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ABSTRACT Based on a potential gamemodel, a distributed resource scheduling scheme is proposed to coor-
dinate severe interference in a dense cellular network. First, the subcarrier and power scheduling problem is
modeled as a non-cooperative potential game. Then, individual utility and overall potential functions are pro-
posed by considering attainable throughput and consumed power. According to the definition of the potential
game, the difference in individual utilities caused by strategy changing has the same value as the difference
in overall potential value, which guarantees that players can maximize respective utility without worsening
system profit. Afterward, an iterative searching algorithm is designed to obtain optimal resource scheduling
strategy. Theoretical analysis and simulation results both validate that the proposed scheduling schememakes
a performance improvement in spectral and resource efficiency. Meanwhile, the proposed scheme can also
guarantee the quality of service by providing superior user signal to interference plus noise ratio.

INDEX TERMS Dense Deployment, distributed, interference coordination, nash equilibrium, potential
game.

I. INTRODUCTION
With the development of mobile internet and Internet of
Things, a large amount of emerging services are provided
to the users via wireless transmission, which means higher
demanding on user rate and traffic density in mobile com-
munication system. As an effective scheme to deploy huge
amounts of communication nodes in the limited area, dense
deployment can satisfy the increasing requirements of users’
data services and provide powerful support for the bloom-
ing development of mobile communication network. Home
eNodeB is a kind of micro-base station (BS) applied in
small-coverage scenarios. Due to the low cost and self-
organizational feature [1], Home eNodeB can provide high
data rate and becomes an efficient component unit in the
dense deployment of small cell network.

For dense cellular network, dynamism is one of the most
salient features and exists during equipment on-off and user
mobility [2]. As the state of the network changes all the
time, it will cause severe fluctuations of channel condi-
tion and bring more challenges on interference management.
It is already known to all that interference management has

always been a key problem in mobile network due to its
influence on the service quality, coverage ability and system
capacity of communication network. While dense deploy-
ment is introduced in future network, the system architecture
and the user requirements become more complicated, which
highlights the interference control problem and challenges
the traditional interference management mechanism. Hence
the existing interference mitigation technology is facing mul-
tiple difficulties. Moreover, managing interference with tra-
ditional centralized scheme in dense cellular network will
generate excessive signaling overhead and time delay. As a
result, it is in desperate need of distributed and effective
interference coordination for dense cellular network.

With the growing needs for pervasive computing and
communication, new analytical tools should be introduced
to tackle the numerous technical challenges accompanying
current and future wireless communication networks. As a
branch of applied mathematics, game theory has been used
not only in economics, but has also in a variety of other
fields such as political science, biology, computer science and
philosophy [3]. Due to the advantages in making cooperative
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decisions andmeeting competitive users’ requirements, game
theory is proposed as a key tool to coordinate interference for
future wireless communication networks especially in dense
deployment.

A. RELATED WORK
In recent years, there are plenty of literatures concentrating
on the resource allocation and interference management
problems in wireless network. In the future communica-
tion system, how to allocate limited wireless resources is
always a hot spot issue that researchers need to investigate.
Reference [4] studies cluster-based wireless resource
management issues in ultra-dense network and proposes
a two-stage scheme to solve this problem. For interfer-
ence mitigation in small cell network, Wang et al. [5]
provides an effective subcarrier selection scheme, while
Eraslan et al. [6] uses a novel auction-based algorithm for
throughput maximizing scheduling in centralized cognitive
radio network.

As a huge number of small cells exist in dense cellu-
lar network, distributed scheme is an efficient tool to allo-
cate limited wireless resources. Application of a Bayesian
game is discussed in [7] to solve the distributed resource
allocation problem in wireless network under uncertainty.
Semasinghe et al. [8] proposes an evolutionary game-based
distributed resource allocation scheme and can assure fair-
ness among users. References [9] and [10] both focus on
distributed interference mitigation in LTE-Advanced network
based on background interference matrix.

In dense cellular network, coloring algorithm [11], [12]
is a frequently-used tool to cope with inter-cell interference.
In addition to coloring algorithm, plenty of literatures focus
on game theory to work out competitive resource distri-
bution issues. Hew and White [13], Li and Han [14], and
Fan and Tian [15] propose game-based models to deal with
resource allocation in both cooperative and non-cooperative
way. Specifically, potential game is good at solving dis-
tributed problems due to its non-decreasing feature of system
performance while increasing individual utility, which will
be applied in this paper. References [17] and [18] consider
potential games for resource allocation in uplink and down-
link system respectively. Based on potential game, a no-
regret learning algorithm is designed in [19] for channel
adaptation in a dynamic environment, which provides a refer-
ence for solving fully distributed channel selection problems.
In addition to potential game, there are many other
game models that are widely used to derive distributed
resource allocation techniques. For example, stackelberg
game [20], [21] and evolutionary game [22] have both been
extensively practiced.

In dense and time-varing wireless system, throughput
is not the only performance that should be focused on,
energy efficiency is also a key indicator to assess the earn-
ing generated by consumed power [23]. References [24]
and [25] both consider throughput and energy efficiency
in ultra-dense network and achieve balance between them.

To realize distributed power-control, Zappone et al. [26],
Yang et al. [27], and Zheng et al. [28] model the power
allocation problem as game-based scheduling issue and pro-
pose energy-efficient schemes. Reference [29] introduces
a self-organization rule based on minimizing cell transmit
power and coordinated resource allocation algorithms are
investigated.

B. MAIN CONTRIBUTION
In this paper, resource scheduling in dense cellular network is
investigated. Based on the dense deployment of small cells,
the resource scheduling problem of the network is modeled as
a potential game, where BSs are competitive players. In the
network, BS locates in the center of each cell and the users
are uniformly distributed under the coverage of BSs. The only
interference for the user is coming from neighboring BS. For
every BS, an individual utility function is proposed by consid-
ering attainable throughput and consumed power. Moreover a
potential function is proposed to represent the system overall
earning which is consisting of individual utilities. The two
functions are one of the major contributions of this paper. The
scheduling purpose of each BS is maximizing individual util-
ity, and the overall potential value will increase accordingly.
It is worth noting that all BSs are working in a distributed
way and each BS is executing scheduling based on limited
interference information, while cooperation among BSs is
neglected.

Then a subcarrier and power scheduling scheme is pro-
posed. In this algorithm, each BS calculates utilities for every
subcarrier and decides if this subcarrier is worth using. For
each subcarrier, BS will select a most probable transmit
power level that maximizes individual utility. After stop crite-
ria are satisfied, the proposed scheme will converge accord-
ingly and current resource allocation method is the optimal
scheduling strategy.

Finally, a grid-based simulation scenario is introduced
to verify theoretical analysis. By selecting proper parame-
ters, the simulation results prove that the proposed schedul-
ing scheme makes improvements in spectral efficiency,
power efficiency and user signal to interference plus noise
ratio (SINR).

C. PAPER ORGANIZATION
The main contributions of this paper can be summarized
as follows. In section II, system model are described and
the resource scheduling problem is modeled as a potential
game. Then a distributed resource scheduling scheme based
on potential game is proposed and analyzed in section III.
In section IV, numerical results are presented to verify theo-
retical study. Section V concludes the whole paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
In this paper, a downlink cellular network is considered.
As shown in Fig.1, a basic application scenario of dense
cellular network is presented.
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FIGURE 1. Architecture of dense cellular network.

Specifically, there are M BSs, denoted by M =

{1, 2, . . . ,m, . . .M}. Pmax is the maximum transmit power
for all BSs. In each small cell, one user is uniformly dis-
tributed under the coverage of each BS, interfered by neigh-
boring BSs sharing same frequency bandwidth. As the single
subcarrier scheduling among users of the same cell can be
solved by time divisionmultiplexing, multiple users attaching
to one cell is not in the scope of this paper. Without loss of
generality, it is assumed that the bandwidth per subcarrier
is total bandwidth B divided by N , where N is the number
of available subcarriers. The index set of all subcarriers is
denoted by N = {1, 2, . . . , n, . . .N }. Let N0 represents
the power spectral density of additive Gaussian noise. For
simplicity, all subcarriers experience the same propagation
conditions and only path loss is considered. To highlight the
influence of inter-cell interference, the penetration loss of the
walls between BSs is ignored.

Based on the above model, the instant SINR of user i of
BS j could be expressed as Eq.(1):

SINRi,j =
PjHj,i

N0B+
M∑
m=1
m 6=j

PmHm,i

(1)

where Pj is the transmit power of BS j and Hj,i is the channel
gain between BS j and user i. Similarly, Pm is the transmit
power of interfering BS m and Hm,i is the channel gain
between interfering BS m and user i.

For throughput model, Shannon capacity is used to repre-
sent the attainable throughput of a single user.

To be noticed, all subcarriers are divided into two cate-
gories: Primary Component Carrier (PCC) and Supplemen-
tary Component Carrier (SCC). PCC is used to guarantee
basic service, transmitted with maximum power. Each BS can
have only one PCC. While there is extra data requirement,
BS could apply to SCC without limitation of num-
ber, only not to generate too much interference to

neighboring BSs, which means SCC may use lower transmit
power than PCC.

To record the subcarriers allocation status of the network,
Radio Resource Allocation Table (RRAT) is used to store
the usage situation of subcarriers for each BS, which is a
N×M matrix, where elementRRAT i,j = 1means subcarrier i
is occupied by BS j.

Due to the different power settings for PCC and SCC,
a N ×M matrix called Component Carrier Power Allocation
Table (CCPAT) is introduced to record transmit power for all
BSs on each subcarriers [9], [10], where element CCPAT i,j
represents the transmit power of BS j for subcarrier i.

B. PROBLEM FORMULATION
Managing interference in centralized way is the most com-
mon and effective method to solve interference mitigation
issue in traditional cellular network. But the centralized
scheme has to pay unbearable overhead during feedback
of interference information in order to perform global opti-
mization. Meanwhile, excessive time delay is introduced in
the message interaction. These defects will worsen system
performance while dealing with highly dynamic interfer-
ence especially in dense cellular network. To tackle these
issues, the distributed scheme is proposed and focuses on
solving problem with insufficient message interaction. How-
ever, the distributed scheme is not always a better solution
than centralized scheme in all scenarios. Selecting proper
interference management schemes according to application
scenarios always provides optimal performances.

In dense cellular network, numerous communication nodes
are competing for the same frequency resource and the
inter-cell interference condition is extremely complicated.
An effective scheduling scheme should make tradeoff among
resource competitors, hence game theory is considered as
a modeling tool due to its advantages in handling util-
ity optimization among numerous players. Specifically, a
non-cooperative game can reflect competitive situation where
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each player needs to make its decision independently of the
other players, which will be applied in the proposed model
to reduce the feedback overhead. The term non-cooperative
does not always imply that the players do not cooperate,
but means any cooperation must be self-enforcing with no
communication or coordination of strategic choices among
the players.

In numerous game models, potential game is one of the
most efficient game-theoretic models applied in wireless net-
work [2]. In game theory, a game is said to be potential game
if the incentive of all players to change their strategies can
be expressed by using a single global function called the
potential function.

As a typical potential game, the definition of exact poten-
tial game is presented as follows [3]:

8(si, s−i)−8(s′i, s−i) = u(si, s−i)− u(s′i, s−i) (2)

where si is the strategy of player i, where s−i is the strat-
egy vectors of all players except i. 8(si, s−i) and u(si, s−i)
are potential and utility functions respectively. The potential
function represents the overall profit of the system, while the
utility function denotes individual gains. It can be observed
that in exact potential games, the difference in individual
utilities achieved by each player when changing unilaterally
its strategy has the same value as the difference in the overall
potential value.

Consequently, the resource scheduling in dense cellular
network is modeled as a non-cooperative exact potential
game as shown in Eq.(2), where each BS is an inde-
pendent player. As subcarriers are classified as PCC and
SCC, the power strategy vector of each BS is express as
Pi =

(
Pi,1,Pi,2, . . . ,Pi,n, . . . ,Pi,N

)
, where Pi,n ∈ [0,Pmax]

denote the transmit power on subcarrier n for BS i. For
all BSs in the network, the scheduling strategy is P =
(P1,P2, . . . ,Pm, . . . ,PM ) ∈ P , where P is the space of
transmit power profile for all BSs.

As non-cooperative potential game has three components:
the set of players, their strategies, and the payoffs or utili-
ties [30], the proposed game model is denoted by GM ,N =
{M,P = {Pi}i∈M , {Ui}i∈M }}, where M is the set of BSs,
Pi is the power strategy vector for BS i and Ui is the utility
function.

As a result, the optimal resource allocation problem for
BS i on subcarrier j can be formalized as:

P∗i,n = argmax
Pi,n∈[0,Pmax]

Ui,n (3)

where Ui,n is utility function for BS i on subcarrier j.
From the system point of view, the optimal resource allo-

cation problem can be formalized as:

P∗ = argmax
P∈P

(
{Ui}i∈M,8 (P)

)
(4)

Based on the game definition, acquiring optimal schedul-
ing strategy means finding an equilibrium point of the game,
which is Nash Equilibrium (NE) where no player will benefit
any gains by unilaterally changing its allocation strategy.

However, it is difficult to build proper functions which
satisfies condition in Eq.(2) and achieves considerable system
performances at the same time. Therefore constructing utility
function and finding corresponding NE point to solve the
resource allocation problem will be discussed in next section.

III. GAME-THEORETIC SCHEDULING SCHEME FOR
RESOURCE OPTIMIZATION
Based on the proposed gamemodel, corresponding utility and
potential functions are presented in this section. Meanwhile,
the existence and uniqueness of NE for the proposed model
are proved. Then a potential game-based resource scheduling
algorithm is introduced. Finally the convergence and com-
putational complexity analysis of the proposed algorithm is
given.

A. GAME FORMULATION AND NE ANALYSIS
Normally, individual utility function in game theory is nor-
mally defined as the received payoff minus the cost for using
specific resources [2]. In this paper, the received payoff on
subcarrier n for BS i is defined as the attainable maximum
throughput while there is no interference, which is formulated
as follows:

rn(si, s−i) = Bnlog2(1+
Pi,n
N0Bn

) (5)

where Bn is the bandwidth of subcarrier n and Pi,n is the
transmit power of BS i on subcarrier n.

The cost of BS for using specific resource is defined as
average throughput decrease caused by and imposing to inter-
fering BSs. Specifically, the estimated throughput decrease of
BS i caused by incoming interfering BS j on subcarrier n is
defined as follows:

Ci,j,n=Bnlog2(1+
Pmax
N0Bn

)− Bnlog2(1+
Pmax

N0Bn + Pj,nHj,i,n
)

(6)

where Pj,n is the transmit power of interfering BS j and
Hj,i,n is the channel gain from BS j to BS i on subcarrier n.
To highlight the influence from BS j, the throughput decrease
is defined as the maximum attainable throughput with no
interference minus the throughput that considering BS j as the
only interference source. To be noticed, the transmit power of
BS i in Eq.(6) is Pmax instead of Pi,n for the reason of building
valid potential game. Moreover, the purpose of Eq.(6) is esti-
mating influence caused by interfering BS j, hence excluding
Pi,n will not cause too much impact. Similarly, the estimated
throughput decrease caused from BS i to BS j on subcarrier n
is defined as:

Cj,i,n=Bnlog2(1+
Pmax
N0Bn

)− Bnlog2(1+
Pmax

N0Bn + Pi,nHi,j,n
)

(7)

where Hi,j,n is the channel gain from BS i to BS j on sub-
carrier n. For the same reason, the transmit power of BS j in
Eq.(7) is Pmax instead of Pj,n.

9878 VOLUME 6, 2018



Z. Qi et al.: Distributed Resource Scheduling Based on Potential Game in Dense Cellular Network

Thus the utility of each BS i on subcarrier n can be defined
as follows:

u(si, s−i, n) = Bnlog2(1+
Pi,n
N0Bn

)−

ε
∑
j∈M
j 6=i

(
Ci,j,n + Cj,i,n

)
M − 1

(8)

where ε is weighted interference factor for balancing
throughput and interference items. In Eq.(8), the first item
is estimated throughput BS i can achieve while there is no
interference. As there areM − 1 interfering BSs for each BS,
the last two items denote the average throughput decrement
caused by and imposing to interfering BSs, which explains
the M − 1 in Eq.(8).
Naturally, the individual utility function of BS i for all

subcarriers is formulated as follows:

u(si, s−i) =
∑
n∈N

u(si, s−i, n) (9)

Based on the utility function, the overall potential function
of the system is defined by summing up the weighted utility
functions for all BSs:

8(P) =
∑
n∈N

∑
i∈M



Bnlog2(1+
Pi,n
N0Bn

)

− ε
b

M − 1

∑
j∈M,j 6=i

Ci,j,n

− ε
1− b
M − 1

∑
j∈M,j 6=i

Cj,i,n


(10)

where b is an adjustment parameter for the constructing exact
potential game. Parameter b is introduced in potential func-
tion to adjust proportion between different costs. In addition,
introducing b is useful for the demonstration of constructing
an exact potential game, detailed information can be found in
Appendix A. To balance different cost items in the potential
function, b is set to 0.5.
Firstly it will be proved that the proposed game is an exact

potential game, which means the equation in Eq.(2) holds.
Appendix A introduces the detailed process of proof.

Then the existence and uniqueness of NE for the proposed
potential game will be proved. For potential game, an impor-
tant corollary should be presented as followed [3], since it can
be used to judge if a potential game has a pure strategy NE:
Corollary 1: Every finite potential game has at least one

pure strategy NE.
According to Corollary 1, the proposed potential game

model should have at least one pure strategy NE. Moreover,
based on the definition of potential game, every NE is the
maximizer of potential function. Therefore the best NE will
definitely generate optimal potential value. In addition, if the
strategy set P of the proposed game model is compact and
convex, meanwhile the potential function is a continuously
differentiable function on the interior of P and strictly con-
cave on P, then the NE is unique. First of all, it is easy
to find that the strategy set P of the proposed game model

is compact and convex. After investigating the concavity of
the proposed potential function in Eq.(10), it is proved that
the second derivative of the proposed potential function is
constantly negative. The details of demonstration are given
in Appendix B.

As a result, the proposed game model is an exact potential
game and an unique NE can be obtained, which means an
optimal strategy exists. How to find this optimal strategy will
be discussed in the following section.

B. DISTRIBUTED ITERATIVE ALGORITHM FOR OPTIMAL
RESOURCE SCHEDULING
In order to obtain corresponding NE, it is required to develop
an efficient scheduling algorithm. According to γ -logit based
decentralized algorithm mentioned in [31], a distributed iter-
ative algorithm is proposed to find the unique pure NE.

In this algorithm, all BSs are working in a distributed way,
and only one BS is allowed to perform resource scheduling
in a single iteration. Each BS is using K ≥ 2 power levels
as {λ1Pmax, λ2Pmax, . . . , λKPmax}, where 0 = λ1 < λ2 <

. . . < λK = 1. During each iteration, current BS executes a
two-dimensional resource assessment for both subcarrier and
transmit power perspectively. At the end of each iteration,
two stop criteria are checked: i) iteration times reaches a
predefined maximum number, ii) the total system potential
value remains the same for a certain duration or varies in a
interval which is short enough to be treated as convergence.

Let p∗i,j be the optimal transmit power of BS i on sub-
carrier j, and P∗ = {p∗i,j}i∈M ,j∈N ∈ P is the optimal transmit
power strategy vector. The detailed procedure is described
in Algorithm 1.

While BS m is updating power level for subcarrier n,
BS m will transmit with most probable power level after
calculation. If it is 0, BSmwill not occupy subcarrier n. To be
noticed, the transmit power level is introduced to quantify the
transmit power of BS and simplify the resource scheduling
procedure in Algorithm 1. Therefore it will not influence the
continuity of power strategy P.

C. CONVERGENCE AND COMPUTATIONAL
COMPLEXITY ANALYSIS
For power strategies in all iterations, they can be seen as
a discrete time Markov process, which is irreducible and
aperiodic. Obviously it has an unique stationary distribution.
In this section, we will prove that Algorithm 1 converges to
an unique stationary distribution π (P).
Theorem 1: In the proposed potential gamemodel in which

all players adhere to Algorithm 1, the unique stationary dis-
tribution of the joint power and subcarrier strategy profiles is
given as:

π (P) =
exp{α8(P)}∑

P′∈P
exp{α8(P′)}

(12)

where P is the space of player’s strategy profile P,
which includes transmit power and subcarrier allocation
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Algorithm 1 Distributed Iterative Algorithm for Optimal
Resource Allocation
1: Initialization: Each BS selects an initial transmit power

randomly, then reset RRAT and CCPAT.
2: for t = 0, 1, 2, . . . do
3: BS m is executing scheduling in iteration t:
4: for n = 0, 1, 2, . . . ,N do
5: Based on latest RRAT and CCPAT, BS m

calculates its utility Um,n (t) = ut (sm, s−m, n) on
subcarrier n with every transmit power level,
namely: {Um,n,1 (t) ,Um,n,2 (t) , . . . ,Um,n,K (t)}.

6: Then BS m updates its transmit power level on
subcarrier n according to the following rule:

Pr (pm,n(t + 1) = pk∗ ) =
exp{αUm,n,k∗ (t)}∑

k∈[1,K ],k 6=k∗
exp{αUm,n,k (t)}

,

(11)

where k∗ ∈ [1,K ], α is a positive parameter and K
is the number of available power levels.

7: Finally, BS m updates RRAT and CCPAT
according to the result of power level selection.

8: if Stop Criteria are Reached then
9: break;(Convergence is achieved.)
10: end if
11: end for
12: end for
13: Output: System throughput of the proposed game GM ,N

and the optimal resource scheduling strategy.

vectors, and 8() is the potential function given
in Eq.(10).
Proof:As P denotes power allocation strategies for all sub-

carriers, it can represent both power and subcarrier allocation
status of the network. Firstly, Px , Py ∈ P are two arbitrary
transmit power allocation states of the network andPr(Py|Px)
is the transition probability from Px to Py. In order to prove
Theorem 1, Eq.(13) should be proved in advance:

π (Px)Pr(Py|Px) = π (Py)Pr(Px |Py) (13)

As power strategy P is a M × N matrix, it can also
be expressed as an array whose length is M × N . Denote
Px = {px1, p

x
2, . . . , p

x
M×N } and Py = {p

y
1, p

y
2, . . . , p

y
M×N }.

If Px = Py, the equation in Eq.(13) is clearly satisfied.
If not, there will be only one different element between state
Px and Py since there is only one subcarrier changing its
scheduling state between two successive iterations. Without
loss of generality, supposing that the ith element from state
Px and Py are different from each other, which means: pxi∗ =
pyi∗ ,∀i

∗
6= i. Then the left side of Eq.(13) can be written as:

π (Px)Pr(Py|Px)=
exp{α8(Px)}∑

P∈P
exp{α8(P)}

1
M ·K

exp{αUi(p
y
i )}∑

pyi ∈K
exp{αUi(p

y
i )}

(14)

Similarly, the right side of Eq.(13) can be expressed as:

π (Py)Pr(Px |Py)=
exp{α8(Py)}∑

P∈P
exp{α8(P)}

1
M ·K

exp{αUi(pxi )}∑
pxi ∈K

exp{αUi(pxi )}

(15)

As there is only one different element between state Px and
Py, it is easy to conclude that: pxi = pyi ,∀p

x
i , p

y
i ∈ K. Define

λ as shown in Eq.(17), Eq.(14) can be rewritten as Eq.(17).

λ =
1

M · K ·
∑
P∈P

exp{α8(P)} ·
∑
pxi ∈K

exp{αUi(pxi )}
(16)

π (Px)Pr(Py|Px)

= λ exp{α8(Px)+ αUi(p
y
i )} (17)

Due to symmetry, Eq.(15) can be rewritten as Eq.(18).

π (Py)Pr(Px |Py) = λ exp{α8(Py)+ αUi(pxi )} (18)

Based on Eq.(2), following equation can be obtained:

8(Py)−8(Px) = Ui(p
y
i )− Ui(p

x
i ) (19)

Subtract Eq.(17) from Eq.(18), it can be concluded that
the equation in Eq.(13) is true. From the above analysis,
the following equation can be obtained:∑

Px∈P
π (Px)Pr(Py|Px)

=

∑
Px∈P

π (Py)Pr(Px |Py)

= π (Py)
∑
Px∈P

Pr(Px |Py)

= π (Py) (20)

Eq.(20) is the balanced stationary equation of the Markov
process and Theorem 1 is proved.

For the computational complexity, it is assumed that each
BS is executing resource scheduling iteration once. During
each iteration, BS should go through all N subcarriers and
calculates corresponding utility to decide if this subcarrier is
worthy of using. For each subcarrier, BS should select the
most probable transmit power level from K candidates based
on respective utility function. Considering that utility calcu-
lation should include interference coming fromM −1 neigh-
boring BS, the computational complexity of Algorithm 1
is O(M2

· N · K ).

IV. SIMULATION RESULTS
This section presents simulation results of the proposed
resource scheduling scheme in predefined network architec-
ture, in which a grid-based system limited in square area is
considered. Then performance comparison is made among
several resource scheduling schemes.
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TABLE 1. Simulation parameters.

A. SIMULATION SCENARIO
The simulation scenario is limited in a 100m × 100m square
zone, whereM BSs are distributed inM square grids and each
BS locates in the center of each grid. Every test result is an
average value based on multiple Monte Carlo trials and it is
collected from a sequence of snapshots that evolves over time.
Each snapshot has a mobile user distribution, which is differ-
ent from the previous snapshot. After each snapshot, all users
will randomly move to a new position without considering
moving speed and direction. Assuming that the users will not
move out of the coverage of current BS, handover to another
cell is not considered. For each snapshot, it is assumed that
all users in the system are active. Main simulation parameters
are listed in TABLE 1.

B. RESULTS ANALYSIS
In order to provide convincible conclusion, several resource
allocation algorithms are presented to compare with the pro-
posed scheme on throughput, power efficiency and other
measurements. The first one is an utility-based resource
allocation scheme from [32]. For every available subcar-
rier, two BSs are selected based on strongest interfer-
ence caused by and imposing to current BS. Then utility
and potential function are calculated according to the esti-
mation of selected BSs. Whether the subcarrier is occu-
pied or not depends on the difference between utility and
potential function. In the rest of this paper, it is referred as
ACCS(Autonomous Component Carrier Selection). The sec-
ond algorithm is based on potential game [33]. In [33],
the author modeled distributed resource allocation problem
in heterogeneous network by means of potential game.

1) POTENTIAL FUNCTION AND SYSTEM THROUGHPUT
For exact potential game, the difference in the individual
utilities achieved by each player when changing its strat-
egy unilaterally has the same value as the difference in the
overall potential value. Thus the overall potential value will
keep increasing as long as the individual utility of a single
BS grows when updating its scheduling strategy. The trend
of potential function and system throughput varying along
with the scheduling procedure for the proposed algorithm is
presented in Fig.2. The simulation is performed in 100 grids
located in 100m × 100m square area. It is obvious that the
potential function value increases monotonously with the
iteration times. When the algorithm converges, the resource
scheduling procedure ends and the overall potential value

FIGURE 2. Potential value and system throughput of the proposed
algorithm vs iterations times.

FIGURE 3. System throughput of different algorithms vs number of BSs.

remains constant. For the system throughput, the over-
all trend is growing in most cases. However, in certain
sections, the system throughput trend appears to decrease
slightly. That’s because although potential function shows
undiminished feature and reflects system throughput to some
extent, there is still deviation between the potential function
value and actual system throughput. Hence, sometimes sys-
tem throughput may decrease while the potential function
value increases. But it will not influence the general trend.
To clearly illustrate the detailed process of convergence,
it can be observed that the maximum convergent iterations is
almost 3000. Actually, the convergent speed can be improved
by modifying the number of available power levels and other
parameters if it is applied into practical system.

2) SPECTRAL EFFICIENCY
For a cellular communication system, throughput is always
an important measurement that should be considered to
assess the performance of a resource scheduling scheme.
As in Fig.3, the throughput performance of several resource
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FIGURE 4. Average throughput per cell of different algorithms vs number
of BSs.

FIGURE 5. Individual throughput for each user vs iteration times.

allocation schemes are presented. The proposed scheme out-
performs ACCS as the interference estimation in ACCS is
not accurate enough to describe current interference envi-
ronment. For scheme in [33], higher throughput is achieved
than the poposed scheme. Actually, the proposed scheme can
also obtain higher throughput by selecting proper interference
weighting factor and judgment threshold. But the cost for pur-
suing higher throughput will jeopardize the power efficiency
and user SINR, which will be discussed later. While the num-
ber of BSs is increasing in the limited area, the throughput for
a single cell decreases rapidly due to the increased inter-cell
interference as shown in Fig.4.

Specifically, Fig.5 presents the individual throughput of
different users in a specified scenario, where six BSs locate
in 100m × 100m gird-based area and there is only one user
associated to one BS. At first each user only occupies one
primary subcarrier and their throughputs are in the same
level. As the iteration time increases, each BS is trying to
occupy or give up subcarriers by assessing corresponding

FIGURE 6. Power efficiency of different algorithms vs number of cells.

utilities. Consequently the individual throughput is going
through rapid changes and finally converges to a stable value.
With the proposed scheduling scheme, every BS can obtain
an optimal subcarrier and power allocation strategy based on
respective interference situation.

3) RESOURCE EFFICIENCY
In addition to system throughput, power efficiency is also
significant as investigating energy consumption plays a great
part in reducing system cost, especially in dense network. The
power efficiency for BS in this paper is defined as the attain-
able throughput divided by the consumed power. Although
throughput performance of the proposed scheme is not as
good as scheme in [33], the proposed scheme outperforms
scheme in [33] in power efficiency due to lower subcarri-
ers occupation as shown in Fig.6. Since the efficient use
of energy resource becomes more important, this advantage
is considered more often by operators, especially in dense
deployment where huge energy consumption occurs all the
time. Compared with ACCS, the proposed scheme has lower
power efficiency when the number of BSs is smaller than 45.
But its power efficiency is monotonously increasing after the
number of BSs surpasses 45, which highlights the ability
of the proposed scheme to deal with interference in dense
deployment. Based on the above analysis, it can be concluded
that the proposed scheme achieves high power efficiency
while guaranteeing considerable spectral efficiency due to its
power-oriented utility function, especially in dense deploy-
ment. As shown in Fig.7, it can also be noticed that the
proposed scheme uses less subcarrier resource than scheme
in [33], which verifies its high power efficiency.

4) DISTRIBUTION OF USER SINR
In order to investigate the SINR performance of individual
user, the cumulative distribution function of each scheduling
scheme is investigated and the result is shown in Fig.8. For
scheme in [33], the portion of user SINR under 1 is still too
large to guarantee good communication quality even though
it has high total throughput. Combined with the previous
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FIGURE 7. Ratio of used subcarriers of different algorithms vs number of
cells.

FIGURE 8. CDF of user SINR of different algorithms.

analysis, it means the high throughput brought by scheme
in [33] is based on over-use of subcarriers, which generates a
number of low-SINR users. Conversely, the proposed scheme
achieves better SINR distribution and maintains certain quan-
tity of high-SINR users.

V. CONCLUSION
In this paper, the subcarrier and power scheduling problem in
dense cellular network is modeled as a potential game. Based
on the model, this paper proposes the utility and potential
functions, which consider attainable throughput and con-
sumed power. Then a distributed iterative algorithm for opti-
mal resource scheduling is introduced. In the simulation part,
a grid-based scenario is introduced and the results show that
the proposed scheme can always converge to an equilibrium.
Meanwhile, high resource efficiency is achieved on the basis
of guaranteeing considerable spectral efficiency. In addition,
the proposed scheme can ensure communication quality by
satisfactory user SINR distribution. In conclusion, this paper
provides guidelines for resource scheduling in future dense

deployments of small cells. Based on the results, interference
mitigation in other network architecture can also be modeled
as a game theoretic problem. Moreover, to coordinate inter-
ference in a multi-level way, adding physical features of the
BS like antenna tilt into consideration is also a worthwhile
topic to enhance traditional scheduling solutions.

APPENDIX A
DEMONSTRATION OF VALIDITY FOR THE PROPOSED
POTENTIAL GAME MODEL
To prove that the proposed game model is an exact potential
game, it means proving the equation in Eq.(2) holds. To sim-
plify the verification, only one subcarrier is considered and it
will not affect the correctness of the verification. Therefore
index k is excluded in the following demonstration. Firstly,
the proposed potential function in Eq.(10) will be decom-
posed:
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where first four items are i-related and the rests are
i-free.

Then it will be proved that the proposed potential function
satisfies Eq.(2). As only the first four items are i-related,
the rests will not be considered as follows:
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APPENDIX B
DEMONSTRATION OF MONOTONICITY FOR THE
PROPOSED POTENTIAL FUNCTION
To prove that the second derivative of the potential function is
constantly negative, the first derivative is obtained as follows:
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Proving above expression is constantly less than 0 equals
proving the following formula:
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which means:
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After expanding the numerator and denominator in the above
formulation, there is always a bigger item existing in the
denominator for every component of the numerator. More-
over ε is less than 1. Hence the above inequation is true.
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