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ABSTRACT Urban water supply network is ubiquitous and indispensable to city dwellers, especially in
the era of global urbanization. Preventative maintenance of water pipes, especially in urban-scale networks,
thus becomes a vital importance. To achieve this goal, failure prediction that aims to pro-actively pinpoint
those ‘‘most-risky-to-fail’’ pipes becomes critical and has been attracting wide attention from government,
academia, and industry. Different from classification-, regression-, or ranking-based methods, this paper
adopts a point process-based framework that incorporates both the past failure event data and individual
pipe-specific profile including physical, environmental, and operational covariants. In particular, based on
a common wisdom of previous work that the failure event sequences typically exhibit temporal clustering
distribution, we use mutual-exciting point process to model such triggering effects for different failure types.
Our system is deployed as a platform commissioned by the water agency in a metropolitan city in Asia, and
achieves state-of-the-art performance on an urban-scale pipe network. Our model is generic and thus can be
applied to other industrial scenarios for event prediction.

INDEX TERMS Point process, pipe failure prediction, event series modeling.

I. INTRODUCTION
Modeling the dynamics of event data in continuous time
space is challenging yet useful because it generally fits to a
wide class of real-world problems in which a set of events are
collected. These events are often associated with continuous
time stamps and additional information such as event type,
event participator, among others. In general, one aims to
uncover the dynamic patterns from the observed event data,
such that various downstream applications can be benefited.

Point process has been a flexible tool to analyze event data
in continuous time space by modeling the intensity function.
In particular, the Hawkes process [1] is motivated to com-
pactly mimic the self/mutually triggering effects of the event
sequences, whose occurrence patterns do not follow obvious
temporal distributions. Demonstrated early on effective earth-
quake modeling [2], [3], Hawkes process and its derivatives
have found successful applications in a wide range of prac-
tical problems especially more recently: sales analytics [4],
online behavior modeling [5], [6], crime modeling [7], armed
conflict analysis [8] and asset management [9], [10]. More
details on Hawkes process will be introduced later.

For preventative maintenance such as water supplies net-
work [9] and electrical power systems [10], some common

wisdoms by recent studies [9], [10] suggest that: First,
the failure intensity for an asset i.e. its occurrence propen-
sity, normally stays at a relatively stable level. This can be
regarded as a base component depending on its intrinsic
profile covariants. Second, an occurrence of a failure can
often lead to an instantaneous rise of its vulnerability. The
implicit reasons are two folds: i) the occurrence of failures
may suggest the existences of changed external factors con-
tributing the increased failure risk. For instance, an increased
traffic load caused by the temporal road re-routing or road
excavation in a certain period, can endanger the nearby under-
ground pipes and makes them fail more easily. ii) When the
asset fails, it often becomes more fragile to failures due to the
fundamental physical damage. Moreover, the vulnerability
gradually fades back to the baseline when the external failure
factors disappear or the asset recovers by a certain means e.g.
receiving a renovation [10]. Third, different types of failures
have different triggering effects to each other, e.g. a pipe burst
will cause more damage to a leak failure.

The above observation perhaps has already triggered a
recent work on electrical power failure modeling [10] using
a variant of self-exciting Hawkes model, which is termed as
Reactive Point Process (RPP). We will describe this model
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in more details later. By the same motivation, we propose
a generic method for event dynamics modeling and predic-
tion, and apply our method to the problem of urban-scale
water pipe failure prediction to verify the efficacy of our
method.

A. WATER PIPE FAILURE PREDICTION
The pipe failure prediction task refers to the so-called pre-
ventative maintenance – a widely-adopted industrial practice,
especially for those asset-intensive enterprizes and agencies
like power grid and petroleum company. One core function
of such a system is evaluating the failure risk for each pipe
instance by utilizing the information including the profile
covariants such as material type, pipe diameter, and the past
dynamic failure events. Then, budgeting andmaintenance can
be performed more cost-effectively.

The pipe failure problem has long been an issue of con-
cerning for municipal agencies as reported in the early stud-
ies [11]–[14]. Moreover, the urban water pipe networks are
fast growing along with the global urbanization. The struc-
tural deterioration has posed challenges, not only to the daily
life but also a to sustainable society since water is an essen-
tial and precious resource for human beings. Reference [15]
estimates that more than $32 billion cubic meters of treated
water physically leak annually through distributed network
worldwide. The corresponding total annual cost is about
$ 14 billion. In particular, the New York City has spent
$54.6 million to manage its break pipes from 1997 to
2011 [16]. In addition, as reported by Environmental Pro-
tection Agency [17] and American Water Works Associ-
ation [18], there are over 54,000 drinking water systems
in the United States serving over 320 million residents via
2 million miles of water distribution pipes. Many of them
are old ones, and the 20-year financing needs estimates
range from $280 billion to $1 trillion for rehabilitation and
replacement [17].

Due to limited budget and expensive operational cost for
inspection as pipes are mostly laid underground, agencies can
hardly afford to comprehensively inspect their pipes. Hence,
the task of pro-actively pinpointing those most-likely-to-fail
pipes, which enables cost-effective replacement and rehabil-
itation, becomes of vital importance. The current average
annual pipeline replacement rate for utilities is usually less
than 1% of the total network [9], [19].

One traditional methodology for pipe risk estimation is
based on the scoring from the experienced subject matter
experts (SME). They devise business rules to decide which
pipes are risky and should receive top maintenance priority.
However, such a domain knowledge intensive methodology
usually involves subjective rules and is not readily adaptable
when the setting changes e.g. the geography [20]. Moreover,
compared with petroleum transmission pipelines where sev-
eral manuals have been well developed such as the Pipeline
Research Council International and the manual by [21],1

1In the Pipeline Research Council International, 9 categories are classified
and 4 in the manual [21].

urbanwater distribution network is much less standard, which
calls for more exploration to advance this area.

Works on water network failure modeling in both indus-
try and academia are reviewed in the surveys [22], [23].
Compared with those well-studied areas like Europe [24]
and North America [25], the subtropical areas (where the
case study is performed by this paper) are relatively under-
reported for urban pipe failure study [20]. For statistical
methods, many early works focus on descriptive analysis
towards pipe failures. Reference [26] calculate the average
number of failures on a unit year and unit pipe length. The
spatial and temporal patterns of water distribution pipe failure
in the city of Winnipeg are examined in [27]. Later, pre-
dictive modeling starts more investigation. Reference [28]
addresses the problem of forecasting the aggregated number
of pipe failures for the network, which is key to beforehand
planing. Reference [29] performs survival analysis to predict
the evolution of the annual number of pipe breaks and to
estimate the impact of different replacement scenarios in real
case studies. Reference [30] uses Cox survival analysis as
a pilot study for pipe failure prediction. Many other meth-
ods formulate the problem by a Logistic regression prob-
lem [22], [31]. Artificial Neural Network is also applied to
estimate the pipe-level failure count in the water distribution
networks of Benghazi city [32]. More recently a rank boost-
ing algorithm is adopted by [19] to rank the pipe break risks.
However, recent survey by [23] reveals that only a few large
utilities start to employ failure predictionmodels to their deci-
sion support systems for rehabilitation and replacement activ-
ities. This calls for more advanced and principled approaches
as well as experience sharing of a deployed system, from
which they can be benefited.

This paper is organized as follows. In Section II we intro-
duce several basic concepts on point process, and several
existing methods related to our approach. Section III high-
lights the overview of our method and the main contribu-
tion. We present the technical details and empirical study
in Section IV and in Section V respectively. Section VI
concludes this paper.

FIGURE 1. Illustration for the protocol of one-year forward failure
prediction: past failures collected since the installation date to the
current year end 2010 (2011 resp.), and prediction time window is set to
2011 (2012 resp.). Note the failure events exhibit a temporal clustering
pattern but do not obey an obvious parametric distribution, which
suggests the suitability of adopting the mutual-exciting model. This
observation is also made in [9] and [10].

II. BASIC CONCEPTS
We first present a brief technical description of the prob-
lem, based on which closely related concepts and models
are then introduced. In general, given 1) a prediction time
point or window e.g. the next year as shown in FIGURE 1,
2) the past failure sequence associated with each pipe
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instance, where the time-stamp and types of failures are
recorded, and 3) the associated profile of each pipe instance
i.e. its attributes such as material, diameter, length etc., one
aims to predict the failure likelihood, or the expected number
of failures of each pipe for each failure type.

Naively, it can be solved by a binary supervised learning
method by treating the failed pipes as positive instances and
non-failure ones as the negative as done by most previous
work. However, a more natural way is to model the failure
sequences via a point process, and make it allow to incorpo-
rate the profile information in a principled way. This paper is
an endeavor in this direction.

A. INTENSITY FUNCTION OF POINT PROCESS
Point processes are widely used to model the occurrences of
discrete events. In general, a point process is a time series
{ts}ms=1(0 < ti ≤ T ) at which an sequence of events {cs}ms=1
occur. Denote N (t) as the number of points (i.e., occurrences
of events) in (−∞, t] and Ht = cs|ts < t as the historical
events happening before t . The core concept of point process
is the conditional intensity function:

λ(t) = lim
1t→0

E(N (t +1t)− N (t)|Ht )
1t

=
E(dN (t)|Ht )

dt
whereE(dN (t)|Ht ) is the expectation of the number of events
happened in the interval (t, t + dt] given the historical obser-
vations Ht . The conditional intensity function represents the
expected instantaneous rate of future events at time t . Note
this is not a probability and can exceed 1.

B. HAWKES PROCESSES AND EXISTING VARIANTS
For one-dimensional, i.e. self-exciting Hawkes process, its
conditional intensity denoting the expected instantaneous rate
of future events at time t , can be written as [33]:

λ(t) = µ+ a
∑
i:ti<t

g(t − ti)

where µ is the base intensity and ti the time of events in
the process before time t . g(t) is the kernel to control the
influence from the previous events. Given an event sequence
{ti}ni=1 observed in [0,T ], its log-likelihood estimator is

L = log
n∏
i=1

λ(ti)exp
(
−

∫ T

0
λ(t)dt

)
=

n∑
i=1

log λ(ti)−
∫ T

0
λ(t)dt

We generalize the above one-dimensional formula to the
D-dimension case, a multi-dimensional Hawkes process [34]
is defined by a D-dimensional mutual-exciting point process.
Its conditional intensity of the d-th dimension is:

λd (t) = µd +
∑
i:ti<t

addigddi (t − ti)

where λ is added by a base intensity component µd and an
accumulative mutual-exciting component

∑
i:ti<t addigddi (t−

ti). This is a parsimonious model to incorporate the mutual-
exciting effect from different types (i.e. dimensions) of events

which is suited to the scenario of the pipe failure modeling
problem as will be shown later. Here addi measures the influ-
ence from event type di to d . Note that the event type can refer
to the failure type in this paper.

Recent works [5], [7], [8], [10], [35] start to use a sin-
gle parameter to model the base intensity for each instance
respectively, or universally for all instances. And several
generic learning algorithms are proposed [36], [37]. However,
they ignore the instance level profile covariants which can
otherwise be rather informative to model since the instance
level covariants are widely used in classification and regres-
sion models for failure prediction [19], [28]. As a result,
on one hand, their performance may sacrifice significantly
if they adopt a universal base parameter µd for all instances
s ∈ S. On the other hand, if we voraciously use many µsd for
each instance s, the complexity of the model i.e. its number
of parameters will grow quickly and overfitting becomes a
major issue which also hurts the prediction performance.
We find these two alternatives are less-competitive in our
empirical study and will be shown later in this paper.

The above limitation motivates us to devise a more prin-
cipled model to incorporate the two important information
sources: profile covariants and past failure events.

III. OVERVIEW AND CONTRIBUTION
A. OVERVIEW
In particular, there are two data sources for pipe failure mod-
eling: i) the profile data for each pipe including a range of
static covariants such as material, diameter, length, among
others; ii) the pipe failure tickets recording the historical fail-
ure date, and the type of failures associated with each ticket.
Ideally, a detailed classification of these failures includes
cracks, splits, joint failures, and hydrant valve failures as
defined in [25]. In our case, due to the granularity of the avail-
able ticket information, the failures are simplified into two
coarse categories: leak and burst. Given these two datasets
and a future time period window, the problem is scoring the
failure risk, or formally the expected number of failures in that
period as a function of the static and dynamic information
associated with each pipe. The output assessment is critical
to decision making for prioritizing the city scale pipe infras-
tructure inspection and maintenance, especially given a tight
budget and limited manpower resource.

Different from the commonly-used binary classifica-
tion or bipartite rank (or BoostRank) models [19], [38],
we formulate the failure prediction problem via a profile-
specific mutual-exciting point process model. On one hand,
the profile covariants are used to parameterize the base inten-
sity of the failure occurrence likelihood, which reflects the
inherent failure propensity dependent on their built-in pro-
files. On the other hand, the historical failure ticket data
serves as the event sequence for the purpose of exploring
the reciprocal triggering effect between the two failure types.
Hence, the trained model is used to evaluate the risk score of
each pipe given their observed historical failure records and
profiles.
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Before diving into the details in Section IV, we highlight
the strengths of our approach and the compromised simplifi-
cations we have made in face of a real-world problem with its
particular settings. Then we summarize our contributions.

B. TECHNICAL STRENGTH OF THE PROPOSED MODEL
Compared with state-of-the-arts point process based methods
for event dynamics modeling and failure prediction [9], [10],
the main advantages of our approach are as follows.

1) Profile-specific base intensity modeling We devise a
parametric model for the base intensity by the profile covari-
ants and the model complexity is regardless of the instance
size but depends on the number of covariants, which is much
smaller as listed in TABLE 2. In contrast, [10] sets a base
intensity parameter for each instance that increases the model
complexity and ignores the profile data. This may introduce
more risk for overfitting. While in [9] the base intensity
parameter is shared by all instances, which is often unrealistic
and prone to underfitting in practice.

2) Failure type modeling via a mutual-exciting point
process In [10], self-exciting and self-regulation point pro-
cess are employed for power grid failure event modeling,
based on the assumption that a past event will cause a tem-
porary rise or decline for the invulnerability to future events.
However, their models only consider one-dimensional point
process, which in fact assumes the different types of fail-
ure events have the same impact to the future failure risk.
In contrast, our approach considers the impact of different
failure types, which is more realistic to the common wisdom
that different types of failure have different severities. For
instance, a burst failure usually will cause more failures than
a leak failure due to its damage, but not vice versa.

C. PRACTICAL AND COMPROMISED SIMPLIFICATION
We also make particular compromises as follows.

1) Information loss of the failure data There are three
simplifications we make for utilizing the ticket data. First,
the types of failures are reduced to two categories due to the
data granularity currently we have, though ideally more fine-
grained stratification can be defined [25]; Second, empirical
studies [27] report that past failures may only contribute to
subsequent failures within 20 meters. However, our accessi-
ble ticket data can only tell the time stamp rather than the
exact failure location on the pipe. Thus in our model, we treat
all failures of the same pipe equally regardless its (unknown)
location; Third, the severity of failures is not thoroughly
recorded such that only a binary flag is used, which indicates
a failure occurs or not.

2) Pure temporal modeling without using spatial infor-
mation Currently we have no access to, and thus do not
consider the spatial location information. To some extent,
they are implicitly encoded by the profile covariants such as
‘ZoneImp’, ‘Rainfall’, ‘HighImp’ which show their environ-
mental settings as listed in TABLE 2. As a complementary
approach, spatial analytics has been studied [20], [25], [27]
to identify the high-risk areas for monitoring purpose. It is

interesting to learn more complex spatiotemporal model tai-
lored to pipe failuremodeling, whichwe leave for future work
if the fine-grained spatial data is available.2

D. MAIN CONTRIBUTIONS
This paper performs failure prediction by a more modernized
machine learning paradigm – formulating the problem into a
parameterized profile-specific mutual-exciting point process
model. In addition, this model can be efficiently learned by
a trackable optimization algorithm based on posterior likeli-
hood maximization, by alternative optimization.

1) From amethodology perspective, to our knowledge, this
paper is the first work to propose modeling event sequences
generated from a set of instances together with their profile
covariants via a unified profile-specific mutual-exciting point
process model. In contrast, most existing Hawkes models and
their related variants ignore the profile covariants and train
separate models for different groups of instances or trivially
build individual model for each instance [9], [10]. In addi-
tion, our model naturally accounts for the triggering effect
between different failure types by the mutual-exciting point
process kernel. We also propose an alternating optimiza-
tion algorithm to learn the parameters of the model. Our
point process based model is also significantly different from
those regression or classification based ones [19], [28]. Our
method can be seen as an extension to the two relevant
point process based models [9], [10] by incorporating the
failure type, as well as the profile covariants into the Hawkes
process model. These two factors are not considered in their
works.

2) From an application perspective, our empirical study
and developed solution is a trade-off between algorithmic
tractability and practical feasibility compromised to the avail-
able real-world data. Its performance is empirically verified
on the urban-scale water pipe data – ametropolitan city which
is comprised of hundreds of thousands pipes for both fresh
and salt water systems. In contrast, the average failure count
is very few per pipe.

Beyond the machine learning and data mining community,
this paper is expected to be also of use to city dwellers, urban
planners, environmental scientists and civil engineers.

IV. MODEL AND LEARNING ALGORITHM
Suppose we have m instances i.e. event sequences {cs}ms=1
such that each pipe s is associated with a failure sequence
cs. For each sequence, it consists of ns events and every event
is comprised of the occurrence time stamp tsi and failure type
i.e. dimension d si : cs = {(t

s
i , d

s
i )}

ns
i=1, observed from the time

window [0,Ts]. The window is instance-specific such that
the starting point is the installation date of the pipe tas , and
the ending date is the right-censored point tbs , e.g. the current
time-stamp. We let Ts = tbs − t

a
s .

2As a matter of fact, in our engagement with the water supply agency,
the location information of each pipe is removed or de-identified for its
sensitivity. Disclosure of location and topology information may lead to
malicious physical attack.
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For interpreting the proposed method clearly, the key nota-
tions used in this paper are summarized in TABLE 1.

TABLE 1. Key notations used in our model.

By specifying the multi-dimensional Hawkes model for
the intensity function, we obtain the following log-likelihood
objective function [34] where Gddsj (t) =

∫ t
0 gddsj (τ )dτ .

L =
m∑
s=1

( ns∑
i=1

log
(
µdsi +

∑
tsj<t

s
i

adsi dsj gdsi dsj (t
s
i − t

s
j )
)

−Ts
D∑
d=1

µds −

D∑
d=1

ns∑
j=1

addsj Gddsj (Ts − t
s
j )

,
Here µds denotes the base intensity at dimension d for
instance s which we assume is time-constant, while depend-
ing on the profile covariants in this paper, and add ′ denotes the
exciting impact for d affected by d ′. Specifically, we consider
D = 2 in our case: d = 1 for leak failure and d = 2 for
burst. An exponential decaying kernel is used to model the
mutual-exciting effects between different types of failures:
gij(t − t0) = wije−wij(t−t0) which is in line with [9], [10].

A. PROFILE-SPECIFIC BASE INTENSITY MODELING
The base intensity incorporates the inherent profile attributes
associated with a pipe, irrespective how the past failure
occurred. For instance, a pipe equipped with a special coating
material would be more invulnerable.

Specifically, we adopt the similar profiling specific mod-
eling techniques presented in [39] to connect the profile
covariants with the base term, we model it via a Logistic
function and rewrite µds to µsd :

µsd = βd/
(
1+ exp(−θTd x

s)
)

(1)

This parameterization incorporates the K profile covariates
where xs = [1, xs1, x

s
2, . . . , x

s
K ]

T refers to the covariants in
the top half in TABLE 2 and θd = [θd0, θd1, . . . , θdK ]T is the
encoding coefficients for xs. βd is the scalar parameter gov-
erning the weight between base term and the exciting term.
Note for the tractability of model learning, we assume each
pipes has its own base intensities dependent on its associated
profiles, but the base intensity is constant over time. We leave
the mathematically challenging time-variant base intensity
modeling for future work.

TABLE 2. Factors for pipe failure prediction. Failure ticket data is
complete while the profile information is partially missing for a subset of
pipes. The factors in the top half are used as profile covariants.

We further rewrite the objective regarding with the profile
coefficient θd for failure type d . Since profile xs is known we
can rewrite the objective into the following form:

L =
m∑
s=1

 ns∑
i=1

log
(
βdsi h

s(θdsi )+
∑
tsj<t

s
i

adsi dsj gdsi dsj (t
s
i − t

s
j )
)

−

2∑
d=1

Tsβdhs(θd )−
2∑

d=1

ns∑
j=1

addsj Gddsj (Ts − t
s
j )

 (2)

where hs(θd ) , 1/
(
1+ exp(−θTd x

s)
)
, and thus µsd =

βdhs(θd ).
We believe that using the profile to encode the base term

is effective compared with the alternatives in [9] and [10] as
shown in FIGURE 2. On one hand, if we voraciously use m
independent µsd to model the m pipes as in [10], we are at the
risk of overfitting since the model complexity is very high.
On the other hand, if we use a shared parameter µd for all
m pipe instances as done in [9], the base intensity will be
inappropriately modeled because it is unreasonable to assume
all pipes have a same level of base intensity regardless their
profile diversity regarding with material, length, diameter etc.
This leads to underfitting. In contrast, we model the base
intensity with relatively small number of parameters i.e. θ
whose size is regardless of the whole pipe instance set size.

B. MUTUAL-EXCITING EFFECT MODELING
Since it is commonly believed that the failures are modulated
by an reciprocal exciting effect rather than an inhibiting one,
thus the coefficients aij ≥ 0. This leads to an important trick
that L can be surrogated by its tight lower bound L according
to the Jensen’s inequality – seemore details inAppendix. This
lower bound helps break down the summation in the log term.
As a result, we optimize this lower bound L instead of the
original one since it is much easier to solve by closed form in
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FIGURE 2. Illustration for the three modeling strategies used in three
work. (a) Our method – Profile x specific base intensity µ modeling via
parameter θ ; (b) Method [9] – Universal base intensity µ shared by all
instances from 1 to m regardless profile x . (c) Method [10] – Individual
base intensity µi of each instance without encoding x , which is purely
learned from the failure data of each single pipe i .

each iteration:

L =
m∑
s=1

( ns∑
i=1

(
psii log

βdsi h
s(θdsi )

psii

+

i−1∑
j=1

psij log
adsi dsj gdsi dsj (t

s
i − t

s
j )

psij

)
−

2∑
d=1

Tsβdhs(θd )−
2∑

d=1

ns∑
j=1

addsj Gddsj (Ts − t
s
j )
)

(3)

According to Jensen’s inequality, if and only if psii, p
s
ij are set

as follows in each iteration, the equation between L and its
lower bound L holds and this makes the relaxation tighter.

ps(l)ii =
β
(l)
dsi
hs(θ (l)dsi

)

β
(l)
dsi
hs(θ (l)dsi

)+
∑i−1

j=1 a
(l)
dsi d

s
j
gdsi dsj (t

s
i − t

s
j )

(4)

ps(l)ij =

a(l)dsi dsj
gdsi dsj (t

s
i − t

s
j )

β
(l)
dsi
hs(θ (l)dsi

)+
∑i−1

j=1 a
(l)
dsi d

s
j
gdsi dsj (t

s
i − t

s
j )

(5)

For a pipe s, psij can be interpreted as the likelihood that the

i-th failure (d si , t
s
i ) is affected by the previous j-th one (d

s
j , t

s
j )

of the event sequence for pipe s. psii is the probability that i-th
event is sampled from the base intensity.

Zeroing the partial derivatives ∂L
∂β1

, ∂L
∂β2

and ∂L
∂a11

, ∂L
∂a12

,
∂L
∂a21

, ∂L
∂a22

leads to the following equations for updating βu
(u = 1, 2) and auv (u, v = 1, 2) respectively:

βu
(l+1)
=

∑m
s=1

∑ns
i=1,dsi =u

psii
(l)∑m

s=1 h
s(θ (l)u )Ts

(6)

a(l+1)uv =

∑m
s=1

∑ns
i=1,dsi =u

∑i−1
j=1,dsj =v

psij
(l)∑m

s=1
∑ns

j=1,dsj =v
Guv(Ts − tsj )

(7)

We estimate the exciting kernel parameter wuv(u, v = 1, 2) in
guv(t − tj) = wuve−wuv(t−tj) by zeroing ∂L

∂wuv
.

Note updating wuv(u, v = 1, 2) by zeroing ∂L
∂wuv

is implicit
since it involves solving a non-linear equation. We instead

replace w(l+1)
uv on the right side by w(l)

uv for efficiency:

w(l+1)
uv =

∑m
s=1

∑ns
i=1,dsi =u

∑i−1
j=1,dsj =v

ps(l)ij

Muv
(8)

where

Muv =

m∑
s=1

ns∑
j=1,dsj =v

auv(Ts − tsj )e
−w(l)

uv (Ts−tsj )

+

m∑
s=1

ns∑
i=1,dsi =u

i−1∑
j=1,dsj =v

(ti − tj)p
s(l)
ij

By dropping off constant
∑2

d=1
∑ns

j=1 addsj Gddsj (Ts− t
s
j ) in L

w.r.t. θ1, θ2, we obtain two objective functions w.r.t. θu

m∑
s=1

 ns∑
i=1,dsi =u

log
(
βuhs(θu)+ Cs

ui
)
− Tsβuhs(θu)

 (9)

where

Cs
ui =

∑
tsj<t

s
i

audsj gudsj (t
s
i − t

s
j ), u = 1, 2

Since there is no closed form solution, we apply gradient
descent to update θuk (u = 1, 2; k = 0, 1, . . . ,K ).
The overall learning method is presented in Algorithm 1.

Algorithm 1 Learning Profile-Specific Mutual-Exciting
Point Process (PMP) for Failure Prediction
1: Input: m instances i.e. pipes: {cs}ms=1 where each pipe is

with profile xs and failure event sequence {ti, di}
ns
i=1 with

failure date ti and failure type di;
2: Profile xs = [1, xs1, . . . , x

s
K ]

T in TABLE 2 for pipe s;
3: Random initialization for {βu, θu, auv,wuv}2u,v=1;
4: Iteration stop threshold L, gradient descent step-size α;
5: Output:Learned parameters {βu, θu, auv,wuv}2u,v=1;
6: for l = 1 : L do
7: Compute {psii

(l+1)
}
2
i=1 by Eq.4;

8: Compute {psij
(l+1)
}
2
i,j=1 by Eq.5;

9: Update {βi(l+1)}2i=1 by Eq.6;
10: Update {a(l+1)ij }

2
i,j=1 by Eq.7;

11: Update {w(l+1)
ij }

2
i,j=1 by Eq.8;

12: Update {θ (l+1)i }
2
i=1 by Eq.9;

13: end for

C. FURTHER COMPARISON WITH PEER MODELS
Besides the baseline self-exciting Hawkes process
model without using the profile information [9], we find [10],
[19], [40] are mostly related to this paper. The work [19] is
more similar regarding with the application scenario since
it addresses the same urban-scale water pipe failure pre-
diction problem. The studies [10], [40] deal with a closely
related industrial scenario – electrical power grid failure
analytics while the authors in [10] also propose a variant
of the self-exciting Hawkes process model for grid failure
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dynamics modeling. Note in [19] and [40], they both adopt
a learning-to-rank model [41] widely used in the field
of machine learning and information retrieval. Compared
with a point process based approach, the learning-to-rank
paradigm is more similar to classification models used
in [22], [31], and [32] for water pipe failure modeling. There-
fore we focus on the two-fold differences to the Reactive
Point Processes (RPP) model [10]:

TABLE 3. Categorization by quality of the preprocessed profile data and
the denoting term of each sub-dataset. The number in bracket is the
average failure rate per year from 2000 to 2011.

1) Profile-specific mutual-exciting vs. Instance-specific
self-exciting model RPP [10] trains separate models for each
instance (a manhole in the grid application). In our case,
as already discussed in Section IV-A, a unified model is
trained by using all instances and their events. The person-
alization is achieved by encoding the base intensity term via
the individual profile covariates. By collaboratively exploring
the event data across all instances it is supposed to improve
the robustness of the trained model, especially given a small
ratio of failure per year – see TABLE 3. Also, we model the
triggering effect of event types by mutually-exciting terms.
Comparatively, their method considers self-exciting effect
and treats all failure types equally though different manhole
outage e.g. fires, smoking. The profile-specific modeling is
also used in [39] in point process learning. However, that
work incorporates the profile information using an additional
prior term for optimization, while in our approach, it is
directly optimized via gradient descent as a whole in the
overall loss function.

2) Coordinate descent learning vs. stochastic sampling
method Our model is simplified in two-folds: a) the self-
regulation effect (by repair) is not explicitly taken care of
because we assume each failure will be followed by a repair
while such repair information in fact is unavailable from the
ticket data. In addition, the replacement for failed pipe can be
trivially treated as the pipe database will remove the replaced
one and add a new one for the replacing pipe, and assign its
completion date as up-to-date; b) nor the saturation effect of
the exciting effect, in order to avoid additional nonlinearity.
Thanks to such simplifications, we are able to devise an effi-
cient optimization approach (mostly closed form updating).
In contrast, [10] applies the Approximate Bayesian Compu-
tation (ABC) sampling method [42].

V. EXPERIMENTS AND CASE STUDY
Mathematically being a generic machine learning paradigm
for failure prediction, while our method is specifically driven
by the requirement from awater agency of a metropolitan city
in Asia for cost-effective and preventative urban-scale water
pipe maintenance. We will briefly describe the deployed

platform and report the evaluation results compared with sev-
eral peer methods SVMstru (termed by SVMs for short) [43],
RankBoost [19], RPP [10] and twoHawkes process baselines.
Note that as reported in [19], the RankBoost model has shown
superior performance against many other classical models
such as NaiveBayes, Cox, Logistic Regression and Artificial
Neural Network. For brevity, we exclude these methods in
our evaluation. In fact we find the listed models in most cases
outperform these methods on our dataset notably which is
consistent with the result in [19].

A. DEPLOYED PLATFORM AND EXPERIENCE
Our pipe management platform consists of two modules:
descriptive module and predictive module. The back end of
the descriptive module is a data cube supporting for ad-hoc
query at different aggregation levels. The predictive module
is built on the proposed model. An interactive interface is
provided such that user can pinpoint the pipe either by GIS
(in the left panel) or by the list (in the right panel). However,
the pipe location information is only used in online browsing
while they are not shown in our accessible database.

The main users of this platform are the pipe network utili-
ties such as the water agency, who need this platform to plan
their budget and prioritize the preventative maintenance and
rehabilitation in advance.

The dataset consists of over 600,000 pipes for fresh water
system and nearly 100,000 for salt in the year when we are
engaged with the agency. To construct our dataset, there are
two raw data sources from the agency: i) failure ticket data
including pipe ID and the associated failure type (leak/burst),
failure date of each event. From the ticket data, one can extract
aggregated indicators as listed in the bottom half of TABLE 2.
The number of failures ranges from zero to decades for a pipe;
ii) static profile database including installation date, pipe ID
and other static attributes as listed in the top half of TABLE 2.
The pipe ID is the universal key for matching the identical
pipe from these two data sources, which constitutes the whole
life period of a pipe.

The failure ticket data is well kept hence we assume them
intact. For the profile related data, the pipe instances can
be divided into three categories according to their quality
as structured in TABLE 3: i) the major part of pipes with
complete profile values; ii) a part of pipes being attribute-
incomplete and the missing attributes (i.e. profile covariants)
are repopulated by business rules provided by the engaged
water agency based on their specific domain knowledge;
iii) a small portion of pipes that are of fully profile-missing,
and cannot be recovered by any means.

The installation date of all pipes is available. This allows
for trivially adopting a point process model by setting the
starting point of the observation window as the installa-
tion date. Evaluation are performed by setting 2010 and
2011 as the one-forward year respectively, as exemplified
in FIGURE 1.3

3Our engagement with the water agency is from the year 2010 to 2012,
thus we only collect the data censored by 2012.
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Note the standard self-exciting Hawkes process model [9]
can be regarded a baseline to our model, because neither
instance-specific profile nor failure type is taken into account.
In the following experiments, we will show the notable supe-
riority over this baseline by our model.

B. EVALUATION PROTOCOL
1) CENSORED TIME WINDOW
In line with the recent pipe failure prediction work [19],
the protocol follows a one year forward practice. Specifically,
we use the historical failure event data up to the end of cen-
sored year as the right-censored date, together with the profile
attributes, as the training data to train our model. The failure
events occurring during the next year is used to validate the
performance. Evaluations are performed for predicting the
failure score for year 2010 and 2011, given the observation
window censored by the end of 2009 and 2010 respectively.
For pipe s from training dataset D, it is associated with the
profile xs and failure tickets {cs}ms=1 during the observation
time window.

2) PERFORMANCE METRICS
The area under the receiver operating characteristic curve
(ROC) [44] as adopted by related works [19], and Aver-
age Precision (AP) are both used as the performance met-
rics. ROC is widely used for classification and AP is often
used for information retrieval. Note ROC cannot guarantee
the optimal (mean) AP performance [45], as ROC assigns
equal penalty to each misordering of a relevant/non-relevant
instance. In contrast, AP assigns greater penalties to misor-
derings higher up in the predicted ranking. This behavior we
believe is more suited in our case as very few failures occur
each year compared with the whole instance set. The metrics
are either for a specific failure type by comparing the failure-
specific risk score with the actual certain type of failure, or at
the ‘overall’ level by comparing the actual failure occurrence
regardless of the types.

3) PEER METHODS
The comparing methods can be grouped into two categories:
i) point process based models including RPP [10], HPself,
HPhom and our method termed by PMP as in Algorithm 1.
Note HPself, HPhom (we use HPs, HPh for short in the paper)
are two simplified Hawkes Process (HP) variants to our
models, by replacing the mutual-exciting term with a self-
exciting term (treating different failure types equally) and
building a mutual-exciting Hawkes model with a homoge-
nous4 base termµ (also learned from the event data) ignoring
individual profile covariants. TABLE 4 shows the relation
of the compared point process models by two dimensions.
ii) scoring based models SVMstru (termed by SVMs for
short) and RankBoost (RB), the former is suited in our case
because it allows the outputs have more than one dimension.

4Here the term ‘homogenous’ emphasizes homogenous across instances,
although throughout the paper we assume the base is homogenous over time.

TABLE 4. Comparison of different methods.

This structured learning model is expected able to better cap-
ture the relation between the two dimensions (failure types) of
outputs. In contrast, the RB model is a one-dimensional out-
put model. We select the RankBoost.B [41] in line with [19].

4) MODEL BUILDING PROTOCOL
Raw event data is used by the four point process models. For
our model and HPs, profile covariants are encoded in the base
term of the intensity, while for HPh and the RPP model, pro-
file information is not used. For SVMs, two failure types are
modeled under a unified structured learning paradigm. While
for the RB model, limited by its single-dimension output
mechanism, we train two models for two types respectively
in addition with an ‘overall’ model that treats all failure types
equally. The input features for SVMs and RB are the profile
features in addition with the aggregated past failure statistics
as shown in the bottom part of TABLE 2. These ad-hoc fre-
quency statistics are used to encode the dynamic cues which
is a common practice in feature engineering for training a
classification/regression/ranking model. In contrast, a point
process based model can naturally handle the event data.

5) RISK COMPUTING AND EVALUATION
For each pipe instance, given the observed past failure records
up to the censored year {cs}

m0
s=1, t

s
m0
. The observations serve

two roles: a) training an up-to-date model for next-year risk
prediction; b) computing the failure score related to the next
year by the trained model. Then the ROCAUC and AP can be
calculated by three cases: i) the risk score for leak failure over
the next year; ii) the risk for burst over the next year; iii) the
‘overall’ risk score regardless of the failure types. For the first
two cases, when a point process model is employed, the risk
score is defined by the integrated risk intensity over the whole
prediction time window rks =

∫ tb
ta
λk (t)dt(ks = 1, 2) and the

integration protocol follows [46]; for the other two peer meth-
ods, the model output scores are used. SVMs is a structured
learningmodel such that it can issue failure-specific scores by
one model, and for the RBmodel, scores for different failures
are generated by two different models. For the ‘overall’ risk
regardless of failure types, we add up the individual failure
scores rks (ks = 1, 2) as they physically refer to intensity
functions. But for the scoring models, we additionally train
an SVMs and an RB model and use their output as the overall
risk. Different output scores from two failure-specific scores
cannot be added up due to the fact that for the scoring model
SVMs and RB.

6) DATA PARTITION FOR TESTING
The pipes are divided into 6 groups w.r.t. two systems: fresh
and salt water, in addition with the three categories w.r.t.
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TABLE 5. Four model categories trained by different sub-datasets
segmented by system: fresh(f)/salt(s) – subscript, and by profile data
quality – superscript: complete(c)/repopulated(r)/missing(m). The last
column contains the estimated values of our mutual-exciting model
hyper-parameters a where the subscript ‘l’ and ‘b’ refers to ‘leak’ and
‘burst’. Specifically, alb refers to the coefficient for the exciting term from
‘burst’ to ‘leak’ and similar for abl , all , abb. For profile-missing instances,
our model is trained for each instance thus we provide the mean,
standard deviations (all less than 0.15) are omitted due to space
limitation. In addition, the estimated parameters by the
profile-homogenous model HPh is listed in the bracket, whereby one can
see the coefficients are a little wield and counter-intuitive. We think this
is because HPh causes model bias since it neglects the profile covariants.
This further suggests the importance for incorporating profile covariants
to uncover the unbiased mutual relation of failures.

the quality and availability of the profile, as classified in
TABLE3. These 6 datasets are termed asDc

s ,Dr
s ,Dm

s ,Dc
f ,D

r
f ,

Dm
f where the subscripts denote for ‘salt’ and ‘fresh’ water

systems, and the superscripts for ‘complete’, ‘repopulated’
and ‘missing’ w.r.t. the profile information respectively. Four
categories of models M c∪r

f , M c∪r
s , Mm

f , M
m
s are trained and

tested as depicted in TABLE 5. Note for dataset Dc
f and Dr

f
(similar for the salt system), the model is trained by the union
of these two datasets, while for prediction, we are interested
in evaluating their performances separately since the latterDr

f
is assumed to contain more noises. Note that for model Mm

f
and Mm

s , since profile covariants are fully missing, we only
use the event data for building the point process model, and
their statistics listed in the bottom of TABLE 2 to train the
two scoring models. When Mm

f and Mm
s refer to our model,

we adopt a similar strategy as RPP that build separate models
per instance which we find better than using a constant base
term for all instances.

C. RESULTS AND DISCUSSION
We first point out the methodological limitation of our study.
It shall be noted that our deployed platform only serves
as one of the references for the client’s decision making
especially in the early stage. The client’s maintenance action
is influenced by additional facts and considerations such as
public complaints, their past working arrangement, and other
constraints that make the road not readily allowed to be exca-
vated for pipe maintenance, e.g. business regulation or the
land is privately owned by the residents. Thus the prediction
is supposed to not intervene the failure result notably thus
rendering our test roughly as a ‘blind test’.

Meanwhile, the net economic impact is out of the scope
of this research paper. Because the final business impact
not only depends on the deployment of the model but also
i) how the prediction results are accepted by the decision
maker; ii) other factors e.g. the pressure for replacing a few

less-risk pipes drawing more attentions from the local citi-
zens or media; iii) the cost of replacing each pipe is diverse
and is not considered (and unavailable). It would be valu-
able to use the economic impact for an end-to-end decision
making system, and academically it involves a stochas-
tic optimization model to take the failure predictions,
the replacement/repair cost or constraint, and other ad-hoc
factors into account. However, at current stage, our predic-
tions serve as only one of the decision-support information
sources. We leave the economic evaluation in future work if
more data is available.

Now we present our discussion based on the results.
1) The proposed model achieves the best performance

in most cases The performance in terms of ROC and AP are
reported in TABLES 6 (2010) and 7 (2011) where different
failure types are evaluated on partitioned datasets.5 Elegantly,
our mutual-exciting model can handle these two types in a
unified fashion thus only one model is trained to output the
risk score for all failure types. Our model almost outperforms
state-of-the-arts on all datasets: profile-complete data Dc,
profile-repopulatedDr and profile-missingDm for both fresh
and salt water systems.We regard this is due to that our model
i) effectively incorporates all available information, espe-
cially capturing the temporal clustering pattern of failures at
the fine-grained level while the peer method RankBoost [19]
build separate models for each failure type and the aggregated
statistics (in the bottom of TABLE 2) used by this method
may not well capture the clustering pattern of failures – See
FIGURE 1 for illustration; ii) collectively trains the model
by all instances via covariants parametrization to improve its
robustness instead of training separate models per instance
as done by RPP [10]. In this spirit, our method is akin to the
idea of multi-task learning here the individual task is learning
the failure dynamics of each pipe. We devise a parametric
model for the base intensity by the profile covariants and
the model complexity is regardless of the instance size but
depends on the number of covariants. Note we also test amore
general model by parameterizing the profile covariants not
only in the base term but also in the mutual-effect parameters
aij, while we found the performance gain is very limited
and even hurts the present model. This suggests our current
model effectively captures the problem and keeps the model
as simple as possible.

2) Separate models for individual instances are wel-
comed when profile is fully unknown Another interesting
observation is that for dataset Dm

f and Dm
s , whose covari-

ants are missing, the RPP model performs better than HPh,
which suggests trivially modeling the personalized base term
(one model per instance as no covariants can be used) is
more useful than modeling the fine-grained failure types.
Our approach considers the impact of different failure types,
which is more realistic to the common wisdom that differ-
ent types of failure have different severities. Moreover, HPh

5In this paper, due to data limitation of our business contract, we only
disclose the results for year 2010 and 2011.
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TABLE 6. ROC (top half) and AP (bottom half) of one-year forward prediction for year 2010.

TABLE 7. ROC (top half) and AP (bottom haf) of one-year forward prediction for year 2011.

performs slightly better than HPs in these cases which sug-
gests capturing the fine-grained failure types is better than
treating them equally when the base term in both methods is
assumed homogenous across instances.

3) The mutual effects between different failure types
are quantitatively captured by our method Our model
depicts the mutual effect between the leak and burst failures
by the hyper-parameters aij listed in the bottom 4 rows in
TABLE 5, especially in the first two columnswhere themodel
is trained via profile data: burst raises higher vulnerability
than leak. This reiterates the importance of fine-grained fail-
ure types modeling. From the business perspective, it urges
the owners to take more effective measurements to suppress
the burst failure as they aremore damaging comparedwith the
leak break, in a quantitative fashion.

VI. CONCLUSION AND FUTURE WORK
This paper proposes a point process model which syn-
ergetically incorporates both the profile covariants, and
the dynamic failure events of different types. Based on a
relaxation using the lower-bound of the raw log-likelihood
function, an efficient coordinate descent learning algo-
rithm is devised to learn the model parameters. Our
approach performs competitively against several state-of-
the-arts, as empirically verified on the real-world urban-
scale pipe data. For future work, it is an inverse problem
to infer the underlying attributes via the observed failure
events for the pipes whose missing profiles are currently
repopulated by the ad-hoc rules. It is also attractive to incor-
porate the spatial dimension in the point process modeling.

Moreover deep learning models [47] for point process learn-
ing is another way to improve the current method.

APPENDIX
FEASIBILITY OF THE SURROGATE FUNCTION
First, according to Jensen’s inequality, we have

βdsi h
s(θdsi )+

∑
tsj<t

s
i

adsi dsj gdsi dsj (t
s
i − t

s
j )

≥ psii log
βdsi h

s(θdsi )

psii
+

i−1∑
j=1

psij log
adsi dsj gdsi dsj (t

s
i − t

s
j )

psij

The equation holds if and if only: β = β(l), a = a(l) and
w = w(l) due to pii and pij are a function w.r.t. β(l), a(l),w(l)

in the l + 1th iteration. As a result, we have the following
relation where the term on the right is L in Eq.3:

L(β, a,w) ≥ L(β, a,w|β(l), a(l),w(l))

L(β(l), a(l),w(l)) = L(β(l), a(l),w(l)
|β(l), a(l),w(l))

Therefore,

L(β(l), a(l),w(l))

= L(β(l), a(l),w(l)
|β(l), a(l),w(l))

≤ L(β(l+1), a(l+1),w(l+1)
|β(l), a(l),w(l))

≤ L(β(l+1), a(l+1),w(l+1)
|β(l+1), a(l+1),w(l+1))

= L(β(l+1), a(l+1),w(l+1))

This implies maximizing L with respect to β, a,w at each
iteration ensures that the value of L increase monotonically.
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