4. (b) Online monitoring.

TABLE 4. Detection rate.

of the proposed method for distinguishing the emergency
states and the abnormal states.

A. NORMAL WALKING
In this normal walking experiments, all the 5 subjects are
informed to walking forward normally at a comfortable speed
as shown in Fig. 8. The data collected from subject 1 and
subject 2 in the experiment of normal walking is shown
in Fig. 9. The analysis of the motion data collected from
all the 5 subjects is shown in Tab. 3, and all the data was
used for off-line design of the PCA model. The confidence
probability α in Eq. (8) and (9) is 99%, then the control limits
T 2
α = 26.84, SPEα = 15.46 are calculated.

FIGURE 11. Online monitoring of walking with leg restriction. (a) Motion
data of subject 4. (b) Online monitoring. (c) Contribution plot of
Sample = 63.

In the online walking state monitoring experiment of sub-
ject 4, the online motion data, static index T 2 and SPE are
shown in Fig. 10. In the monitoring experiment, T 2 and SPE

8904 VOLUME 6, 2018



Q. Yan et al.: Data-Driven Human-Robot Coordination Based Walking State Monitoring

FIGURE 12. Experiment of stumble and fall.

TABLE 5. Emergency state detection rate.

TABLE 6. Performance comparison.

are under the limits no matter how the subject speeds up and
slows down, then the walking state is kept at State = 0, which
indicates that the subject keeps normal walking state in the
experiment.

B. LEG RESTRICTION
In daily life, there exists huge desires of rehabilitation and
walking assistance for people with leg fracture or paralysis.
In consideration of the users’ safety, it is necessary to monitor
the walking state and distinguish the abnormal states caused
by the leg restriction from the emergency state caused by the
fall or stumble when using the walking-aid robot.

In the experiments, the subjects are informed to walk for-
ward with the leg holder fixed on his/her legs to simulate the
fracture/paralysis condition as shown in Fig. 3. Due to the
motion limitations, the subjects’ walking movements are dif-
ferent from normal walking. The motion data of subject 4 in
Fig. 12(a) reflects that there exists much more fluctuations in
the velocities of the legs compared with the normal walking
shown in Fig. 10.

In the online walking monitoring under the leg restriction
condition, the walking state is analyzed based on the PCA
method. The statistic indexes T 2 and SPE exceed the control
limits in Fig. 11(b), which means that the abnormal states
are detected. After diagnosis by the state diagnosis algorithm,
the walking state changes between State = 0 and State = 1
in Fig. 11(c). For example, at Sample = 63, the statistic
indexes T 2 and SPE exceed the control limits, and the con-
tribution plot in Fig. 11(d) indicates that the abnormal state
at Sample = 63 is affected by the 7-th variable, which

FIGURE 13. The motion data of walking with stumble and fall. (a) Motion
data of subject 4. (b) Online monitoring. (c) Contribution plot of
Sample = 104.

is the component velocity VLHY of the left leg in Y-axis
direction.

Besides, all the 5 subjects are invited to walk twice with
wearing the limb holders on the left leg, right leg and both legs
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FIGURE 14. Leg restriction and stumble. (a) Start. (b) Leg restriction state.
(c) Stumble.

respectively. The experiment results of left leg restriction,
right leg restriction and both legs restriction are shown in
Tab. 4. Among the 10 experiments of 5 subjects, there is
only one failure detection of the right leg restriction. Thus,
the abnormal state of swing phases affected by the leg restric-
tion can be effectively detected in the monitoring by the
proposed method.

C. FALL/STUMBLE
In the fall experiment, the binding belt is tied on the subject’s
left leg which may be dragged by a device at a random time
without any indication to simulate natural stumble or fall,
and the partial body weight support (PBWS) device as shown
in Fig. 12 is used for the subject protection.

The motion data of the experiment is shown in Fig. 13(a).
In Fig. 13(b), the fall happens at Sample = 103. According
to the online walking state monitoring and state diagnosis
algorithms, T 2 and SPE exceed the control limits T 2

α and
SPEα at Sample = 104 in Fig. 13(c). The contribution plot of
the abnormal state at Sample = 104 shows that the abnormal
state is affected by the 6-th and 1-st variables, which are
the component velocity VHLX of left leg in X-axis direction
and the force FX . Thus, the movements of upper limbs and
the movements of the left leg are main reasons causing this
walking state. Consequently, the walking state is detected and
categorized as the emergency state at Sample = 104. Since
the sampling time of the intelligent cane-type robot is 55 ms,
then the emergency state detection time is 55 ms.

Furthermore, the experiments on the leg restriction state
and the emergency state distinction are conducted. As shown
in Fig. 14, the subject with leg motion limitations is stumbled
by the tied belt at random time points. Three stumbling
states happened at Sample = 131, Sample = 171 and
Sample = 223 in Fig. 15(a), and the emergency state are
detected at Sample = 132, Sample = 173 and Sample =
224 in Fig.15(b). Thus, all the three stumbling states are
successfully detected, and the emergency state detection time
is within 55∼110 ms.

Fifteen stumbling records of the 5 subjects in the exper-
iments are shown in Tab. 5. All the emergency states are
detected, and only one leg restriction state is mistakenly
diagnosed as the emergency state.

Compared with the COP-based motion monitoring
detection method whose average detection time is
200∼350 ms [18] as shown in Tab. 6, the method proposed in
this paper is more effective and faster to detect the emergency
state.

FIGURE 15. The motion data of walking with leg restriction and stumble.
(a) Motion data of subject 5. (b) Online monitoring. (c) Contribution plot
of Sample = 171.

V. CONCLUSION
By analyzing normal walking data of different people
using a cane-type robot, the hypothesis that there exist
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human-robot coordination states is verified. A new walking
state monitoring method is obtained by applying the PCA,
which is a conventional data-driven statistical approach. With
a small number of built-in sensors, the proposed monitoring
method can promptly detect the loss of human-robot coor-
dination, which means an abnormal or emergency state has
occurred. Furthermore, typical abnormal walking states (leg
restrictions) and the emergency states (falls and the stum-
bling) can be successfully distinguished. The experimental
results show that the proposed method has better recog-
nition rate and faster emergency detection ability than the
COP-based method.

In the future, more efforts will be put into the abnormal
walking cases monitoring (e.g. the circumduction gait and the
scissoring gait), and effective prevention measures research
to avoid injuries of the users based on the walking state
monitoring.
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